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How to Predict Heats of Formation of Molecules?
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In the area of propellants, explosives, pyrotechnics and high energy density molecules 
(HEDMs), including military and commercial aims, two factors are of great interest: One is 
performance and the other is sensitivity.1 Performance depends theoretically on both energy 
contents and the crystal packing of the molecules. The determining factors are, therefore, 
molecular heats of formation and solid densities.2 To design or test new HEDMs, the two 
factors should be considered ahead of synthetic work. These properties can be obtained 
from experimental work. But for not-yet-synthesized molecules, there is no way to obtain 
these properties. In the past few years, numerous theoretical methods have been proposed 
for the prediction of the former with excellent accuracy in the gas phase as well as in solid.3 
Although the methods are originated from different progress and theoretical background, 
they can be categorized broadly to three groups: 1. Group and atom additive method. 2. 
Quantitative Structure–Property Relationship (QSPR). 3. Quantum mechanics. 

1. Group and Atom Additive Method

In the group and atom additive method, the thermochemical properties, for example, heats 
of formation or heat capacities can be estimated additively from the group or atom types 
consisting of the molecules. Benson and Buss firstly proposed the additive concepts in 
19584, and showed that the thermochemical properties can be estimated within 3 kcal/mol 
error. Following this pioneering work, Shaw,5 Bourasseau,6 Rouse,7 Mader,8 Kamlet–Jacobs,9 
Bureš,10 and Cohen11 improved the additive method for specific group of molecules. 

Taking nitro benzene as an example, the heat of formation can be calculated as the 
formula as below:

 ∆Hf (PhNO2 ) = 1(CB-NO2) +5 (CB-H) = 16.9 kcal/mol  (1)

where the CB-NO2 and CB-H are the number of carbon attached to the nitro group and 
hydrogen atom, respectively, and their contributions are known to be 3.3 and 0.4 kcal/mol, 
respectively. Once the parameters are derived, the group and atom additive method is very 
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simple and convenient to apply, and affords accepted values because it does not require 
much computing power.12 But there is also disadvantages for this type of method. In order 
to arrive very accurate results, it often requires “further correction” or more additive items13 
which in turn, decreases the efficiency of the application. In the parameter set from Pedley,14 

there are 20 parameters for alkane only. Apparently, it is not very practical to apply.

There is equilibrium between accuracy and efficiency for such group of methods. 
To increase the accuracy, more types of additive groups or atoms should be defined and 
introduced, which inversely will decrease the efficiency. Based on the scheme from Laidler, 

15 Leal collected 200 molecules,12 and divided them into 10 groups including alkanes, 
alkenes, alkynes, allenes, dienes/polyenes, diynes/alkyne-enes, cycloalkanes/cycloalkenes, 
alkyl radicals, benzene derivatives, and biphenyls/polyaromatic hydrocarbons, for which 
altogether 103 additive terms were defined. For multi-parameter regression analysis, 
the Excel 2000 was used to derive these parameters. The accuracy from the set is well 
accepted with an average difference of 1.28 kJ/mol for the gas phase enthalpy of formation. 
Compared with parameter set from Pedley for alkane,14 this set minimized the number of 
the additive items to 14, which increased the efficiency. Compared with parameter set from 
Tatevskii16, derived only for alkanes, the additive parameters from Leal are more versatile 
and comprehensive. 

2. Quantitative Structure–Property Relationship (QSPR) method

Group and atom additive method usually requires a large number of molecules to 
derive the parameters. There are often too many additive terms that lowers the speed of 
the applications. Thus QSPR method that can derive optimal linear regression models 
between physicochemical properties and molecular descriptors became important. In 1994, 
Sukhachev and Pivina developed an efficient modelling of molecular activity (EMMA) 
model to predict the heat of formation.17 In their model, the heats of formation can be 
calculated using eq (2):: 
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(2)

where, SBE is the enthalpy of the molecule without steric hindrance, 4κr the Randic’s 
index, cmid the mean value of the diagonal elements in the inverse matrix of the weighed 
connectivity matrix G, Vmid mean value of the components of vector V, where V is the 
solution of the linear system GV = C, and C is the vector of corresponding vertex degrees in 
the structure graph, Nat number of atoms in the molecule. Fr1 sum of the minimum charges 
at atoms in fragments of the type –C–C–NO2, Fr2 the minimum of all the minimum charges 
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at atoms in fragments of the type At–At–N=O, where At is an arbitrary atom, and

Fr3 the sum of maximum charges at atoms in all five-atom linear chains with single 
bonds in the structure.

In 2007, Ali Vatani and coworkers utilized a training set of 1115 molecules and proposed 
a five-descriptor equation to estimate the standard heats of formation.18 The 5 descriptors 
utilized in this method are number of non-H atoms (nSK), sum of conventional bond orders 
(SCBO), number of oxygen atoms (nO), number of fluorine atoms (nF), and number of 
heavy atoms (nHM). 
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For this method, the correlation coefficient (R2) and the standard deviation were 0.9830 
and 58.541 kJ/mol, respectively, which justified the accuracy of the method. Many other 
correlation equations for specific types of molecules were also proposed.19~25. Usually, a 
QSPR study involves the process shown in Figure 1.

 

Figure 1: Flow chart for a QSPR study
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3. Quantum Mechanics.

With the help of newly developed algorithms and continuous speed-up in computer 
hardware, QM method was applied to use complicated procedure but to obtain quite 
accurate results. Semi-empirical methods as MNDO, MINDO/3, AM1, and PM3 are practical 
and accurate enough for the estimation of heats of formation although are not as accurate as 
ab initio methods. In this area, there were some benchmark studies by many researchers26~35. 
Disch and Schulman performed ab initio calculations on the [n]prismanes.36 Duan and 
coworkers utilized combined Hartree–Fock/density functional theory calculations with 
linear regression correction, and proposed an equation containing 5 descriptors. With 
B3LYP method and 6-3111G(d,p) basis set, the mean absolute deviation was 2.4 kcal/mol.37 
Bhattacharya converted ab initio energies to enthalpies for free radicals species.38 Nicolaides 
and coworkers transferred G2, G2(MP2), and G2(MP2,SVP) total energies to heats of 
formation.39 Byrd and Rice combined QM calculation and derived additive parameters to 
predict heats of formation.40 Shafagh derived a three-parameter equation based on DFT 
and ab initio thermal energies.41

These is an important trend in recent development: more and more methods are 
combined methods. For example, QM or QSPR method is combined with group additive 
method. As one of the direct methods cannot obtain good results, the second step treatment 
of the initial value from first step can improve the accuracy efficiently.42, 43 

In summary, we examined recent studies on estimation of heats of formation, including 
group additive, QSPR and QM methods. Group additive method required a large number 
of molecules to set up various terms and usually needed many additional types. In QSPR 
method, proper selection of molecular descriptors is very crucial for the accuracy and 
efficiency of the estimated values. In the QM method, ab initio and DFT calculations require 
more time but can obtain more accurate values. In terms of speed, semi-empirical method 
could be an alternative for screening a large database. To reach acceptable results with less 
time, combined method is a potential one to develop.
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