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A Novel 3-D Jerk Chaotic System with
Two Quadratic Nonlinearities and its
Adaptive Backstepping Control

Sundarapandian Vaidyanathan*

Abstract: First, thispaper announces aseven-term novel 3-D jerk chaotic system with two quadratic nonlinearities.
The phase portraits of the novel jerk chaotic system are displayed and the mathematical properties are discussed.
The proposed novel jerk chaotic system hastwo equilibrium pointsaong thex, axis, which are both unstable. The
Lyapunov exponents of thenovel jerk chaotic system areobtained asL, =0.11245, L,=0and L,=-0.55363. Thus,
the Maximal Lyapunov Exponent (MLE) of thenovel jerk chaotic systemisderived asL, = 0.11245. Sincethe sum
of the Lyapunov exponentsof the novel jerk chaotic system isdissipative, the novel jerk chactic system isdissipative.
Also, theKaplan-Yorke dimension of thenovel jerk chaotic systemisderivedasD,, = 2.20311. Next, an adaptive
controller is designed via backstepping control method to globally stabilize the nove jerk chactic system with
unknown parameters. Moreover, an adaptive controller isal so designed via backstepping control method to achieve
global and exponential synchronization of theidentical novel jerk chaotic systemswith unknown parameters. The
mai n adaptive backstepping control resultsfor stabilization and synchronization of the novel jerk chaotic system
are established using Lyapunov stability theory.

Keywords: Chaos, chactic systems, jerk systems, chaos control, chaos synchronization, backstepping control,
stability theory.

1. INTRODUCTION

Chaos theory describes the qualitative study of unstable aperiodic behaviour in deterministic nonlinear
dynamical systems. A dynamical system is called chaotic if it satisfies the three properties. boundedness,
infinite recurrence and sensitive dependence on initial conditions [1]. Chaos theory has applications in
severa areas in Science and Engineering.

A significant development in chaos theory occurred when Lorenz discovered a 3-D chaotic system of a
weather model [2]. Subsequently, Rosser found a 3-D chaotic system [3], which is algebraically simpler
than the Lorenz system. Indeed, Lorenz’s system is a seven-term chaotic system with two quadratic
nonlinearities, while Rosder’s system is a seven-term chaotic system with just one quadratic nonlinearity.

Some well-known paradigms of 3-D chaotic systems are Arneodo system [4], Sprott systems[5], Chen
system [6], LU-Chen system [7], Liu system [8], Cal system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],
Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems
[36-37], Jafari system [38], etc.

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They
have important applications in control and communication engineering. Some recently discovered 4-D
hyperchaotic systems are hyperchaotic Vaidyanathan systems [39-40], hyperchaotic Vaidyanathan-Azar

system [41], etc. A 5-D hyperchaotic system with three positive Lyapunov exponents was also recently
found [42].
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Chaostheory has several applicationsin avariety of fields such as oscillators [43-44], chemical reactors
[45-58], biology [59-80], ecology [81-82], neural networks [83-84], robotics [85-86], memristors[87-89],
fuzzy systems [90-91], etc.

The problem of control of achaotic systemisto find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [92-93]. Some popular methods for chaos control are active control
[94-98], adaptive control [99-100], diding mode control [101-103], etc.

Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the
master or drive system and another chaotic systemis called the dave or response system, then the idea of
the synchronization is to use the output of the master system to control the Save system so that the output
of the dave system tracks the output of the master system asymptotically.

The synchronization of chaotic systems has applications in secure communications [104-107],
cryptosystems [108-109], encryption [110-111], etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecoraand Carroll [112-113] for
the chaos synchronization problem, many different methods have been proposed in the control literature
such asactive control method [114-132], adaptive control method [ 133-149], sampled-data feedback control
method [150-151], time-delay feedback approach [152], backstepping method [153-164], diding mode
control method [165-173], etc.

In the recent decades, there is some good interest in finding novel chaotic systems, which can be
expressed by an explicit third order differential equation describing the time evolution of the single scalar
variable x given by

X = J(X, X, X) 1)

Thedifferential equation (1) iscalled “jerk system” because the third order time derivative in mechanical
systems is called jerk. Thus, in order to study different aspects of chaos, the ODE (1) can be considered
instead of a 3-D system.

In thispaper, we announce aseven-term novel 3-D jerk chaotic system with two quadratic nonlinearities.
The phase portraits of the novel jerk chaotic system are displayed and mathematical propertiesare discussed.
The novel jerk chaotic system has two equilibrium points on the x—axis, which are both unstable. The
Lyapunov exponents of the novel system are obtained as L, = 0.11245, L, = 0 and L, = -0.55363. The
Kaplan-Yorke dimension of the novel jerk system s derived as D, = 2.20311.

Next, using backstepping control method, we derive an adaptive control law that stabilizes the novel
chaotic system, when the system parameters are unknown. Using backstepping control method, we aso
derive an adaptive control law that achieves global chaos synchronization of the identical novel jerk chaotic
systems with unknown parameters. The backstepping control method is a recursive procedure that linksthe
choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of
strict feedback systems.

Next, this paper derives an adaptive control law that stabilizes the novel jerk chaotic system with
unknown system parameters. This paper also derives an adaptive control law that achieves global chaos
synchronization of identical jerk chaotic systems with unknown parameters.

This paper is organized as follows. In Section 2, we describe the novel jerk chaotic system with
two quadratic nonlinearities. In Section 3, we describe the qualitative properties of the novel jerk
chaotic system. In Section 4, we detail the adaptive backstepping control design for the global chaos
stabilization of the novel jerk chaotic system with unknown parameters. In Section 5, we detail the
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adaptive backstepping control design for the global and exponential synchronization of the identical
novel jerk chaotic systems. In Section 6, we give a summary of the main results obtained in this
research work.

2. ANOVEL 3-D JERK CHAOTIC SYSTEM

In this section, we describe a seven-term novel jerk chaotic system with two quadratic nonlinearities,
which is modeled by the 3-D dynamics

X =%
=% 2
%y = 8% — X, + 0 — X (1+ )
where x,, X,, X, are state variables and a, b, ¢ are constant, positive, parameters of the system.
The novel jerk system (2) exhibits a strange chaotic attractor for the values
a=044, b=11 c=0.06 (©)]
For numerical smulations, we take the initial conditions of the state as

%(0)=0.2, x,(0)=0.2, x,(0)=0.2 4)

The Lyapunov exponents of the jerk chaotic system (2) for the parameter values (3) and the initial
conditions (4) are numerically calculated as

L, =0.11245, L,=0, L,=-0.55363 (5)

Figure 1 showsthe 3-D phase portrait of the jerk chaotic system (2). Figures 2-4 show the 2-D projection
of the jerk chaotic system (2) onthe (X, X,), (X, X;), and (x;, X,) planes, respectively.

3. PROPERTIESOF THE NOVEL JERK CHAOTIC SYSTEM

In this section, we shall discuss the qualitative properties of the jerk chaotic system (2) introduced in
Section 2. We suppose that the parameter values of the jerk system (2) are as in the chaotic case (3), i.e.
a=0.44,b=11andc=0.06.

04

Figure 1: Phase portrait of the jerk Figure 2: 2-D projection of the jerk chaotic system on the
chaotic system (X, X,) plane
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Figure 3: 2-D projection of the jerk chaoctic system on the Figure 4: 2-D projection of the jerk chaoctic system on the
(X, X;) plane (X, X,) plane

3.1. Dissipativity of the Flow
In vector notation, we may express the system (2) as

f1(3, %, %)
X=1(X) = £,0¢,%, %) (6)
fa (%, % %)
where
fl(Xl’ X35 Xs) =%
fz(xp X5 Xs) =% (7)

f3(X0 %0 %) = —a%; —bX, +0x5 — X (14 X,)

Let Q be any region in R® with a smooth boundary and also Q(t) = @ (Q2), where @, isthe flow of the
vector field f. Furthermore, let V(t) denote the volume of Q(t).

By Liouville's theorem, we have
\/:.[(V-f)dxldxzdx3 ®)
Q(t)

The divergence of the novel chaotic system (2) is easily found as
of, N of, of

V.f=—214+—24-3-0+0-a=-a
ox OX, 0% ©)
Substituting (9) into (8), we obtain the first order ODE
V= j (—a) dx, dx, dx, =—aV (10)

Q(t)
Integrating (10), we obtain the unique solution as
V(t) = exp(—at) V(0) for alt >0 (11)
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Since a > 0, we conclude from Eq. (11) that V(t) — 0 exponentially as (t) — oo.

This shows that the novel 3-D jerk chaotic system (2) is dissipative. Hence, the system limit sets are
ultimately confined into a specific limit set of zero volume, and the asymptotic motion of the novel jerk
chaotic system (2) settles onto a strange attractor of the system.

3.2. Equilibrium Points
We take the values of the parameters as in the chaotic case (3), i.e. a = 0.44, b= 1.1 and c = 0.06.

The equilibrium points of the jerk system (2) are obtained by solving the system of equations

X, =0 (12a9)
X, =0 (12b)
—ax, —bx, +cx5 —x (1+ %) =0 (12¢0)
Solving the system (12), we obtain two equilibrium points given by
0 -1
B=0) E=|0 (13)
0 0

The Jacobian of the jerk chaotic system (2) at any point xeR® is given by

0 1 0
J(X) = 0 0 1 (14)
-1-2x, -1.1+0.12x, -0.44
The Jacobian of the jerk chaotic system (2) at E_ is obtained as
0 1 0
Jo=J(E)=|0 O 1 (15)
-1 -1.1 -044
The eigenvalues of J, are numerically obtained as
A, =-0.7508, 4,5 =0.1551+1.1440i (16)
This shows that E is a saddle-focus, which is unstable.
Next, the Jacobian of the jerk chaotic system (2) at E, is obtained as
0 1 0
J=J(E)=|0 O 1 (17)
1 -11 -044
The eigenvalues of the matrix J, are numerically obtained as
4, =05872, 4,;=-0.5136+1.1997i (18)

This shows that E, is a saddle-focus, which is unstable.
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3.4. Lyapunov Exponents and K aplan-Yorke Dimension
We take the parameter values of the novel system (2) asin the chaotic case (3), i.e.
a=044, b=1.1 c=0.06 (29
We choose the initial values of the novel system (2) as
%(0)=0.2, x,(0)=0.2, x,(0)=0.2 (20)
Then we obtain the Lyapunov exponents of the system (2) as

L, =0.11245 L, =0, L,=-0.55363 (21)
Figure 5 shows the Lyapunov exponents of the system (2) as determined by MATLAB.

We note that the sum of the Lyapunov exponents of the system (2) is negative, which shows that the
novel jerk system (2) is dissipative.

Also, the Maximal Lyapunov Exponent (MLE) of the jerk chaotic system (2) is L, = 0.11245.
The Kaplan-Yorke dimension of the jerk chaotic system (2) is derived as

Dy, =2+ Lll:r = 2.20311 22)

4. ADAPTIVE BACKSTEPPING CONTROL DESIGN FOR THE STABILIZATION OF
THE NOVEL JERK CHAOTIC SYSTEM

In this section, we consider the novel jerk system with a single control given by

0.6 T T T T T T
0.4
£ oz L. =0.11245 :
o 1
=
]
a8 g ——
o L.=0
E 2
£ -har T
-
-
1N
T ood
.6 i ]
L, =-0.55363
_{:'B 1 1 1 1 1 1
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Figure 5: Lyapunov exponents of the jerk chaotic system
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5(1:X2
X=X (23)
X, = —ax, — bx, + x5 — x (L+ %) +u

In(23), x,, X,, X, arethe states, a, b, ¢ are unknown constant parameters, and u is abackstepping control
law to be determined using estimates A(t), b(t), &(t) of the unknown parameters a, b, c, respectively.

The parameter estimation errors are defined as follows:
e, (t)=a-a(t)

(1) =b-b(V) 24)
e.(t) =c—c(t)

Differentiating (24) with respect to t, we obtain

&,(t) =-a()
&) =-b(t) (5
&,(t) = —&(t)

Next, we shall state and prove the main result of this section.

Theorem 1. The 3-D novel jerk chaotic system (23) with unknown parameters is globally and
exponentialy stabilized by the adaptive feedback control law

u =—2x1—[5—6(t)} X, —[3—a(t)] %, + X —E(t)x; —kz, (26)
where k > 0 isa gain constant, with
Z,=2X+2X%+X, (27)
and the parameter update law is given by
a=-%7
b=—
C=x%2

Proof. We prove this result via backstepping control method and Lyapunov stability theory [174].
First, we define a quadratic Lyapunov function
Vi(z)=5 7 (29
where

L=X (30)
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Differentiating V, along the dynamics (23), we obtain

Vi = %%, =~Z +2,(%+X,) (31)
Now we define
Z,=X+X% (32)
Using (32), we can simplify (31) as
V,=-7 +22, (33)
Next, we define a quadratic Lyapunov function
_ 1 2 1 2 2
Vo(2,2) =\i(2)+2 7 =2 (Z + Z) (34)
Differentiating V, along the dynamics (23), we obtain
sz—le—Z§+Zz(2)(l+2X2+X3) (35)
Now, we define
Zy = 2%+ 2%, + X (36)

Using (36), we can simplify (35) as
V,=-Z -7 +22 (37)
Finally, we define a quadratic Lyapunov function
1 1
V(z&.:8)=Va(2,2) + S L+ (€ +E +E) (39)

From (38), it is clear that V is a positive definite function on Re.
Differentiating V along the dynamics (23) and (28), we obtain

V=—zf—z§—z§+238—eaé—e06—ecé (39)
In (39), Sisgiven by
S=72+2,+2,=2,+Z,+2X +2X,+ X (40)
Simplifying the equation (40), we obtain
S=2x+(5-b)x, +(3-a)x, — x> +cxZ +u (41)
Substituting the control law (26) into (41), we get
S={b-b®)]% ~[a—&M)]x +[c—EOIE ~kz, (42)
Using the definitions in (24), we can simplify the equation (42) as
S:_eoxz _eax3+ecX22 _kZS (43)

Substituting (43) into (39), we obtain

V=-2 -2+ k)Z§+ea[—x323—é]+eo[—xzzs—5}+ec[><§zs—é} (44)
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Substituting the parameter update law (28) into (44), we obtain
V=-7Z-Z-(1+KZ (45)
Thus, it is clear that \/ is a negative semi-definite function on R,

From (45), it is clear that the vector z(t) = (z(t), z(t), z(t)) and the parameter estimation error (e,(t),
g (1), e(t)) are globally bounded, i.e.

[z20) () z®) e® e e®] eL, (46)
Also, it follows from (45) that
V<-Z2-Z2-Z=-|F (47)
or
|20 <~V (@) (48)

Integrating the inequality (48) from O to t, we get

j |2(2)] dz <V (0) -V (t) (49)

From (49), it follows that z(t) < L.,
From (23), it can be deduced that z(t) € L _.

Thus, using Barbalat’slemma[174], we can conclude that z(t) — O exponentialy ast — oo for al initial
conditions z(0) e R,

Hence, it isimmediate that x(t) — O exponentialy ast — oo for al initial conditions x(0) e R.
This completes the proof. m

For numerical simulations, the classicd fourth-order Runge-Kutta method with step size h = 108 isused
to solve the system of differential equations (23) and (28), when the adaptive controller (26) isimplemented.

The parameter values of the novel 3-D jerk chaotic system (23) are taken asin the chaotic case, i.e.
a=0.44, b=1.1 c=0.06 (50)

The positive gain constant k istaken as k = 10.

The initial conditions of the novel jerk system (23) are taken as

%(0) =154, x,(0)=7.3, x,(0)=-6.8 (51)
The initial conditions of the parameter estimates are taken as

4(0) = 6.4, b(0)=15.7, &(0)=8.2 (52)
Figure 6 shows the time-history of the controlled states x,(t), X,(t), X (t).
5. ADAPTIVE BACKSTEPPING CONTROL DESIGN FOR THE GLOBAL CHAQOS
SYNCHRONIZATION OF THE IDENTICAL NOVEL JERK CHAOTIC SYSTEMS

In this section, we use backstepping control method to derive an adaptive feedback control law for globally
synchronizing identical 3-D novel jerk chaotic systems with unknown parameters.
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Figure 6: Time-history of the controlled state trajectories x,(t), X,(t), x,(t)

As the master system, we consider the novel jerk system given by

X =%

X, = X

%y = 8% — X, + 0 — X (1+ )
In (53), X, X,, X, arethe states and a, b, ¢ are unknown system parameters.
As the dave system, we consider the controlled novel jerk system given by

yl: Y,
yZ =V¥;

¥, =—ay,—by, +cy; - y,1+y,) +u

(53)

(54)

In (54), y,, ¥, ¥, ae the states and u is the adaptive control to be determined using estimates of the

unknown system parameters.

The complete synchronization error between the systems (53) and (54) is defined by

E=Y1—%
&=Y,—X%
&=Y;—%

Then the synchronization error dynamics is obtained as
6=6
& =8
e =—6-be —ag +c(y; - X)) - ¥y + % +U

(55

(56)
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The parameter estimation errors are defined as follows:

e (t)=a—a(t)

e (t)=c—cC(t)

Differentiating (57) with respect to t, we obtain

&,(t) =-a()

5 (1) =—b

go(t) ft) (=8
&,(t) = —&(t)

Next, we shall state and prove the main result of this section.

Theorem 2. The 3-D novel jerk chaotic systems (53) and (54) with unknown parametersis globally and
exponentialy synchronized by the adaptive feedback control law

u=-2¢ [ 5-b(t) |, ~[3-A1)] e, + ¥, — X ~ &MY — ) -kz, (59)
where k > 0 isa gain constant, with
Z,=26+26,+¢ (60)
and the parameter update law is given by
a=-ez
b=-ez

. (61)
C=(¥;-%)z

Proof. We prove this result via backstepping control method and Lyapunov stability theory [174].
First, we define a quadratic Lyapunov function

1

Vi(z)=27 (62)
where

z=¢ (63)

Differentiating V, along the dynamics (56), we obtain
V,=ge,=-Z +7(g+6) (64)

Now we define

z,=6+6 (65)

Using (65), we can simplify (64) as
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V,=-7 +22, (66)
Next, we define a quadratic Lyapunov function
_ 1 2 1 2 2
Vo(z.2) V(@) +5 2 = (7 + Z) (67)
Differentiating V, along the dynamics (56), we obtain
V,=-7Z - Z +2,(2¢ +2¢,+8) (68)
Now, we define
Z, = 2% + 2%+ X (69)

Using (69), we can simplify (68) as
V,=-Z -7 +22 (70)
Finally, we define a quadratic Lyapunov function
1 1
V(z&.:8)=Va(2,2) +S L+ (€ +E +E) (72)

From (71), it is clear that V is a positive definite function on Re.
Differentiating V along the dynamics (56) and (58), we obtain

V=—zf—z§—z§+238—eaé—e06—ecé (72)
where
S=2,+2,+2,=2,+72,+2¢ +2¢&, +¢ (73)
Simplifying the equation (73), we obtain
S=2¢ +(5-b)e, +(3-a)g,— y; + X +C(y; —%;) +U (74)
Substituting the control law (59) into (74), we get
S=-{b-b(t)le, ~[a-a(t)]e, +[c—EMI(¥; — ) - kz, (75)

Using the definitions in (57), we can simplify the equation (75) as
S=-g&-e6&+e(y; - %)k (76)
Substituting (76) into (72), we obtain
V=-z-Z-(+ k)Z§+ea[—egzg—é]+eo[—%zs—5}+ec[(y§—XS)ZS—?:] (77)
Substituting the parameter update law (61) into (77), we obtain
V=-z-Z-1+k)Z (78)
Thus, it is clear that \/ is a negative semi-definite function on R,

From (78), it is clear that the vector z(t) = (z(t), z(t), z(t)) and the parameter estimation error
(e,(t), e (1), e(t)), are globally bounded, i.e.
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[z20) () z®) e® e e®] eL, (79)
Also, it follows from (78) that
V<-22-22-2Z=—| (80)
or
|20 <~V (@) (81)

Integrating the inequality (81) from O to t, we get

j |2(2)] dz <V (0) -V (t) 82)

From (82), it follows that z(t) L.,
From (56), it can be deduced that z(t)eL .

Thus, using Barbalat’slemma[174], we can conclude that z(t) — O exponentialy ast — oo for al initial
conditions z(0) e R3.

Hence, it isimmediate that e(t) — O exponentialy ast — oo for al initial conditions (0) e R.
This completes the proof. m

For numerical simulations, the classical fourth-order Runge-Kutta method with step-size h = 108 is
used to solve the systems (53), (54) and (61), when the adaptive control law (59) is applied.

We take the parameter values of the jerk systems (53) and (54) as in the chaotic casg, i.e. a = 0.44,
b =1.1 and c = 0.06. We take the positive gain constant ask = 12.

Asinitial conditions of the master system (53), we take

%(0)=-1.2, x,(0)=0.2, x,(0)=0.6 (83)
Asinitial conditions of the dave system (54), we take
¥(0) =11, y,(0)=-12, y;(0) =13 (84)

Asinitial conditions of the parameter estimates, we take

4(0) = 2.5, b(0)=4.2, ¢(0)=3.4 (85)
Figures 7-9 depict the synchronization of the novel jerk chaotic systems (53) and (54).

Figure 10 depicts the time-history of the complete synchronization errors e, e, e..

6. CONCLUSIONS

In this paper, we derived new results for a seven-term novel 3-D jerk chaotic system with two quadratic
nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the mathematical
properties are discussed. The proposed novel jerk chaotic system has two equilibrium points along the
axis, which are both saddle-foci and unstable. The Lyapunov exponents of the novel jerk chaotic system
are obtained as and Thus, the Maximal Lyapunov Exponent (MLE) of the novel jerk chaotic system is
derived as Since the sum of the Lyapunov exponents of the novel jerk chaotic system is dissipative, the
novel jerk chaotic system is dissipative. Also, the Kaplan-Yorke dimension of the novel jerk chaotic
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systemisderived as Next, an adaptive controller is designed via backstepping control method to globally
stabilize the novel jerk chaotic system with unknown parameters. Moreover, an adaptive controller is
also designed via backstepping control method to achieve global and exponential synchronization of the
identical novel jerk chaotic systems with unknown parameters. The main adaptive backstepping control
results for stabilization and synchronization of the novel jerk chaotic system are established using
Lyapunov stability theory.
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