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Improved Minimum Redundancy Maximum  
Relevance with Hybrid Swarm Intelligence 
Based Gene Selection Algorithm for Cancer 
Classifi cation of Microarray Gene Expression 
Data
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Abstract :  In recent times, microarray based gene expression profi ling has turned out to be most vital and 
promising dataset for the purpose of cancer classifi cation that are used for effective diagnosis and prognosis. 
It is extremely vital to determine the most informative and defective genes in order to improve premature 
cancer diagnosis and to provide effective chemotherapy processes. In addition, in order to fi nd perfect gene 
selection methods that considerably reduce the dimensionality and choose informative genes is extremely 
noteworthy issue in the fi eld of cancer classifi cation. Here, in this work, at fi rst preprocessing process is 
done with the assistance of Probabilistic Principle Component Analysis (PPCA) in order to discover the 
Mutual Information detection on Micro array dataset and to effectively diminish the noise included in the 
dataset. Then, by using the preprocessed dataset an improved minimum Redundancy Maximum Relevance 
with Glowworm Swarm Optimization (ImRMR-GSO) algorithm is proposed for the purpose of selecting 
the predictive genes from the cancer microarray gene expression profi le. Subsequently, these genes are 
classifi ed with the assistance of a hybrid classifi cation method which utilizes Random forest, SVM classifi er 
and boosting ensemble learning method. Experimental results demonstrate that the proposed ImRMR-GSO 
algorithm achieves most accurate classifi cation performance with small amount of predictive genes when 
tested using both datasets and compared against previously suggested schemes. This proves that the proposed 
ImRMR-GSO is a promising approach for effectively solving gene selection and cancer classifi cation 
problems.
Keywords : Cancer classifi cation, microarray, gene selection, gene expression, swarm optimization.

1. INTRODUCTION

Gene expression profi les that are acquired from specifi c microarray experiments have been extensively 
utilized for the purpose of cancer classifi cation to construct an effective scheme. This scheme can effectively 
distinguish normal or different cancerous states with the assistance of selected informative genes [1]. On 
the other hand, studying microarray dataset in relation to their gene expression profi les poses a challenging 
process. The complexity of the problem increases from the enormous amount of features that contribute 
to a profi le as compared against the extremely low number of samples normally existing in microarray 
analysis. An additional challenge is the existence of noise (biological or technical) in the dataset, which 
additionally disturbs the accuracy of the experimental results. 
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Microarrays, recognized as DNA chips or some time regarded as gene chips, are chips that are 
hybridized to a labeled indefi nite molecular extracted from a specifi c tissue of interest. Hence, it is possible 
to measure instantaneously the expression level in a cell or tissue sample for each gene represented on 
the chip [2][3]. DNA microarrays can be utilized for the purpose of determining which genes are being 
expressed in a particular cell category at a specifi c time and under precise conditions. This permits to relate 
the gene expression in two different cell categories or tissue samples, where it can effectively determine 
the additional informative genes that are accountable for causing a specifi c disease or cancer [4]. 

In recent times, microarray technologies have opened up several windows of opportunity to explore 
cancer diseases by means of gene expressions. The principal task of a microarray data investigation is 
to control a computational model from the particular microarray data that can predict the class of the 
particular unknown samples. The accuracy, quality, and robustness are extremely vital components of 
microarray analysis. The accuracy of microarray dataset analysis completely based on both the quality of 
the provided microarray data and the applied analysis scheme or objective. On the other hand, the curse 
of dimensionality, the insignifi cant number of samples, and the level of inappropriate and noise genes 
make the classifi cation task of a test sample extremely challenging [5][6]. Those inappropriate genes 
not only introduce certain unnecessary noise to gene expression data analysis, however also increase the 
dimensionality of the gene expression matrix. This results in the growth of the computational complexity 
in several consequent research objectives like classifi cation and clustering [7].

Bioinspired evolutionary schemes are more appropriate and precise than the wrapper gene selection 
scheme [8] since they have the capability for searching and discovering the optimal or near-optimal solutions 
on high-dimensional solution spaces. In addition, they permit searching the solution space by means of 
considering more than one attribute simultaneously [8]. However, as other evolutionary schemes, the ABC 
has certain challenging issues, particularly in computational effi ciency, when it is processed on complex 
and high-dimensional data like microarray datasets. As a result, to effectively enhance the performance 
of the ABC algorithm in high-dimensional datasets, here proposed the idea of adding a feature selection 
algorithm, minimum Redundancy Maximum Relevance (mRMR), as a preprocessing stage. At this point, 
it is combined with the ABC algorithm, mRMR-ABC, with the intention of choosing informative genes 
from cancer microarray profi les. This hybrid gene selection provides a better balance between fi lters and 
wrapper gene selection schemes, being more computationally effective, as in fi lter schemes, and model 
feature dependencies as in wrapper schemes [8].

The existing mRMR is effectively utilized for Mutual Information is taken as the fundamental 
criterion to discover the feature relevance and redundancy. The mutual information among a feature and 
class labels states the consequence of that particular feature. Another time, the mutual information among 
different features states the correlation i.e., the redundancy among those specifi c features. Moreover, the 
ABC algorithm’s drawbacks like poor response in case of local search ability and the process of ABC 
gets slow down when it is utilized in sequential processing. As a result, with the aim of overcoming 
these complications, Improved Minimum Redundancy Maximum Relevance (I- mRMR) combined with 
GSO approach is proposed for the purpose of reducing noisy and irrelevant genes. Furthermore, a hybrid 
classifi er based on random forest, SVM and boosting schemes is used for the purpose of classifying the 
gene expression dataset. It provides higher values of accuracy, specifi city, positive predictive value and 
negative predictive value. The major reason for more effective results in the case of hybrid classifi cation 
methodology used in this paper is it effectively makes use of the advantages of each of the traditional 
SVM, RF classifi cation schemes. 

2. RELATED WORKS

Yifeng Li &Ngom (2012) [9] formulated a novel Kernel NMF (KNMF) scheme for the purpose of effective 
feature extraction and classifi cation of microarray data. This scheme is also generalized to kernel High-
Order NMF (HONMF). Broad experiments on eight microarray datasets demonstrate that this scheme 
generally outperforms the conventional NMF and existing KNMFs. 
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Lingyan Sheng et al (2009) [10] improved a Block Diagonal Linear Discriminant Analysis (BDLDA) 
and effectively applied to gene expression data. BDLDA is a kind of classifi cation tool with embedded 
feature selection that has exhibited better performance on simulated data. On the other hand, with the use 
of cross validation in training, BDLDA is extremely time consuming, as a result, it is not an appropriate 
scheme for gene expression data, which has a huge number of features and comparatively small number of 
samples. In this scheme, estimated error rate is utilized as a measure to select the best model. The algorithm 
is optimized by continuously repeating the model construction procedure with previously selected features 
removed, which leads to increased classifi cation robustness. 

Herold et al (2008) [11] effectively compared the unsupervised and supervised gene selection schemes. 
Recent mechanism learning schemes completely depend on matrix disintegration schemes which are more 
resembling Independent Component Analysis (ICA) offer innovative and well-organized investigation tools 
which are explored for the purpose of evaluating gene expression outline. These tentative characteristic 
extraction schemes gave instructive expression modes which offered indication of fundamental regulatory 
techniques. The gene which exhibited the strong behaviour was taken for the purpose of classifi cation of 
the tissue samples under inspection. In order to assess this result, it was compared against supervised gene 
selection schemes which completely depended on numerical scores or support vector. This scheme was 
used in macrophages loaded/de-loaded with chemically customized low density lipids.

Daliri & Mohammad Reza (2012) [12] formulated a scheme, which is completely based on combination 
of Genetic Algorithm (GA) for the purpose of feature selection and newly proposed scheme, namely the 
Extreme Learning Machines (ELM) for the purpose of classifi cation of lung cancer data. The dimension 
of the feature space is effectively reduced with the assistance of GA and the effective features are chosen 
in this manner. The data are subsequently fed to a Fuzzy Inference System (FIS) which is trained with the 
help of the fuzzy extreme learning machine scheme. 

Saraswathi et al (2011) [13] assessed the performance of ICGA-PSO-ELM and compared this scheme 
results with existing schemes in the literature. An investigation into the functions of the chosen genes, 
by means of a systems biology approach, revealed that most of the recognized genes are involved in cell 
signaling and proliferation. An examination of these gene sets shows a larger representation of genes 
that encode secreted proteins than found in arbitrarily chosen gene sets. Secreted proteins constitute a 
major means through which cells intermingle with their adjacent cells. Mounting biological evidence has 
recognized the tumor microenvironment as a serious factor that regulates tumor survival and development. 
As a result, the genes identifi ed by this investigation that encode secreted proteins might provide signifi cant 
insights to the nature of the critical biological characteristics in the microenvironment of each tumor type 
that permit these cells to increase and proliferate.

Subbulakshmi & Deepa (2015) [14] formulated a hybrid scheme in accordance with the machine 
learning paradigm. This paradigm integrated the effective exploration scheme called self-regulated 
learning capability of the Particle Swarm Optimization (PSO) algorithm with the ELM classifi er. With 
the recent off-line learning scheme, ELM is a single-hidden layer Feed Forward Neural Network (FFNN), 
proved to be an effective classifi er with huge amount of hidden layer neurons. In this scheme, PSO is 
effectively utilized to determine the optimum collection of parameters for the ELM, as a result reducing 
the amount of hidden layer neurons, and it further enhances the network generalization performance. 

Rong et al (2009) [15] formulated an Online Sequential Fuzzy Extreme Learning Machine (OS-
Fuzzy-ELM) for the purpose of function approximation and classifi cation problems. The equivalence of 
a Takagi Sugeno Kang (TSK) Fuzzy Inference System (FIS) to a generalized single hidden-layer feed 
forward network is shown fi rst, which is subsequently used to develop the OS-Fuzzy-ELM algorithm. 
This results in a FIS that can    handle any bounded non constant piecewise continuous membership 
function. In addition, the learning in OS-Fuzzy-ELM can be done with the input data coming in a one-by-
one mode or a chunk-by-chunk (a block of    data) mode with fi xed or varying chunk size. In case of OS-
Fuzzy-ELM, the entire the antecedent parameters of membership functions are randomly assigned fi rst, 
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and subsequently, the equivalent consequent parameters are determined in analytic manner. Performance 
comparisons of OS-Fuzzy-ELM with other existing schemes are presented using real-world benchmark 
problems in the areas of nonlinear system identifi cation, regression, and classifi cation.

Mohanasundaram and Periasamy [30] formulated a hybrid optimization approach for identifying the 
optimal data storage position in WSN. The work provided signifi cant results through the hybrid genetic 
algorithm and particle swarm optimization approach. 

3. PROPOSED METHODOLOGY

In this section, the novel ImRMR-GSO algorithm is proposed for selecting the predictive genes from 
the cancer microarray gene expression profi le. The goal of this algorithm is the selection of the more 
informative gene for the purpose of improving the RFSVM classifi er accuracy performance through 
the pre-selection of the relative and informative genes employing the ImRMR technique. Thereafter the 
estimation of the best predictive genes is done by using the GSO algorithm in the form of a wrapper gene 
selection strategy along with the RFSVM classifi er. It is evident that, in this new ImRMR-GSO algorithm, 
the genes are selected to make a small dataset (ImRMR dataset) which comprises of the informative genes. 
As a result, the optimization process will be enhanced, and the comparison made with the actual GSO 
algorithm which did the selection of the genes for the initial microarray dataset directly. The system fl ow 
diagram is illustrated in the fi gure 1. 

Figure 1:  Architecture view representation of the contribution

3.1. Microarray Gene Expression Data 

The recent progress in the microarray gene expression [21,22] data has rendered the measurement 
and analysis of the high dimensional gene expression data feasible. Also it improves the area of 
genetic research. Factually, microarray gene expression analysis has a signifi cant role to play in the 
area of molecular classifi cation of cancer, in the recent times. In the primitive level, it can be regarded 
as a sample against the gene two dimensional matrix along with an extra column that represents 
the respective classes of samples. Sometimes, the rows of the microarray data has the experimental 
conditions in place of samples. In almost all the cases, the unrefi ned data contains noise or missing 
values. Furthermore, the tremendous size of the dataset leads to an increase in the diffi culty level for 
the researcher. Still again, few genes are not important to the respective class labels and even though 
they tend to make the data size larger. Hence, prior to the application of the microarray data, it has to 
beundergo preprocessing with some scheme.
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3.2. Pre-processing using PPCA

PCA is only a replacement for an n-dimensional data space and the selection of m dimensions present in 
the turn or rotated space to be the new m dimensional linear subspace. With the condition that the data 
present in the actual space is Gaussian, then the data present in the rotated subspace also tends to be 
Gaussian. Hence, PPCA is a Gaussian modeler which describes the relation between the Gaussians in the 
distinct space and the subspace. The model is expressed as 

 t = Wx +  + 
the connection  between these two Gaussians is stated, where t (n-dimensional) indicates the data vector, 
x (m-dimensional) refers to the subspace vector, W indicates the m leading eigenvectors, μ stands the data 
mean, and  refers to a noise model that is tacit isotropic Gaussian i.e.,  ~ N(0, 1)) which has similarity 
with the average of the minor eigen values. This allows the next subsequent defi nitions of probability 
distributions over t-space and x-space:

 p(t) = 
1

T –12 2 1(2 ) C exp (– ( – ) C ( – )
2

n– –
| | t t  

 p(t|x) = 2 2 22 1(2 ) exp (– || – W – ||
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The Gaussian formula along with the covariance matrix, in general is expressed as:
 C = 2i + WWT

Therefore the preprocessed gene dataset is got here.  Here, the preprocessed data undergoes fi ltering 
and the gene selection process that enhances the classifi cation performance. 

3.3. Mutual Information detection on Micro array dataset

It is very essential to discover the features that possess the maximum information content. With regard to 
microarray gene expression data, the aim of any type of relevant gene selection process is the identifi cation 
of genes that have the maximum information corresponding to the class labels of the samples. For the 
identifi cation of these genes, feature entropy is an appropriate metric. The initial uncertainty of the output 
class that is called as the entropy is defi ned below in Equation 1:

 H(C) = 
N

= 1

P ( ) log (P ( )) ;
x

x x
x

– x xå
Where Px(x), x = 1, 2, ... , Nx indicate the probabilities for the different classes, like the Px which 

indicates the probability density for class x. 

Afterwards, the average uncertainty with regard to the input feature vector is computed as the 
conditional entropy defi ned in Equation 2:

 E(X|S) = 
N N

= 1 = 1

P( ) P ( | ) log P ( | ));
v x

x x
v x

– v x v x v
æ ö÷ç ÷ç ÷ç ÷çè ø
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Here the s refers to the input feature vector that has Ns samples and Px(x|v) indicates the conditional 

probability for the class x obtained from the input vector v. Typically, the conditional entropy will be 
lesser than or will equal the initial entropy. When there exists complete independence between the feature 
and output class, then the conditional entropy equals the initial entropy. Hence, the mutual information 
is defi ned by the quantity of uncertainty which is reduced. The mutual information I(X; S) between the 
variables x and s can be expressed as:
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 I(X ; S) = H(X) = H(X|S)
The Equation 3 above can be rewritten as:

 I(X ; S) = 
P( , )I(S ; X) P( )log

P( )P( )x ,v

x vx, v
x v

=å
Since the function of mutual information has symmetry with regard to X and S hence I(X; S ) equals 

to I(S ; X).

3.4. Improved Minimum Redundancy Maximum Relevance (mRMR) Filter Algorithm (ImRMR)

The gene selection procedure is highly necessary for the accurate classifi cation prediction and the mRMR 
technique can considerably enhance the classifi cation accuracy [16]. In the case of a high-dimensional 
microarray dataset, since there are thousands of genes present, it is not effective to follow an evolutionary 
algorithm like the artifi cial bee colony in a microarray dataset directly. Moreover, it is hard for a classifi er 
to be trained with accuracy. 

Alternate methods has to be adopted effi ciently to resolve this issue. Hence, in the form of a fi rst step, 
mRMR is utilized for reducing the noisy and unnecessary genes. The mRMR approach was introduced by 
Peng et al. in 2005 [17]. It is a heuristic method which can be utilized for continuous and discrete datasets 
for measuring the relevancy and redundancy of features and decide over the features that are promising. 
The experimentation results show that ImRMR is an effi cient technique for improving the performance 
feature selection. Features that are chosen by ImRMR have more predictive capability and accomplish 
accurate classifi cation results compared to those chosen by mRMR and MaxRel.

mRMR Approach

This section deals with the well-known minimum redundancy maximum relevance with MIQ and MID 
scheme [20] which is explained in a detailed manner. The genes having considerably varied expressions in 
two diverse classes (normal and tumor or two diverse subtypes of cancer) are referred to as the differentially 
expressed genes [18]. The relevance of a gene is known to be the degree of differentially expression of that 
gene. Then the relevance of gene can be computed by mutual information [19]. In case the expression of 
a gene isstochastically or uniformly distributed in diverse classes, then its mutual information with these 
classes tends to be zero. When a gene is highly differentially expressed for diverse classes, it must possess 
enormous mutual information. Consider a mutual information for the case of discrete variable only. For 
the case of discrete variables, the mutual information I of two variables X and S is expressed in Equation 
4. The fundamental concept of minimum redundancy is the selection of the genes in such a manner that 
they are mutually maximally dissimilar to the other genes. Let s represent the subset of genes which are 
seen. The average minimum redundancy is defi ned in Equation 5:

 Minimum  W = 2

1 I( , ),i , j v i j
| v | Îå

Maximum relevance and minimum relevance redundancy feature selection
Input : Discretized data d, class c, number of output features n, number of features in d is g.
Output : Output feature set F.

 1. Idle ft = [1 : g]
 2. For i = 1: g do
 3. Relevance (i) = mutual–info (d(:,i),c);
 4. End for
 5. [R, id] = Max (relevance);
 6. F[1] = id;
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 7. Idle ft = idle ft – F; 
 8. For i = 2: n do
 9. Obj 1 = relevance (idle ft);
 10. For j = 1:  |idel ft| do

 11. Sum = F
= 1kå (mutual – info(d(:, k), d(:, idel ft))) ;

 12. Redun(j) = sum/ |F|;
 13. End for
 14. Obj  2= relevance (idle ft/(redun + 0.0001);
 15. [newid, obj2] = Non dominated-Feature Selection (obi1, obj2, idle ft) 
 16. [R, id] = Max(obj2);
 17. F[i] = id;
 18. Idle 
 19. End for
where indicates the mutual information between i-th gene and j-th gene and represents the number of genes 
in S. In order to choose the differentially expressed gene, again the mutual information can be utilized. 
The discriminant capabilities of a genes by the mutual information  I(h, gi)is computed in Equation 6. This 
indicates that the mutual information between the targeted classesh = h1, h2, ..., hk  and the gene expression 
gives the measure of relevance of that particular gene.This way, the maximum relevance condition is the 
maximization of the average relevance of every gene in s is given in Equation 6:

 Maximum  = 
1 I( , )

i v

h i
| v | Î
å

Hence, the gene redundancy must be reduced and the gene relevance has to be increased. These two 
conditions are merged into one single criterion function in mRMR. Since the two conditions have equal 
importance, then the two simplest combined criteria become: Max(V − W), and Max(V/W). Here the 
mRMR for discrete variable are described in the form of mRMR mutual information difference (mRMR 
MID) and mRMR mutual information quotient (mRMR MIQ). The mRMR with MID Scheme is expressed 
as Equation 7 and mRMR with MIQ Scheme is defi ned in the Equation 8.

 mRMRMID = 
1max [I( , )– I( , )],

vi
j v

i h i j
| v |ÎW

Î
å

 mRMRMIQ = 
1max [I( , )/[ I( , )]

vi
j v

i h i j
| v |ÎW

Î
å

Proposed ImRMR Method 

The data matrix will be preprocessed and then discretized corresponding to the mean of every gene’s 
expression (column). The number of the output features (genes) consider n is provided by the user. The 
data matrix with the classes c = {1, 2, ··· ,C} act as the inputs. At the start, the fi rst objective (obj1) i.e., the 
relevance of every gene is computed bythemutual information according to the Equation 6. The highest 
scorer gene id is extracted from the relevance score and then added in the last solution set. Afterwards, a 
looping is conducted for the rest of the output features. Now the redundancy observed between the output 
feature and the rest of the features (idle f t) is computed according to the Equation 5. In case the output 
feature set has more than one feature, then the mean is treated to be the redundancy score as expressed in 
Equation 9.
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 mean – redundancy (i) = 
F

= 1

(mutual – info [ ]))/|F|)k i
k

x , xå
where F refers to output feature set, indicates the output feature vector and stands for the ith feature vector. 
Thereafter the second objective (obj2) can be seen modeled to be the ratio of relevance to the redundancy 
and it has to get maximized. After the calculation of the two objectives for every feature, the identifi cation 
of non-dominated features is done. A reference feature is known as the non-dominated feature when it 
meets the following conditions: 1) when the obj1 of the reference feature is larger than or equals all the 
other features’ obj1 and the obj2 of the reference feature is larger than or equals all the other features’ 
obj2 2) else if the obj1 of the reference feature is larger compared to the remaining other features’ obj1 
and the obj2 of the reference feature is lesser than every other features’ obj2 and vice-versa. Later, the 
feature having maximum obj2 gets integrated in the output feature set from the non-dominated features. 
This way an incremental procedure is following for getting the rest of the output features. The newly 
introduced algorithm is given in Algorithm 1 and the algorithm of the ruling features or non-dominated 
feature selection is shown in Algorithm 2.

Non-dominated Feature Selection

Input : The feature id idle ft, fi rst objective obj1, second objective obj2, 
Output : Non-dominated Feature id  idns, the second objective obje2ns of non-dominated features.

 1. k = 1
 2. for i = 1:  |idle ft| do
 3. t = 0;
 4. for j = 1 : |idle ft| do
 5. if then (i! = j)
 6. if then (obj1(i) < = obj2(i) < = obj2(j));
 7. else if then (obj1(i)< obj1(i) < & obj2(i) > obj2(j) || (obj1(i) > obj1(j) & obj2(i) < obj2(j)
 8. else
 9. t = 1;
 10. break;
 11. end if
 12. end if
 13. end for
 14. if then(t == 0 & j ==|idle ft|)
 15. idns (k) = 1
 16. obj2ns (k) = obj2(i);
 17. k = k + 1;
 18. end if
 19. end for

The fi ltering of the initial microarray gene expression profi ling is done making use of the ImRMR 
gene selection technique. Every gene gets assessed and then ordered making use of the ImRMR mutual 
information MI operations. The greatest relevant genes which yield 100% classifi cation accuracy along 
with an RFSVM classifi er are then identifi ed to create a new subset referred to as the ImRMR dataset, 
as indicated in Figure 2. The mRMR dataset represents the more relevant and lesser redundant genes as 
chosen by the mRMR technique. The mRMR is used for fi ltering the genes which are irrelevant and noisy 
and minimizes the load of computation for the GSO algorithm and RFSVM classifi er
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3.5. Glowworm Swarm Optimization (GSO) for gene selection

This is used for selecting the genes having the most information and predictive capability from an ImRMR 
dataset which render the greatest classifi cation accuracy along with an RFSVM classifi er. Every solution 
is indicated in the form of group of genes indices which are chosen form the ImRMR dataset. In a gene 
selection issue, every solution (i.e., subset of the selected genes) is linked with the fi tness value that is the 
classifi cation accuracy making use of an RFSVM classifi er.

Simultaneously capturing the multiple optima of multimodal functions is carried out by using the 
Glowworm Swarm Optimization algorithm. The algorithm utilizes a set of agents, for the purpose of 
scanning the search space and then having information exchanged about a fitness of their present position. 
Degree of a luminescent quantity known as the luciferin indicates the fitness. The increased value of the 
luciferin will be depicted by the agent when traversing in the direction of randomly selected neighbor. But, 
it is unlucky that the agent does not traverse at all with no neighbors present and hence tends to become 
an unnecessary feature diminishing the performance of the algorithm. Also, this attribute can result in 
imbalanced loads in the case of parallel processing. This gives rise to simple modifi cations to the actual 
algorithm that increases the performance of the algorithm by a constraining condition of having no agent 
relocated.

In GSO a swarm is composed of N agents called glowworms. A state of a glowworm i at time t can 
be described by the following set of variables: a position in the search space (xi(t)), a luciferin level (Ii(t)) 
and a neighbourhood range (Ni( )).

Luciferin-update phase : The luciferin update depends on the function value at the glowworm 
position. During the luciferin-update phase, each glowworm adds, to its previous luciferin level, a luciferin 
quantity proportional to the fitness of its current location in the objective function domain. Also, a fraction 
of the luciferin value is subtracted to simulate the decay in luciferin with time. The luciferin update rule 
is given by: 

 li(t) = (1 – )li(t) + f(xi(t + 1))
where li(t) represents the luciferin level associated with glowworm at time t,  is the luciferin decay 
constant (0    1),  is the luciferin enhancement constant, and f(xi(t)) represents the value of the 
objective function at agents location at time . 

Movement phase : During the time of movement phase, every ‘glowworm determines, making use 
of a probabilistic mechanism, to traverse toward a neighbor which contains a luciferin value greater than 
its own self. It means that, glowworms get attracted to neighbors which glow brighter. The set consisting 
of the neighbors of glowworm i at time t is computed as below:

 Ni(t) = {j : ||xj (t) – xi(t)|| < ri
d(t) ; li(t) < li(t)}

where the ||x|| refers to the Euclidean norm of x, and ri
d indicates the variable neighborhood range 

which is interrelated with the glowworm at any time t that is restrained above by a circular sensor range 
rs(0 < ri

d(t) < rs). For every glowworm i, the probability of moving towards a neighbor  j  Ni(t) is 
expressed by:

 pij(t) = 
N ( )

( ) ( )
( ) ( )

i

j i

k t k i

l t – l t
l t – l tÎå

Suppose glowworm i choose a glowworm  j  Ni(t) with pij(t)as given in (5.11). Afterwards, the 
discrete-time model of the glowworm movements can be given as:

 xi(t + 1) = 
( ) – ( )

( ) +
( ) – ( )||

j i
i

j i

x t x t
x t s

x t x t
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where xi(t)  Rd stands for the location of glowworm i, at any time t, in the d-dimensional real space Rd, 
and s > refers to the step size. 

Neighborhood range update rule: Associate every agent i with a neighborhood the radial range ri
d(t) 

of whose is dynamic by nature. Assume r0 refer to the initial neighborhood range of everyglowworm (that 
is, ri

d (0) = r0, i). In order to update the neighborhood range of every glowworm adaptively, the rule is 
as below:

 ri
d(t + 1) = min{rs, max{0, ri

d(t) + (ni – |Ni(t)|}}
where  refers to a constant parameter and ni indicates a parameter employed for controlling the number 
of neighbors.

GSO Algorithm

The GSO algorithm is as given below :
Assume that,

 1. Luciferin decay constant  () = (0 to 1) = 0.4
 2. The luciferin enhancement constant () = (0 to 1) = 0.6
 3. The step size (s) = (0 to 0.1)
 4. The sensor range (rs) = 0.5
 5. Constant Value () = (0. to 0.1)
 6. n = 50
 7. rd

0 = 5
 8. nt = 5

Procedure

 1. Set parameters: n, l0, r0, ρ, γ, β, s, rs, nt
 2. Arbitrarily generate the population of glow-worms xi = (4,2,2) (2,2) = {4R, 2R, 2R, R, R} 
  = (4, 2, 2,) (2, 2)
 3. for i = 1 to n do
 4. Initialize luciferin li(1) = l1 = 5
 5. Initialize neighborhood range rd

i = 5
 6. end for
 7. t = 1
 8. while stop condition not met do
 9. for each glow-worm i do {update luciferin}
   li(t + 1) = (1 – )li(t) + . f(xi(t))
 10. Local-decision range update: 
   rd

i(t + 1) = min{rs, max{0, rd
i(t) + (nt – |Ni(t)|)}} ;

   rd
0 = 5

 11. The number of glow in local-decision range:
   Ni(t) = {J : ||xj(t) – xi(t)|| < rd

i ; li(t) < lj(t)}
   xj(t) = {2, 1}
 12. If one iteration is fi nished, move into the next subsequent iteration, judges if the termination con-

dition is to be satisfi ed, if the withdrawal circulation is to be satisfi ed, the record result, else again 
repeat the same process by choosing another neighbour.
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3.6. Classifi cation using Modifi ed Support Vector Machine (RFSVM)

In this work, microarray gene data set are divided making use of a hybrid classifi cation technique that 
exploits the Random forest, SVM classifi er and boosting ensemble learning technique. In the hybrid 
method, the input data set is subdivided into subsets randomly. Every data item in all of the subsets 
contains a weight factor that is associated with it. The data items present in the subsets get classifi ed by 
SVM classifi er. In case a misclassifi cation has happened, then the weight factor of the data items is raised 
else it gets decreased. The data subsets are then rearranged and once more the SVM classifi er is employed 
for conducting the classifi cation at every subset. The weights are updated again based on if it is a right 
classifi cation or a misclassifi cation. These steps are then iteratively repeated until all of the weights are 
updated to a very lesser value. The output from the input data set is then computed by using a voting 
strategy to every random subset classifi cation outputs [21]. The algorithm for the new hybrid method is 
provided in the sample code as follows:

Algorithm 1 Hybrid classifi cation using RF and SVM supplemented by boosting 
Input : D Training Instances Intermediate Output: Osvm, Classifi cation output at every feature subset 

Output: O, Classifi cation Output for the hybrid methodology
Step 1. Begin 
Step 2. Initialize the weight wi for each data vectort i ε D. 
Step 3. Generate a new data feature subset Di from D using random replacement method. 
Step 4. Begin 
Step 5. Forevery random feature subset Di do Step
Step 6. Begin
Step 7. Apply SVM to each feature subset 
Step 8. Generate Osvm, the classifi cation output from 
Step 9. End 
Step 10. Update the weights of every data vector in the training set based on the classifi cation outcome. 

If an example was misclassifi ed then its weight is increased, else the weight is reduced. 
Step 11. Repeat the steps 2 to 10 by regenerating the random subsets until every input data vector is 

suitably classifi ed or apply iteration constraint. 
Step 12.  Calculate output O of the entire data set by using majority voting technique among the fi nal 

outputs of every Random feature subset Di of The original set D is obtained after Step 11. 
Step 13.  Return O 
Step 14.  End

4. RESULTS AND DISCUSSION 

In this section, evaluate the overall performance of gene selection methods using six popular binary and 
multiclass microarray cancer datasets, which were downloaded from http://www.gems-system.org/. These 
datasets have been widely used to benchmark the performance of gene selection methods in bioinformatics 
fi eld. The binary-class microarray datasets are colon [22], leukemia [22, 23], and lung [24] while the 
multiclass microarray datasets are SRBCT [25], lymphoma [26], and leukemia [27]. In Table 1, a detailed 
description of these six benchmark microarray gene expression datasets with respect to the number of 
classes, number of samples, number of genes, and a brief description of each dataset construction.



178 N. Kanchana

Table 1
 Statistics of microarray cancer datasets

Microarray 
datasets

Number of 
classes

Number of 
samples

Number of 
genes Description

Colon [22] 2 62 2000 40 cancer samples and 22 normal samples

Leukemia1 [23] 2 72 7129 25 AML samples and 47 ALL samples

Lung [24] 2 96 7129 86 cancer samples and 10 normal samples

SRBCT [25] 4 83 2308 29 EWS samples, 18 NB samples, 11 BL 
samples, and 25 RMS samples

Lymphoma [26] 3 62 4026 42 DLBCL samples, 9 FL samples, and 11 
B-CLL samples

Leukemia2 [27] 3 72 7129 28 AML sample, 24 ALL sample, and 20 
MLL samples

Table 2 shows the control parameters for the ImRMR-GSO algorithm that was used in our experiments. 
The fi rst control parameter is the bee colony size or population, with a value of 80. The second control 
parameter is the maximum cycle, which is equal to the maximum number of generations. A value of 100 
is used for this parameter. Another control parameter is the number of runs, which was used as stopping 
criterion, and used a value of 30 in our experiments, which has been shown to be acceptable. A value of 5 
iterations is used for this parameter.

Table 2
ImRMR-GSO control parameters

Parameter Value

Population Size 80

Max cycle 100

Number of runs 30

Limit 5

 In this study, the performance of the proposed ImRMR-GSO algorithm is tested by comparing it with 
other standard bioinspired algorithms, including ABC, GA, and PSO. Compare the performance of each 
gene selection approach based on two parameters: the classifi cation accuracy and the number of predictive 
genes that have been used for cancer classifi cation. Classifi cation accuracy is the overall correctness of 
the classifi er and is calculated as the sum of correct cancer classifi cations divided by the total number of 
classifi cations. It is computed by the expression shown below:

 Classifi cation Accuracy = 
CC 100
N

´

where N is the total number of the instances in the initial microarray dataset. And, CC refers to correctly 
classifi ed instances.

Apply leave-one-out cross validation (LOOCV) [28] in order to evaluate the performance of our 
proposed algorithm and the existing methods in the literature. LOOCV is very suitable to our problem 
because it has the ability to prevent the “overfi tting” problem [28]. It also provides an unbiased estimate of 
the generalization error for stable classifi ers such as the SVM classifi er. In LOOCV, one sample from the 
original dataset is considered testing dataset, and the remaining samples are considered training dataset. This 
is repeated such that each sample in the microarray dataset is used once as the testing dataset. Implement 
GA, PSO algorithm, and SVM using the Waikato Environment for Knowledge Analysis (WEKA version 
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3.6.10), an open source data mining tool [29]. Furthermore, in order to make experiments more statistically 
valid, conduct each experiment 30 times on each dataset. In addition, best, worst, and average results of 
the classifi cation accuracies of the 30 independent runs are calculated in order to evaluate the performance 
of the proposed algorithm.

Performance Evaluation

In this section, analyze the results that are obtained by the proposed algorithm. As a fi rst step, employ the 
ImRMR method to identify the top relevant genes that give 100% accuracy with an RFSVM classifi er. 
From Table 3 and Figure 2, can see that the top150 genes in the leukemia1 dataset generate 100% 
classifi cation accuracy while in the colon dataset, can get 100% accuracy using 350 genes. For the lung 
dataset, achieved 100% accuracy using 200 genes and 250 genes to get the same classifi cation accuracy 
for the SRBCT dataset. In addition, using 150 high relevant genes from the lymphoma dataset and 250 
genes from the leukemia2 dataset, achieved 100% classifi cation accuracy. Then used these high relevant 
genes as input in the proposed GSO algorithm to determine the most predictive and informative genes. 

Table 3
The classifi cation accuracy performance of the mRMR method with an 

RFSVM classifi er for all microarray datasets

Number of genes Colon Leukemia1 Lung SRBCT Lymphoma Leukemia2

50 91.94% 91.66% 89.56% 62.65% 93.93% 77.77%

100 93.55% 97.22% 95.83% 91.44% 98.48% 86.11%

150 95.16% 100% 98.95% 96.39% 100% 98.61%

200 96.77% 100% 100% 97.59% 100% 100%

250 98.38% 100% 100% 100% 100% 100%

300 98.38% 100% 100% 100% 100% 100%

350 100% 100% 100% 100% 100% 100%

400 100% 100% 100% 100% 100% 100%

Compare the performance of the proposed ImRMR-GSO algorithm and the existing mRMR-ABC, 
when using RFSVM as a classifi er with the same number of selected genes for all six benchmark microarray 
datasets. 

Table 4
Comparison between ImRMR-GSO, mRMR-ABC classifi cation performance when 

applied with the RFSVM classifi er for colon dataset

Classifi cation Accuracy in (%)

Number of genes mRMR-ABC Proposed ImRMR-GSO
3 87.50 88.00
4 88.27 89.90
5 89.50 90.00
6 90.12 90.80
7 91.64 92.00
8 91.80 92.20
9 92.11 92.75
10 92.74 93.10
15 93.60 94.00
20 94.17 94.80
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The comparison results for the binary-class microarray datasets: colon, leukemia1, and lung are shown 
in Tables 4, 5, and 6, respectively while Tables 7, 8, and 9, respectively, present the comparison result for 
multiclass microarray datasets: SRBCT, lymphoma, and leukemia2. From these tables, it is clear that our 
proposed ImRMR-GSO algorithm performs better than the original ABC algorithm in every single case 
(i.e., all datasets using a different number of selected genes).

Table 5
Comparison between ImRMR-GSO, mRMR-ABC classifi cation performance 

when applied with the RFSVM classifi er for leukemia1 dataset

Classifi cation Accuracy in (%)

Number of genes mRMR-ABC Proposed ImRMR-GSO

2 89.63 90
3 90.37 91
4 91.29 92
5 92.82 93
6 92.82 93
7 93.10 93.50
10 94.44 95
13 94.93 95
14 95.83 96

Table 6
Comparison between ImRMR-GSO, mRMR-ABC classifi cation performance when 

applied with the RFSVM classifi er for Lungdataset

Classifi cation Accuracy in (%)

Number of genes mRMR-ABC Proposed ImRMR-GSO

2 95.83 96

3 96.31 97

4 97.91 98

5 97.98 99

6 98.27 98.60

7 98.53 98.85

8 98.95 99

Table 7
 Comparison between ImRMR-GSO, mRMR-ABC classifi cation performance when 

applied with the RFSVM classifi er for SRBCT dataset

Classifi cation Accuracy in (%)
Number of genes mRMR-ABC Proposed ImRMR-GSO

2 71.08 71.60

3 79.51 80.00

4 84.33 84.90

5 86.74 87.00

6 91.56 92.00

7 94.05 94.50

8 96.30 96.90
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Table 8
Comparison between ImRMR-GSO, mRMR-ABC classifi cation performance when 

applied with the RFSVM classifi er for lymphoma dataset

Classifi cation Accuracy in (%)

Number of genes mRMR-ABC Proposed ImRMR-GSO

2 86.36 86.90

3 90.90 91.20

4 92.42 92.80

5 96.96 97.10

Table 9
Comparison between ImRMR-GSO, mRMR-ABC classifi cation performance when

applied with the RFSVM classifi er for Leukemia 2 dataset.

Classifi cation Accuracy in (%)

Number of genes mRMR-ABC Proposed ImRMR-GSO

2 84.72 85.03
3 86.11 86.50
4 87.5 87.90
5 88.88 89.00
6 90.27 90.65
7 89.49 89.90
8 91.66 92.05
9 92.38 92.70
10 91.66 92.10
15 94.44 94.85
18 95.67 96.00
20 96.12 96.50

Figure 2: Feature selection results comparison for colon dataset



182 N. Kanchana

The comparison results for the binary-class microarray datasets: colon, leukemia1, and lung are shown 
in Figure 2,3, and 4, respectively while Figures 5, 6, and 7, respectively, present the comparison result for 
multiclass microarray datasets: SRBCT, lymphoma, and leukemia2. From these tables, it is clear that our 
proposed ImRMR-GSO algorithm performs better than the original ABC algorithm in every single case 
(i.e., all datasets using a different number of selected genes).

Figure 3: Feature selection results comparison for leukemia1 dataset

Figure 4: Feature selection results comparison for Lung dataset
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Figure 5: Feature selection results comparison for SRBCT dataset

Figure 6: Feature selection results comparison for Lymphoma dataset

The explanation of the best predictive and highly frequent genes that give highest classifi cation 
accuracy for all microarray datasets using ImRMR-GSO algorithm has been reported in Table 10. It is 
worth mentioning that the accuracy of the ImRMR fi lter method when it is combined with GSO generally 
outperforms the classifi cation accuracy of GSO algorithm without ImRMR. Thus, the ImRMR is a 
promising method for identifying the relevant genes and omitting the redundant and noisy genes. We 
can conclude that the proposed ImRMR-GSO algorithm generates accurate classifi cation performance 
with minimum number of selected genes when tested using all datasets as compared to the original GSO 
algorithm under the same cross validation approach. Therefore, the ImRMR-GSO algorithm is a promising 
approach for solving gene selection and cancer classifi cation problems.
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Figure 7: Feature selection results comparison for Leukemia2 dataset

Table 10
The best predictive genes that give highest classifi cation accuracy for all microarray 

datasets using ImRMR-GSO algorithm

Datasets Predictive genes Accuracy (%)

Colon
Gene115, Gene161, Gene57, Gene70, Gene12, Gene132, 
Gene84, Gene62, Gene26, Gene155, Gene39, Gene14, 

Gene1924, Gene148, and Gene21
97.50

Leukemia1
M31994 at, U07563 cds1 at, Y07604 at, J03925 at, X03484 at, 

U43522 at, U12622 at, L77864 at, HG3707-HT3922 f at, D49950 
at, HG4011-HT4804 s at, Y07755 at, M81830 at, and U03090 at

100

Lung U77827 at, D49728 at, HG3976-HT4246 at, X77588 s at, 
M21535 at, L29433 at, U60115 at, and M14764 at 100

SRBCT Gene795, Gene575, Gene423, Gene2025, Gene1090, Gene1611, 
Gene1389, Gene338, Gene1, and Gene715 100

Lymphoma Gene1219X, Gene656X, Gene2075X, Gene3344X, and Gen-
e345X 100

Leukemia2
Y09615 atD87683 at, U31973 s at, U68031 at, V00571 rna1 at, 
L39009 at, U37529 at, U35407 at, X93511 s at, L15533 rna1 at, 
X00695 s at, H46990 at, U47686 s at, L27624 s at, S76473 s at, 
X16281 at, M37981 at, M89957 at, L05597 at, and X07696 at

100

5. CONCLUSION

In this research paper, we proposed applying GSO algorithm for microarray gene expression profi le. 
A new swarm based algorithm called hybrid gene selection approach to be combined with RFSVM as 
a classifi er. It can be used to solve classifi cation problems that deal with high-dimensional datasets, 
especially microarray gene expression profi le. Up to our knowledge, the GSO algorithm has not yet 
been applied as a gene selection technique for a microarray dataset, so this is the fi rst attempt. Our 
proposed ImRMR-GSO algorithm is a three-phase method; the ImRMR fi lter technique is adopted 
to identify the relative and informative gene subset from the candidate microarray dataset. Then the 
GSO algorithm is employed to select the predictive genes from the ImRMR genes subset. Finally, 
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the RFSVM classifi er was trained and tested using the selected genes and returned the classifi cation 
accuracy. Extensive experiments were conducted using six binary and multiclass microarray datasets.
The results showed that the proposed algorithm achieves superior improvement when it is compared 
with the other previously proposed algorithms.
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