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Abstract: Game theory is the mathematical theory of interactive decision situations. Supply
chain management is related to the coordination of materials, products and information flows
among suppliers, manufactures, distributers, retailers and customers involved in producing
and delivering a final product or service. In this paper we provide a review of the applications
of cooperative game theory and an allocation problem in the management of centralized inventory
systems. The agents involved in the inventory situation. This agree to cooperate and the
characteristic function is given by an explicit formula. We deal with situations where the
cooperation among the agent is not an assumption and the main issue is to analyse the coalition
formation process. This paper develops an approach to determine the optimum economic order
quantity and average inventory cost per unit time under the fuzzy arithmetic operations of
function principle are proposed. A full fuzzy model is developed where the input parameters
demand, shortage cost, holding cost, purchase cost are fuzzy trapezoidal numbers. The optimal
policy for the fuzzy cooperation inventory model is determined using the algorithm of extension
of the Lagrangean method for solving inequality constraint problem and Graded mean
integration method is used for defuzzifying the fuzzy total average integrated cost. A numerical
example is used to show the feasibility of the proposed integration models.

Keywords: Fuzzy inventory, Cooperation in deterministic inventory model, Function Principle,
Graded Mean Integration Representation, The average inventory cost.

1. INTRODUCTION

In this paper, we consider the situation of cooperation in deterministic inventory
models. We consider a model to determine an optimal average inventory cost under
conditions of coalition. The centralization of inventory management and
coordination of actions, to further reduce costs and improve customer service level.
Operations management focused on single-firm anlysis in the past. Its goal was to
provide managers with suitable tools to improve the performance of their firms.
Nowadays business decisions are dominated by the globalization of markets and
should take into account the increasing competition among firms. Further more
and more products reach the customer through supply chains that are compose of
independent firms M. G. Fiestras-Janerio, I. Garcia-jurado, A. Meca, M. A. Mosquera
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(2011). Following these trends, research in supply chain has shifted its focus from
single –firm analysis to multifirm analysis , in particular to improving the efficiency
and performance of supply chains under decentralized control. The main
characteristics of such chains are that the firms in the chain are independent actors
who try to optimize their individual objectives and that the decisions taken by a
firm do also affect the performance of the other parties in the supply chain. These
interactions among firms decisions ask for alignment and coordination of actions
and therefore game theory is very wellsuited to deal with these interactions. Cachon
and Netessine (2004).

The authors discuss both non-cooperative and co-operative game theory in static
and dynamic settings .Additionally, Cachon (1998) reviews competitive supply chain
inventory management, and Cachon (2003) reviews and extends the supply chain
literature on the management of incentive conflicts with contracts. A very recent
survey on applications of cooperative game theory to supply chain management is
called supply chain collaboration Meca and Timmer (2008).An important aspect of
supply chain management is a good management of the inventories by the firms or
retailers. The management of inventory started at the beginning of 20th century when
manufacturing industries and engineering grew rapidly (Harris 1913), (Hadley and
whitin 1963: Hax and Candea (1984), Tersine 1994, Zipkin 2000). The objective of
inventory management is to minimize the average cost per time unit incurred by
the inventory system, while guaranteeing a pre-specified minimal level of service.
In cooperative games it is assumed that the grand coalition is formed whenever it
leads to some profit. One of the goals of cooperative game theory is to find allocations
of the total profit in such a way that no subset of players has incentives to leave the
grand coalition and form its own coalition that is allocations that are stable with
regard to one-step deviations of coalitions Harris (1913).

Basically the coalition formation process is analysed here using a two-stage
approach. In stage 1 , suppliers form coalitions for sending a kit of components to
the assembler. In stage 2, there is an interaction between the assembler and the
coalitions of suppliers formed in stage 1. Granot and Yin (2008) and Nagarajan
and Sosic (2007, 2008, 2009). In this paper we consider average cooperation in
deterministic inventory models with fuzzy input parameters. Here demand and
cost are represented as a trapezoidal fuzzy number. Chen’s (1985) function principle
is proposed for arithmetic operation of fuzzy number and Lagrangean method is
used for optimization . Graded mean integration is used for defuzzifying the
average cost.

1.1. The Fuzzy Arithmetical Operations Under Function Principle

Function principle is proposed to be as the fuzzy arithmetical operations by
trapezoidal fuzzy numbers. We define some fuzzy arithmetical operations under
Function Principle as follows :
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Suppose A
~  = (a1, a2, a3, a4) & B

~ = (b1, b2, b3, b4) are 2 trapezoidal fuzzy numbers.
Then

(1) The addition of A
~ and B

~  is

B
~

    A
~
� = (a1 + b1, a2 + b2, a3 + b3, a4 + b4)

where a1, a2, a3, a4, b1, b2, b3 and b4 are any real numbers.

(2) The multiplication of A
~  and B

~  is

B
~

    A
~
� = (C1, C2, C3, C4)

where T = {a1b1, a2b2, a3b3, a4b4}

T1 = {a2b2, a2b3, a3b2, a3b3}

C1 = min T1, C2 = min T1, C3 = max T1, C4 = max T1

If a1, a2, a3, a4, b1, b2, b3 and b4 are all zero positive real numbers then

B
~

    A
~
� = (a1b1, a2b2, a3b3, a4b4)

(3) B
~

 � = (-b4, -b3, -b2, -b1) then the subtraction of A
~ and B

~  is

A
~

B
~  = {a1 - b4, a2 - b3, a3 - b2, a4 - b1} where a1, a2, a3, a4, b1, b2, b3 and b4 are any real

numbers.

(4)
B
~
1

= -1B
~ ��
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(5) Let � � R, then
(i) � � 0, � � A

~  = (�a1, �a2, �a3, �a4)

(ii) � � 0, � � A
~  = (�a4, �a3, �a2, �a1)

1.2. Extension of the Lagrangean Method

Taha [19] discussed how to solve the optimum solution of nonlinear programming
problem with equality constraints by using Lagrangean Method, and showed how
the Lagrangean method may be extended to solve inequality constraints. The
general idea of extending the Lagrangean procedure is that if the unconstrained
optimum the problem does not satisfy all constraints, the constrained optimum
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must occur at a boundary point of the solution space. Suppose that the problem is
given by

Minimize y = f(x)

Sub to gi(x) � 0, i = 1, 2, . . . , m.

The nonnegativity constraints x � 0 if any are included in the m constraints.
Then the procedure of the Extension of the Lagrangean method involves the
following steps.

Step 1: Solve the unconstrained problem
Min y = f(x)

If the resulting optimum satisfies all the constraints, stop because all constraints
are redundant. Otherwise set K = 1 and go to step 2.

Step 2 : Activate any K constraints ((ie) convert them into equality) and optimize
f(x) subject to the K active constraints by the Lagrangean method. If the resulting
solution is feasible with respect to the remaining constraints and repeat the step. If
all sets of active constraints taken K at a time are considered without encountering
a feasible solution, go to step 3.

Step 3 : If K = m, stop;  no feasible solution exists. Otherwise set K = K + 1 and
go to step 2.

1.3. Methodology

1.3.1. Graded Mean Integration Reprsentation Method

Chen & Hsieh [1999] introduced Graded mean Integration Representation Method
based on the integral value of graded mean h-level of generalized fuzzy number
for defuzzifying generalized fuzzy number. Here, we fist define generalized fuzzy
number as follows :

Suppose A
~  is a generalized fuzzy number as shown in Fig. 1. It is described as

any fuzzy subset of the real line R, whose membership function A
~μ satisfies the

following conditions.

1. � �xμ
A
~  is a continuous mapping from R to [0, 1],

2. � �xμ
A
~  = 0, -� < x � a1,

3. � �xμ
A
~  = L(x) is strictly increasing on [a1, a2],

4. � �xμ
A
~  = WA, a2 � x � a3,
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5. � �xμ
A
~  = R(x) is strictly decreasing on [a3, a4],

6. � �xμ
A
~  = 0, a4 � x < �,

where 0 < WA � 1 and a1, a2, a3 and a4 are real numbers.

This type of generalized fuzzy numbers are denoted as A�  = (a1, a2, a3, a4; �A)LR

and A�  = (a1, a2, a3, a4 : wA)LR. When �A = 1, it can be formed as A�  = (a1, a2, a3, a4;
�A)LR. Second, by Graded Mean Integration Representation Method, L-1 and R-1 are
the inverse functions of L and R respectively and the graded mean h-level value of
generalized fuzzy number A�  = (a1, a2, a3, a4; �A)LR is g

Then the graded Mean Integration Representation of P( A� ) with grade wA, where

P( A� ) = 

� �
A

A

ω
-1 -1

0
ω

0

h
L (h) + R (h)  dh

2

h dh

�

�
. . .

where 0 < h � wA and 0 < wA � 1.

Figure 1: The graded mean h-level value of generalized fuzzy number

A�  = (a1, a2, a3, a4 : wA)LR.
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Throughout this paper, we only use popular trapezoidal fuzzy number as the
type of all fuzzy parameters in our proposed fuzzy production inventorymodels.
Let B� be a trapezoidal fuzzy number and be denoted as B� = (b1, b2, b3, b4). Then we

can get the Graded Mean Integration Representation of B� by the formula (1) as

P( B� ) =

� � � �
1

1 4 2 1 4 3

0
1

0

h
b +b h b - b b b  dh

2

h dh

� � �� �� ��

�
 1 2 3 4b 2b 2b b
 = 

6

� � �
(2)

1.4. An Average Inventory Model with Cooperation in Deterministic Models

This was analysed by Meca et al. (2003). This section deals with allocation problem.

Notations

Qi � ordersize
di � demand per time unit (di � 0)
a � Fixed cost of an order
ri � Replacement rate of agent i
Mi � Maximum shortage
Si � Cost of a shortage of one unit of the good for one time unit (si >0)

Assumptions

Assume that there are n agents, N = {1,2,...............,n} each of them facing an economic
prouction quantity (EPQ) problem with shortages . An EPQ model with shortages
considers an agent i who places orders of a certain good that he sells. The demand
that he must fulfill equals to di units per time unit (di � 0). The cost of keeping in
stock one unit of this good per time unit is hi (hi >0). The fixed cost of an order is
‘a’. Agent i considers the possibility of not fulfilling all the demand in time ,but
allowing a shortage of the good. The cost of a shortage of one unit of the good for
one time unit is si > o. When an order is placed, after a deterministic and constant
lead time which can be assumed to be zero, without loss of generality, agent i
receives the order gradually : ri units of the good are received per time unit. It is
assumed that ri > di.

1.5. Mathematical Model

The agent must choose n order size Qi and a maximum shortage Mi minimizing
his average inventory cost per time unit given by:
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The objective is to find the optimal order quantity which minimize the average
inventory cost.

The necessary condition for minimum 0  
Q

C
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2. AN INTEGRATED INVENTORY MODELS

2.1. Fuzzy Integrated Inventory Model for Crisp order Quantity

Throughout this paper, we use of the following variables in order to simplify the

treatment of an integrated inventory models. Let 
iiiii sMrhd ~,

~
,~,

~
,

~
be fuzzy

parameters. We introduce an integrated inventory model with fuzzy parameters
for crisp production quantity C(Qi, Mi) as follows.The annual integrated average
inventory cost for the agent
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are nonnegative trapezoidal fuzzy numbers. Then we solve the optimal
production quantity of formula (5) as the following steps. Second, we defuzzify
the fuzzy total production inventory for the vendor and buyer cost by formula (2).
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minimization.
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2.2. Fuzzy integrated inventory model for fuzzy order

In this section ,we introduce an integrated inventory model by changing the crisp

order quantity into fuzzy order quantity.Suppose fuzzy order quantity iQ
~

 be a

trapezoidal fuzzy number iQ
~

=(Q1,Q2,Q3,Q4) with 43210 iiii QQQQ ���� . Thus we

can get the fuzzy total order inventory cost

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

��
�

�
��
�

�
�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

��
�

�
��
�

�
�

���
�

�
��
�

�
��

�
�
�
�
�

�

�

�
�
�
�
�

�

�

��
�

�
��
�

�
�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

��
�

�
��
�

�
�

���
�

�
��
�

�
��

�
�
�
�
�

�

�

�
�
�
�
�

�

�

��
�

�
��
�

�
�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

��
�

�
��
�

�
�

���
�

�
��
�

�
��

��
�

�
��
�

�
�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

��
�

�
��
�

�
�

���
�

�
��
�

�
��

�

4

1
1

2
44

1

1

1

2
4

4

1
4

4

1

4

3

2
2

2
33

2

3

2

2
3

3

2
3

3

2

3

2

3
3

2
22

3

3
2

3

2
2

2

3
2

2

3

2

1

4
4

2
11

4

4
1

4

2
1

1

4
1

1

4

1

12

2

1

1
2

'

12

2

1

1
2

2

,

12

2

1

1
2

2

,

12

2

1

1
2

6

1
)),((

i

i
i

ii
i

i

i

i

i

i
i

i

i

i

i

i
i

ii
i

i

i

i

i

i
i

i

i

i

i

i
i

ii
i

i
i

i

i

i

i
i

i

i

i

i

i
i

ii
i

i
i

i

i

i

i
i

i

i

i

ii

r

d
Q

Ms
M

r

d

M

r

d
Q

h

Q

ad

r

d
Q

Ms
M

r

d

M

r

d
Q

h

Q

ad

r

d
Q

Ms
M

Q
r

d

M

r

d
Q

h

Q

ad

r

d
Q

Ms
M

Q
r

d

M

r

d
Q

h

Q

da

MQCP

(7)

with 0 < Qi1 � Qi2 � Qi3 � Qi4.

It will not change the meaning of formula (7) if we replace inequality conditions
0 < Qi1 � Qi2 � Qi3 � Qi4 into the following inequalityQi2 - Qi1 � 0, Qi3 – Qi2 � 0, Qi4 - Qi3
� 0, Qi1 > 0.
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In the following steps, extension of the Lagrangean method is used to find the
solutions of Qi1, Qi2, Qi3, Qi4 to minimize P(C(Qi, Mi)) in formula (7)

Step 1 : Solve the unconstraint problem. Consider min P(C(Qi,Mi))

To find the min P(C(Qi,Mi)) , we have to find the derivative of P(C(Qi,Mi)) with
respect to Qi1, Qi2, Qi3, Qi4.
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Let all the above results partial derivatives equal to zero and solve Qi1, Qi2, Qi3,

Qi4. Let 
1Q

P

i�
�

 = 0 then
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Because the above show that Qi1 > Qi2 > Qi3 > Qi4. It does not satisfy the constraint
0 < Qi1 > Qi2 > Qi3 > Qi4.

Therefore set K = 1 and go to Step 2.
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Step 2 : Convert the inequality constraint Qi2 – Qi1 � 0 into equality constraint
Qi2 – Qi1 = 0 and optimize P(C(Qi,Mi)) subject to Qi2 – Qi1 = 0 by the Lagrangean
Method. We have Lagrangean function as

L(Qi1, Qi2, Qi3, Qi4, �) = P(C(Qi, Mi)) - �(Qi2 – Qi1)

Taking the partial derivatives of L(Qi1, Qi2, Qi3, Qi4, �) with respect to Qi1, Qi2,
Qi3, Qi4 and � to find the minimization of L(Qi1, Qi2, Qi3, Qi4, �). Let all the partial
derivatives equal to zero and solve Qi1, Qi2, Qi3, Qi4.

Then we get,
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Qi1 = Qi2 = 
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Because the above results show that Qi3 > Qi4, it does not satisfy the constraint
0 < Qi1 > Qi2 > Qi3 > Qi4. Therefore it is not a local optimum. Similarly we can get the
same result if we select any other one inequality constraint to be equality constraint,
therefore set K = 2 and go to Step 3.

Step 3 : Convert the inequality constraints Qi2 – Qi1 � 0, into equality constraints
Qi2 – Qi1 = 0 and Qi3 – Qi1 = 0. We optimize P(C(Qi,Mi))

Subject to Qi2 – Qi1 = 0 and Qi3 – Qi2 = 0 by the Lagrangean Method.
Then the Lagrangean method is L(Qi1, Qi2, Qi3, Qi4, �) = P(C(Qi, Mi)) - �1(Qi2 – Qi1)-
�2(Qi3 – Qi2)

In order to find the minimization of L(Qi1, Qi2, Qi3, Qi4, �1, �2), we take the partial
derivatives of L(Qi1, Qi2, Qi3, Qi4, �1, �2) with respect to Qi1, Qi2, Qi3, Qi4, �1, �2 and let
all the partial derivatives equal to zero and solve Qi1, Qi2, Qi3, Qi4,
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The above results Qi1 > Qi4, does not satisfy the constraint Qi1, Qi2, Qi3, Qi4.
Therefore it is not a local optimum. Similarly we can get the same result if we
select any other two inequality constraints to be equality constraint, therefore set
K = 3 and go to Step 4.

Step 4 : Convert the inequality constraints Qi2 – Qi1 � 0, Qi3 – Qi2 � 0 and Qi4 – Qi3
� 0 into equality constraints Qi2 – Qi1 = 0, Qi3 – Qi1 = 0 and Qi4 – Qi3 = 0.

We optimize P(C(Qi,Mi)) Subject to Qi2 – Qi1 = 0, Qi3 – Qi2 = 0 by the Lagrangean
Method. The Lagrangean function is given by

L(Qi1, Qi2, Qi3, Q4, �1, �2, �3) = P(C(Qi,Mi))- �1(Qi2 – Qi1) - �2(Qi3 – Qi2) - �3(Qi4 – Qi3)

In order to find the minimization of L(Qi1, Qi2, Qi3, Qi4, �1, �2, �3), we take the
partial derivatives of L(Qi1, Qi2, Qi3, Qi4, �1, �2, �3) with respect to Qi1, Qi2, Qi3, Qi4, �1,
�2, �3 and let all the partial derivatives equal to zero and solve Qi1, Qi2, Qi3 and Qi4.
Then we get
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Because the above solution 
iQ
~ = (Qi1, Qi2, Qi3, Qi4) satisfies all inequality

constraints, the procedure terminates with 
iQ
~ as a local optimum solution to the

problem. Since the above local optimum solution is the only one feasible solution
of formula (), So it is an optimum solution of the inventory model with fuzzy
order quantity according to extension of the Lagrangean Method.

Let Qi1 = Qi2 = Qi3 = Qi4 = *
iQ
~ . Then the optimal fuzzy production quantity is
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2.3. Numerical Examples

To illustrate the results obtained in this paper, the proposed analytic solution
method is applied to efficiency solve the following numerical example. Consider
an inventory system with the following characteristics.

di=2600 ri =8000 si =150 Mi =300 a= 500 hi=100 Qi*= 200.41 C(Qi,Mi) = 66411.5 In
this example can be transferred into the fuzzy parameters as follows. Consider
any problem in which an annual demand is more or less than 2600 units,
replacement rate is more or less than 8000, unit stock-holding cost is more or less
than 100.00 per item per year , cost of a shortage of one unit of the good for one
time unit is more or less than 150, maximum shortage is more or less than 300 per
units. Determine the optimum integrated averagel cost?

Here we represent the case of value, “more or less than Y” as the type of
trapezoidal fuzzy number.

Suppose Fuzzy annual demand is “more or less than 2600”

id
~  = (d1, d2, d3, d4) = (2400, 2500, 2700, 2800)

Fuzzy replacement rate is “more or less than 8000”

ir
~  = (r1, r2, r3, r4) = (7000,7500, 8500, 9000)

Fuzzy cost of keeping of one unit is “more or less than 100”

ih
~  = (hi1, hi2, hi3, hi4) = (80,90,110,120)

Fuzzy cost of shortage of one unit of the good for one time unit “more or less
than 150”

is~ = (si1,si2,si3,si4) = (130,140,160,170)
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Fuzzy maximum shortage is “more or less than 300”

iM
~  = (Mi1, Mi2, Mi3, Mi4) = (280,290,310,320)

Fuzzy order quantity

iQ
~  = (Qi1, Qi2, Qi3, Qi4) = (757.24, 757.24,757.24,757.24)

with 0 < Qi1�  Qi2�  Qi3�  Qi4

The minimization fuzzy average order inventory cost for the agent i is

P(C(Qi,Mi)) =(12935.35, 15976.05, 23701.25,28468.16)

3. CONCLUSION

This paper presents two fuzzy models for an optimal integrated inventory model
and minimizing the average expected cost of the agent i. In the first model demand,
replacement rate, maximum shortage,cost of a shortage of one unit represented
demand cost represented by fuzzy number while Qi is treated as a fixed constant.
In the second model Qi is also represented as a fuzzy number. For each fuzzy
model a method of defuzzification, graded mean integration representation is
applied to find the estimate of average expected cost of agent in the fuzzy type
and then corresponding optimal order quantity is derived to maximize the total
profit.
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