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Abstract. In this article, we consider the stochastic three dimensional in-
viscid simplified Bardina model, arising from the turbulent flows of fluids.

We examine the global well-posedness of such models subject to additive
and multiplicative Gaussian noise. Using the Banach fixed point theorem
(or contraction mapping principle), we show that the stochastic 3D invis-
cid simplified Bardina turbulence model has a unique global pathwise strong

solution.

1. Introduction

Turbulent fluid motion can be considered as an irregular condition of flow in
which several fluid parameters such as velocity, pressure etc, exhibit a random
variation with time and space (or the particle trajectories vary randomly in time)
in such a way that the statistical average of those quantities can be quantitatively
expressed. Turbulence is inevitably connected to the important dimensionless
quantity, namely Reynolds number. The Reynolds number is defined as Re = uL

ν ,
where u is the velocity of the fluid, L is a characteristic linear dimension (traveled
length of the fluid) and ν is the co-efficient of kinematic viscosity of the fluid. At a
Reynolds number less than the critical value (that is if u or L (or both) are small
and the viscosity is large), the kinetic energy of fluid flow is not enough to sustain
the random fluctuations against the viscous damping and in such cases laminar or
streamline flow continues to exist. At higher Reynolds number than the critical
value, the kinetic energy of flow supports the growth of fluctuations and transition
to turbulence takes place. The well known Navier-Stokes equations explain both
laminar and turbulent flows in great detail (cf. [15]). When a flow is turbulent,
the Navier-Stokes equations do not provide amenable mathematical models that
can authentically predict the properties of turbulent flows. By approximating the
Reynolds stress tensor, a particular closure model called the Bardina model is
introduced in [1]. Later, [17] considered a simpler approximation of the Reynolds
stress tensor for Bardina model and is named as simplified Bardina model. In this
article, we consider the stochastic three dimensional inviscid simplified Bardina
model subject to periodic boundary conditions, which is given below.
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Let O = [0, 2π]3 be a periodic domain. Let u(x, t) = (u1(x, t), u2(x, t), u3(x, t))
denotes the large-scale (or averaged) velocity of the fluid with constant density,
the scalar valued function p = p(x, t) denotes the pressure field and is determined
by the incompressibility constraint, and f represents the external forcing. Let T
be an arbitrary but fixed positive number. For t ∈ [0, T ] and x ∈ O, let us consider
the simplified Bardina turbulence model of inviscid incompressible flows, subject
to periodic boundary condition, written in expanded form as [3]:

∂

∂t
(u(x, t)− α∆u(x, t)) + (u(x, t) · ∇)u(x, t) = −∇p(x, t) + f(x, t),

in O × (0, T ),

∇ · u(x, t) = 0, in O × (0, T ),

u(0, x) = u0(x), in O,

(1.1)

where α > 0 is the square of the spatial scale at which fluid motion is filtered,
i.e., spatial scales smaller than α are averaged out. Also, for v := u − α∆u, the
simplified Bardina model can be written as:

∂

∂t
v(x, t) + (u(x, t) · ∇)u(x, t) +∇p(x, t) = f(x, t), in O × (0, T ),

∇ · u(x, t) = ∇ · v(x, t) = 0, in O × (0, T ),

v(x, t) = (I− α∆)u(x, t),

u(0) = u0, v(0, x) = v0(x) = (I− α∆)u0(x), in O,

(1.2)

where u and v are periodic.
Let us now discuss about the solvability results available in the literature for the

system (1.1) (or equivalently (1.2)). The global existence and uniqueness of strong
solutions to the viscous simplified Bardina turbulence model has been established
in [17]. Analytical studies of three-dimensional viscous and inviscid simplified Bar-
dina turbulence models with periodic boundary conditions has been conducted in
[3]. The authors in [3] established the global well-posedness of the viscous model
for weaker initial conditions. The global existence and uniqueness of weak solu-
tions to the inviscid model is also proved in [3]. The authors in [28] considered
the stochastic version of the 3D Bardina model arising from the turbulent flows
of fluids and obtained the existence of probabilistic weak solution for the model
with the non-Lipschitz conditions. The alpha models, such as Lagrangian aver-
aged Navier-Stokes equations [6] (also known as the Navier-Stokes-α or viscous
Camassa-Holm equations), Leray-α model [7], etc, are also related to the simpli-
fied Bardina models (see [28] for more details). The stochastic versions of alpha
models, such as stochastic Lagrangian averaged Navier-Stokes equations [5, 10],
stochastic Leray-alpha model [11], etc, are also available in the literature. For a
sample of literature on stochastic Navier-Stokes equations, we refer the readers to
[2, 4, 9, 13, 14, 18, 20, 23, 24, 29, 31], etc.

In this work, we consider the 3D inviscid simplified Bardina turbulence model
perturbed by additive and multiplicative Gaussian noise subject to periodic bound-
ary conditions and examine global solvability results. The Banach fixed point
theorem (or contraction mapping principle) is used to establish the existence of
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a global unique pathwise strong solution to the system (1.1). One can also ob-
tain the global solvability results using a vanishing viscosity method and Galerkin
approximation techniques (see Remark 3.4). The results obtained in this paper
has an important application in computational fluid dynamics also. The inviscid
simplified Bardina model can be considered as a regularizing model of the three-
dimensional stochastic Euler equations (see [22]). This is also a motivation for us
to consider such a problem. We also remark that the results obtained in this pa-
per are still valid for some unbounded domains like Poncaré domains (see Remark
3.5). We now state the main result obtained in this work.

Theorem 1.1. Let (Ω,F , (Ft)t≥0,P) be a given probability space. Let the F0-
measurable initial data u0 ∈ L2(Ω;V) be given. Then, there exists a strong solution
u ∈ L2(Ω; L∞([0, T ];V)) to the problem (2.12) (see below) satisfying

u(t) = u0 +

∫ t

0

(I + αA)−1B(u(s))ds+

∫ t

0

(I + αA)−1
√
QdW(s),

for all t ∈ [0, T ], as an element of V′, P-a.s., that is,

⟨(I + αA)u(t),w⟩ = ⟨v0,w⟩+
∫ t

0

⟨B(u(s)),w⟩ds+
∫ t

0

⟨
√
QdW(s),w⟩,

for all w ∈ V, and

E

[
sup

t∈[0,T ]

∥u(t)∥2V

]
≤
(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+
[
Tr((I + αA)−1Q) + 6Tr(Q)

]
T,

for arbitrary T > 0. Also, the (Ft)t≥0-adapted paths of the strong solution has
continuous trajectories in C([0, T ];V), P-a.s., and the solution is pathwise unique.

The rest of the paper is organized as follows: In the next section, we describe
an abstract formulation of the problem (1.1) and explain the necessary function
spaces needed to obtain the global solvability results of the system (1.1). Exis-
tence and uniqueness of a global pathwise strong solution to the problem (1.1)
is obtained in section 3. The methodology of establishing such a result is as fol-
lows. First we consider a cut-off problem (see (3.2) below) and obtain the unique
solvability results to the system (3.2), using Picard’s iteration and contraction
mapping principle (see Proposition 3.2). Then using a uniform energy bound, we
extend this solution to a unique global strong solution to the problem (2.12) (see
Theorem 3.3). In the final section, we consider the 3D inviscid simplified Bardina
turbulence model subject to multiplicative Gaussian noise and establish the global
solvability results (see Theorem 4.3).

2. Stochastic Inviscid Simplified Bardina Model

In this section, we give an abstract formulation of the system (1.1) (or equiva-
lently (1.2)) and explain the necessary functional settings required to obtain the
global solvability results.
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2.1. Functional setting. Let us now explain the function spaces needed to es-
tablish the global solvability results of the system (1.1). Let O := [0, 2π]× [0, 2π]×
[0, 2π] be a periodic domain, and we define the spaces

H :=

{
u ∈ L2(O;R3), div u = 0,

∫
O
u(x)dx = 0,u · n is periodic

}
,

V :=

{
u ∈ H1(O;R3), div u = 0,

∫
O
u(x)dx = 0,u · n is periodic

}
,

where n is the unit outward normal, and for an integer k ≥ 1, Hk(O;R3) is the
space of R3-valued measurable functions u that are in Hk

loc(R3;R3) and such that
u(x + 2πei) = u(x) for every x ∈ R3 and i = 1, 2, 3. Here {e1, e2, e3} is the
canonical basis of R3. We denote by (·, ·) and ∥ · ∥H, the usual L2-inner product
and norm in H with

∥u∥2H :=

∫
O
|u(x)|2dx.

Using the zero mean condition, we also have the Poincaré-Wirtinger inequality,
∥u∥H ≤ 1

λ∥∇u∥H, where λ is defined to be the smallest constant for which this
inequality holds (see [15]). Using the Poincaré-Wirtinger inequality, we may endow
V with the norm

∥u∥2V :=

∫
O
|∇u(x)|2dx.

The induced duality pairing, for instance between the spaces V and V′, is denoted
by ⟨·, ·⟩. For any u ∈ H and v ∈ V, there exists a u′ ∈ V′, such that (u,v) = ⟨u′,v⟩.

2.2. Linear operator. Let PH : L2(O) → H be the Helmholtz-Hodge orthogonal
projection operator. We define the Stokes operator

A : D(A) → H with Au := −PH∆u, (2.1)

where D(A) = V∩H2(O) =
{
u ∈ H1

0(O) ∩H2(O) : ∇ · u = 0
}
is the domain of the

operator A. The Stokes operator is a positive selfadjoint operator with compact
resolvent and if 0 < λ1 ≤ λ2 ≤ . . . are the eigenvalues of A, then we have ∥u∥2V ≥
λ1∥u∥2H, for all u ∈ V. This can be shown in the following way. Let {e1, e2, . . .} be
the orthonormal eigenvectors of A corresponding to the eigenvalues {λ1, λ2, . . .}
such that 0 < λ1 ≤ λ2 ≤ . . . . We know that any u ∈ V can be expressed as

u =

∞∑
j=1

⟨u, ej⟩ej and hence Au =

∞∑
j=1

λj⟨u, ej⟩ej .

Thus, it is immediate that

∥∇u∥2H = ⟨Au,u⟩ =
∞∑
j=1

λj |⟨u, ej⟩|2 ≥ λ1

∞∑
j=1

|⟨u, ej⟩|2 = λ1∥u∥2H.

Remark 2.1. Let us now show that the norms ∥u∥V and ∥v∥V′ are equivalent. Note
that

√
λ1∥u∥V′ ≤ ∥u∥H ≤ 1√

λ1
∥u∥V and hence we have

⟨(I + αA)u,w⟩ = ⟨u,w⟩+ α⟨Au,w⟩ ≤ ∥u∥V′∥w∥V + α∥A1/2u∥H∥A1/2w∥H
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≤
(

1

λ1
+ α

)
∥u∥V∥w∥V,

for all u,w ∈ V. Thus, it is immediate that

∥(I + αA)u∥V′ ≤
(

1

λ1
+ α

)
∥u∥V, so that ∥v∥V′ ≤

(
1

λ1
+ α

)
∥u∥V, (2.2)

where v = (I + αA)u. We also know that

∥(I + αA)−1v∥2V = ∥A1/2(I + αA)−1v∥2H =
∞∑
j=1

∣∣∣⟨A1/2(I + αA)−1v, ej⟩
∣∣∣2

=

∞∑
j=1

∣∣∣⟨A−1/2v,A(I + αA)−1ej⟩
∣∣∣2 =

∞∑
j=1

∣∣∣∣ λj

(1 + αλj)
⟨A−1/2v, ej⟩

∣∣∣∣2

≤ 1(
1
λ1

+ α
)2 ∞∑

j=1

∣∣∣⟨A−1/2v, ej⟩
∣∣∣2 =

1(
1
λ1

+ α
)2 ∥A−1/2v∥2H,

so that we have

∥u∥V ≤ 1(
1
λ1

+ α
)∥v∥V′ . (2.3)

Combining (2.2) and (2.3), we find

1(
1
λ1

+ α
)∥u∥V ≤ ∥v∥V′ ≤

(
1

λ1
+ α

)
∥u∥V, (2.4)

and hence the norms ∥u∥V and ∥v∥V′ are equivalent.

2.3. Nonlinear operator. For u,v,w ∈ V, we define the trilinear operator
b(·, ·, ·) as

b(u,v,w) :=

∫
O
(u(x) · ∇)v(x) ·w(x)dx =

3∑
i,j=1

∫
O
ui(x)

∂vj(x)

∂xi
wj(x)dx,

and the bilinear operator B : V× V → V′ is defined by,

⟨B(u,v),w⟩ := b(u,v,w), for all u,v,w ∈ V.

An integration by parts yields,{
b(u,v,v) = 0, for all u,v ∈ V,
b(u,v,w) = −b(u,w,v), for all u,v,w ∈ V.

(2.5)

For more details about the linear and nonlinear operators, we refer the readers to
[8, 32].

Now we provide an important inequality due to Gagliardo-Nirenberg-Sobolev,
which is used to estimate the trilinear form and hence bilinear operator. Even
though the inequality given below is stated in bounded domains, it is valid in
periodic domains also.
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Lemma 2.2 (Gagliardo-Nirenberg-Sobolev inequality, Theorem 2.1, [27], Theo-

rem 2.1, [12]). Let O ⊂ Rn be bounded and u ∈ W1,p
0 (O;Rn), p ≥ 1. Then for any

fixed number q, r ≥ 1, there exists a constant C > 0 depending only on n, p, q such
that

∥u∥Lr ≤ C∥∇u∥θLp∥u∥1−θ
Lq , θ ∈ [0, 1], (2.6)

where the numbers p, q, r and θ satisfy the relation

θ =

(
1

q
− 1

r

)(
1

n
− 1

p
+

1

q

)−1

.

Let us take r = n = 3 and p = q = 2 in (2.6) to get θ = 1
2 and

∥u∥L3 ≤ C∥∇u∥1/2L2 ∥u∥1/2L2 . (2.7)

Now if we take r = 4, n = 3 and p = q = 2 in (2.6), we find θ = 3
4 and

∥u∥L4 ≤ C∥∇u∥3/4L2 ∥u∥1/4L2 , (2.8)

where the constant C =
√
2 (see Lemma 2, Chapter 1[16]). We also take r = 6,

n = 3 and p = q = 2 in (2.6) to obtain θ = 1 and

∥u∥L6 ≤ C∥∇u∥L2 , (2.9)

where the constant C = 48
1
6 (see Lemma 2, Chapter 1, [16]).

Using Hölder’s and Gagliardo-Nirenberg-Sobolev inequalities, we find

|⟨B(u,v),w⟩| = |⟨B(u,w),v⟩| ≤ ∥u∥L3∥w∥V∥v∥L6 ≤ C∥u∥1/2H ∥u∥1/2V ∥v∥V∥w∥V.
(2.10)

Thus, we have

∥B(u,v)∥V′ ≤ C∥u∥1/2H ∥u∥1/2V ∥v∥V ≤ C

λ
1/4
1

∥u∥V∥v∥V, (2.11)

for all u,v ∈ V.

2.4. Abstract formulation. Let (Ω,F ,P) be a given complete probability space
equipped with an increasing family of sub-sigma fields {Ft}0≤t≤T of F satisfy-
ing usual conditions. Let us consider the external forcing to be random (additive
Gaussian noise) in (1.1) adapted to the filtration {Ft}0≤t≤T . We apply the or-
thogonal projection PH to the system (1.1) to obtain an abstract version of the
stochastic inviscid simplified Bardina model (1.1) as

dv(t) = −B(u(t))dt+
√

QdW(t),

v(t) = (I + αA)u(t) = u(t) + αAu(t),

u(0) = u0,v(0) = v0 = u0 + αAu0.

(2.12)

Since the projection PH and (I+αA) commutes, the above system is equivalent to{
du(t) = −(I + αA)−1B(u(t))dt+ (I + αA)−1

√
QdW(t),

u(0) = u0,
(2.13)

where u0 ∈ L2(Ω;V). In (2.12), W(·) is an H-valued cylindrical Weiner process.
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Let L(H,H) be the space of all bounded linear operators on H. Let Q ∈ L(H,H)
be a non-negative, symmetric and trace class operator on H. Thus there exists
an orthonormal basis {ek}∞k=1 of H such that Qek = µkek, k ∈ N, where µk is the
eigenvalue corresponding to {ek} which is real and non-negative satisfying

Tr(Q) =
∞∑
k=1

µk < +∞ and
√
Qv =

∞∑
k=1

√
µk(v, ek)ek, for all v ∈ H.

The stochastic process {W(t) : 0 ≤ t ≤ T} is an H-valued cylindrical Wiener
process on (Ω,F , {Ft}t≥0,P) if and only if for arbitrary t, the process W(t) can

be expressed as W(t) =
∞∑
k=1

βk(t)ek, where βk(t), k ∈ N are independent, one

dimensional Brownian motions on the space (Ω,F , {Ft}t≥0,P) (see [9]). Now we
give some examples of the operator Q, considered in this paper.

Example 2.3. 1. The operator Q = (I + αA)−β with β > 3/2 satisfies the
conditions:

(i) Tr(Q) < +∞,
(ii) Tr((I + αA)−1Q) < +∞.

Indeed, since the asymptotic behavior of the eigenvalues of the operator A in
periodic domain is given by λk ∼ λ1k

2/3 (Theorem 4.11, [8], page 54, [15]). That
is, there is a dimensionless constant C0 such that

k2/3

C0
≤ λk

λ1
≤ C0k

2/3, for k = 1, 2, . . . .

Thus, we have

Tr(Q) = Tr((I + αA)−β) =
∞∑
k=1

((1 + αλk)
−βek, ek) =

∞∑
k=1

(1 + αλk)
−β

≤ C0

∞∑
k=1

(1 + αk2/3)−β ≤ C0

α2β

∞∑
k=1

1

k2β/3
< +∞,

for β > 3/2. Similarly, we have

Tr((I + αA)−1Q) =

∞∑
k=1

((1 + αλk)
−(1+β)ek, ek) =

∞∑
k=1

(1 + αλk)
−(1+β)

≤ C0

∞∑
k=1

(1 + αk2/3)−(1+β) ≤ C0

α2β

∞∑
k=1

1

k2(1+β)/3
< +∞,

for β > 1/2. Hence, for β > 3/2, both the conditions are satisfied.
2. One can also show that the operator Q = A−β , β > 3/2 satisfies Tr(Q) <

+∞, and Tr((I + αA)−1Q) < +∞.

2.5. Global strong solution. Let us now give the definition of a unique global
pathwise strong solution to the system (2.12).

Definition 2.4 (Global strong solution). Let the F0-measurable initial data u0 ∈
L2(Ω;V) be given. A V-valued (Ft)t≥0-adapted continuous process u(·) is called
a strong solution to (2.12) if the following conditions are satisfied:
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(i) the process u ∈ L2(Ω; L∞([0, T ];V)) is such that

E

[
sup

t∈[0,T ]

∥u(t)∥2V

]
≤
(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+
[
Tr((I + αA)−1Q) + 6Tr(Q)

]
T,

(2.14)
(ii) the following equality holds for every t ∈ [0, T ], as an element of V′, P-a.s.,

u(t) = u0 +

∫ t

0

(I + αA)−1B(u(s))ds+

∫ t

0

(I + αA)−1
√
QdW(s), (2.15)

that is,

⟨(I + αA)u(t),w⟩ = ⟨v0,w⟩+
∫ t

0

⟨B(u(s)),w⟩ds+
∫ t

0

⟨
√
QdW(s),w⟩, (2.16)

for all w ∈ V.

Definition 2.5. A strong solution u(·) to (2.12) is called a unique strong solution
if ũ(·) is an another strong solution, then

P
{
ω ∈ Ω : u(t, ω) = ũ(t, ω), for all t ∈ [0, T ]

}
= 1.

3. Existence and Uniqueness of Global Strong Solution

In this section, we establish the global existence and uniqueness of pathwise
strong solution to the stochastic inviscid simplified Bardina model (2.12). In order
to do this we first consider a cut-off problem and establish the global solvability of
the cut-off problem using the Banach fixed point theorem (or contraction mapping
principle). Let (X, d) be a metric space. A map F : X → X is called a contraction
mapping on X, if there exists 0 ≤ α < 1 such that

d(F(u),F(v)) ≤ αd(u,v),

for all u,v ∈ X. Let (X, d) be a non-empty complete metric space with a con-
traction mapping F : X → X. Then F admits a unique fixed-point u∗ in X (i.e.,
F(u∗) = u∗). Moreover, u∗ can be found as follows: start with an arbitrary
element u0 ∈ X and define a sequence {un} by un = F(un−1), then un → u∗ ∈ X.

3.1. The cut-off problem. Let us define a function Πn : [0,∞) → [0, 1] by

Πn(y) =

 1, for 0 ≤ y ≤ n,
n+ 1− y, for n < y ≤ n+ 1,

0, for y > n+ 1,
(3.1)

where n is a positive integer. Note that the function Πn(·) is continuous. Let us
first consider the following cut-off problem:{

dvn(t) = −Πn(∥un∥V)B(un(t))dt+
√

QdW(t),

un(0) = u0,vn(0) = v0 = u0 + αAu0.
(3.2)

The above system is equivalent to{
dun(t) = −Πn(∥un∥V)(I + αA)−1B(un(t))dt+ (I + αA)−1

√
QdW(t),

un(0) = u0.
(3.3)
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First we show that the system (3.2) (or equivalently (3.3)) has a unique strong
solution using Banach fixed point theorem (or contraction mapping principle). Let
us define X := L2(Ω; L∞([0, T ];V)) and the metric

d(u,v) = E

[
sup

t∈[0,T ]

∥u(t)− v(t)∥2V

]
.

Then one can easily show that (X, d) form a complete metric space. Let us define
a map F(·) : X → X as

F(un(t)) := u0 +

∫ t

0

Πn(∥un(s)∥V)(I + αA)−1B(un(s))ds

+

∫ t

0

(I + αA)−1
√

QdW(s). (3.4)

The above map is understood in the following way:

⟨(I + αA)F(un(t)),w⟩ = ⟨v0,w⟩+
∫ t

0

⟨Πn(∥un(s)∥V)B(un(s)),w⟩ds

+

∫ t

0

⟨
√
QdW(s),w⟩, (3.5)

for all w ∈ V.
We consider the space X as a Banach space consisting of all V-valued, (Ft)t≥0-

adapted stochastic processes with the norm defined by

∥u∥2X := E

[
sup

t∈[0,T ]

∥u(t)∥2V

]
< +∞, for all u ∈ X.

For v = (I + αA)u, remember that the norms ∥v∥V′ and ∥u∥V are equivalent (see
Remark 2.1), and we show that the map F is a contraction on X. In order to
establish the existence of a unique pathwise strong solution to the system (3.2),
we need the following important lemma.

Lemma 3.1. For all u1
n,u

2
n ∈ V, we have

∥Πn(∥u1
n∥V)B(u1

n)−Πn(∥u2
n∥V)B(u2

n)∥V′ ≤ Cn

λ
1/4
1

∥u1
n − u2

n∥V. (3.6)

Proof. For simplicity, we take u1
n = u1 and u2

n = u2. Without loss of generality,
we may assume that ∥u1∥V ≤ ∥u2∥V. For every w ∈ V, we have

⟨Πn(∥u1∥V)B(u1)−Πn(∥u2∥V)B(u2),w⟩
= ⟨(Πn(∥u1∥V)−Πn(∥u2∥V))B(u1),w⟩+ ⟨Πn(∥u2∥V)B(u1 − u2,u2),w⟩
+ ⟨Πn(∥u2∥V)B(u1,u1 − u2),w⟩.

From the above equality, we get

∥Πn(∥u1∥V)B(u1)−Πn(∥u2∥V)B(u2)∥V′

≤ ∥(Πn(∥u1∥V)−Πn(∥u2∥V))B(u1)∥V′ + ∥Πn(∥u2∥V)B(u1 − u2,u2)∥V′

+ ∥Πn(∥u2∥V)B(u1,u1 − u2)∥V′ =: I, (3.7)
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where I denote the right hand side of the inequality (3.7). Let us establish (3.6)
in the following 6 different cases:

Case 1: ∥u1∥V, ∥u2∥V ≤ n. In this case, using (2.11), we obtain

I = ∥B(u1 − u2,u2)∥V′ + ∥B(u1,u1 − u2)∥V′

≤ C

λ
1/4
1

∥u1 − u2∥V(∥u1∥V + ∥u2∥V) ≤
2Cn

λ
1/4
1

∥u1 − u2∥V.

Case 2: n < ∥u1∥V, ∥u2∥V ≤ n+ 1. For this case, we have

I = ∥(∥u2∥V − ∥u1∥V)B(u1)∥V′ + (n+ 1− ∥u2∥V)∥B(u1 − u2,u2)∥V′

+ (n+ 1− ∥u2∥V)∥B(u1,u1 − u2)∥V′

≤ ∥u1 − u2∥V
C

λ
1/4
1

∥u1∥2V + (n+ 1− ∥u2∥V)
C

λ
1/4
1

∥u1 − u2∥V(∥u1∥V + ∥u2∥V)

≤ C

λ
1/4
1

(
∥u1∥2V + (n+ 1− ∥u2∥V)(∥u1∥V + ∥u2∥V)

)
∥u1 − u2∥V

≤ 5C(n+ 1)2

λ
1/4
1

∥u1 − u2∥V.

Case 3: ∥u1∥V, ∥u2∥V > n+1. In this case, I = 0 and (3.6) is trivially satisfied.
Case 4: ∥u1∥V ≤ n, n < ∥u2∥V ≤ n+ 1. For this case, we get

I = (∥u2∥V − n)∥B(u1)∥V′ + ∥(n+ 1− ∥u2∥V)B(u1 − u2,u2)∥V′

+ ∥(n+ 1− ∥u2∥V)B(u1,u1 − u2)∥V′

≤ (∥u2∥V − ∥u1∥V)
C

λ
1/4
1

∥u1∥2V

+ (n+ 1 + ∥u2∥V)
C

λ
1/4
1

∥u1 − u2∥V(∥u1∥V + ∥u2∥V)

≤ C

λ
1/4
1

(
n2 + 2(n+ 1)(2n+ 1)

)
∥u1 − u2∥V.

Case 5: ∥u1∥V ≤ n, ∥u2∥V > n+ 1, so that

1 < ∥u2∥V − n ≤ ∥u2∥V − ∥u1∥V ≤ ∥u1 − u2∥V.

For this case, we find

I = ∥B(u1)∥V′ ≤ C

λ
1/4
1

∥u1∥2V ≤ Cn2

λ
1/4
1

∥u1 − u2∥V.

Case 6: n < ∥u1∥V ≤ n+ 1, ∥u2∥V > n+ 1, so that

n+ 1− ∥u1∥V ≤ ∥u2∥V − ∥u1∥V ≤ ∥u1 − u2∥V.

In this case, we infer that

I = ∥(n+ 1− ∥u1∥V)B(u1)∥V′ ≤ ∥u1 − u2∥V
C

λ
1/4
1

∥u1∥2V
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≤ C(n+ 1)2

λ
1/4
1

∥u1 − u2∥V.

Combining all these cases, we arrive at (3.6). □

Proposition 3.2. Let the F0-measurable initial data u0 ∈ L2(Ω;V) be given.
Then, there exists a unique (Ft)t≥0-adapted strong solution u(·) to the system
(3.2) in L2(Ω; L∞([0, T ];V)) with continuous trajectories in C([0, T ];V), P-a.s.

Proof. Let F(·) : X → X be the map defined in (3.4) and we show that F(·) is a
contraction on X. We prove this in the following steps:

Step 1. Claim: F(un) ∈ X, for every un ∈ X. We first show F(·) : X → X.
For any un ∈ X, we have

E

[
sup

t∈[0,T ]

∥F(un(t))∥2V

]
(3.8)

≤
(

λ1

1 + λ1α

)
E

[
sup

t∈[0,T ]

∥(I + αA)F(un(t))∥2V′

]

=

(
λ1

1 + λ1α

)
E

[
sup

t∈[0,T ]

∥∥∥∥v0 +

∫ t

0

Πn(∥un(s)∥V)B(un(s))ds+

∫ t

0

√
QdW(s)

∥∥∥∥2
V′

]

≤ 3

(
λ1

1 + λ1α

)
E

[
∥v0∥2V′ + sup

t∈[0,T ]

∥∥∥∥∫ t

0

Πn(∥un(s)∥V)B(un(s))ds

∥∥∥∥2
V′

+ sup
t∈[0,T ]

∥∥∥∥∫ t

0

√
QdW(s)

∥∥∥∥2
V′

]

≤ 3

(
λ1

1 + λ1α

){(
1

λ1
+ α

)
E[∥u0∥2V]

+E

[
sup

t∈[0,T ]

(∫ t

0

Πn(∥un(s)∥V)∥B(un(s))∥V′ds

)2
]
+

1

λ1
E

[
sup

t∈[0,T ]

∥Mt∥2H

]}

≤ 3

(
λ1

1 + λ1α

){(
1

λ1
+ α

)
E[∥u0∥2V]

+
C

λ
1/4
1

E

[
sup

t∈[0,T ]

(∫ t

0

Πn(∥un(s)∥V)∥un(s)∥2Vds
)2
]
+

C

λ1
E[M,M ]T

}

≤ 3

(
λ1

1 + λ1α

){(
1

λ1
+ α

)
E[∥u0∥2V] +

CT 2(n+ 1)2

λ
1/4
1

+
C

λ1
Tr(Q)T

}
< +∞,

using (2.11) and Burkholder-Davis-Gundy inequality (see Theorem 1.1, [19]). In

(3.8), Mt =
∫ t

0

√
QdW(s) and [M,M ]T denotes the quadratic variation process.

Hence, we obtain F(un) ∈ X.
Step 2. Claim: F(·) : X → X is a contraction. Next our aim is to establish that

the map F is a contraction on X. From Lemma 3.1, it is clear that the operator

Πn(∥un∥V)B(un) is a globally Lipschitz operator. Now, for Cα
λ1

:=
(

λ1

1+λ1α

)
, we
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consider

E

[
sup

t∈[0,T ]

∥F(u1
n(t))−F(u2

n(t))∥2V

]

≤
(

λ1

1 + λ1α

)
E

[
sup

t∈[0,T ]

∥(I + αA)
(
F(u1

n(t))−F(u2
n(t))

)
∥2V′

]

= Cα
λ1
E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

[
Πn(∥u1

n(s)∥V)B(u1
n(s))−Πn(∥u2

n(s)∥V)B(u2
n(s))

]
ds

∥∥∥∥2
V′

]

≤ Cα
λ1
E

[
sup

t∈[0,T ]

(∫ t

0

∥Πn(∥u1
n(s)∥V)B(u1

n(s))−Πn(∥u2
n(s)∥V)B(u2

n(s))∥V′ds

)2
]

≤
(

λ1

1 + λ1α

)
Cn

λ
1/4
1

E

[
sup

t∈[0,T ]

(∫ t

0

∥u1
n(s)− u2

n(s)∥Vds
)2
]

≤

(
λ
3/4
1 CnT

2

1 + λ1α

)
E

[
sup

t∈[0,T ]

∥u1
n(t)− u2

n(t)∥2V

]
, (3.9)

where we used Lemma 3.1 and the fact that the norms ∥v∥V′ and ∥u∥V are equiv-

alent (see Remark 2.1). Thus F(·) is a contraction mapping on X if
CnT

2λ
3/4
1

(1+αλ1)
< 1.

Step 3. Fixed point and local strong solution. Using the Banach contraction
mapping principle, there exists a time 0 < T ∗ < T such that the map F(·) has

a unique fixed point in X, for 0 < T ∗ <

√
(1+αλ1)

Cnλ
3/4
1

. Since v = (I + αA)u, there

exists a local strong solution u(·) for the system (3.2) in L2(Ω; L∞([0, T ∗];V)) with
(Ft)t≥0-adapted, continuous trajectories in C([0, T ∗];V), P-a.s. Furthermore, a
Picard’s iteration scheme gives the required solvability result, that is, one can
consider

um+1
n (t) = F(um

n (t)) with u0(0) = u0,

form = 0, 1, 2, . . . , and finish local existence and pathwise uniqueness (using global
Lipschitz property of the operator Πn(∥un∥V)B(un), see Lemma 3.1) of strong
solution to the system (3.2), using standard arguments. The right continuity of
un(·) at 0 can be used to obtain that the initial data un(0) = u0, P-a.s.

Step 4. Global strong solution to the system (3.2). Let T ∗ be the maximal time

of existence for the cut-off problem (3.2). Next, we show that T ∗ = T , where T is
arbitrary. Let us assume that T ∗ < T such that

lim sup
t↑T∗

∥un(t)∥V = +∞, P-a.s. (3.10)

That is, we also have

E

[
sup

t∈[0,T∗]

∥un(t)∥2V

]
= +∞. (3.11)

We show that E

[
sup

t∈[0,T∗]

∥un(t)∥2V

]
< +∞ and obtain a contradiction to (3.11).
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Let us first examine the energy estimate satisfied by the unique pathwise strong
solution to the system (3.3). Let τM be a sequence of stopping times defined by

τM := inf
t≥0

{
t : ∥un(t)∥V ≥ M

}
, (3.12)

for M ∈ N. Next, we use the Itô product formula (see [21]) to the process
(vn(t),un(t)) to obtain

(vn(t ∧ τM ),un(t ∧ τM )) = (v0,u0) +

∫ t∧τM

0

(vn(s), dun(s))

+

∫ t∧τM

0

(un(s), dvn(s)) + [un(t),vn(t)]t∧τM . (3.13)

From (3.13), we obtain

∥un(t ∧ τM )∥2H + α∥un(t ∧ τM )∥2V

= ∥u0∥2H + α∥u0∥2V − 2

∫ t∧τM

0

⟨Πn(∥un∥V)B(un(s)),un(s)⟩ds

+ 2

∫ t∧τM

0

(
√
QdW(s),un(s))ds+

∫ t∧τM

0

Tr((I + αA)−1Q)ds. (3.14)

Let us take expectation in (3.14) to find

E
[
∥un(t ∧ τM )∥2H + α∥un(t ∧ τM )∥2V

]
= E

[
∥u0∥2H

]
+ αE

[
∥u0∥2V

]
+Tr((I + αA)−1Q)E[t ∧ τM ]

≤
(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+Tr((I + αA)−1Q)t, (3.15)

where we used the fact that
∫ t∧τM
0

(
√
QdW(s),un(s))ds is a martingale with zero

average and ⟨B(u),u⟩ = 0. On the other hand, we have

E
[
∥un(t ∧ τM )∥2V

]
= E

[
∥un(t ∧ τM )∥2Vχ{τM<t}

]
+ E

[
∥un(t ∧ τM )∥2Vχ{τM≥t}

]
= E

[
∥un(τM )∥2Vχ{τM<t}

]
+ E

[
∥un(t)∥2Vχ{τM≥t}

]
, (3.16)

where χ is the indicator function. From the continuity of the process un(·) (see
(3.12)), we know that ∥un(τM )∥V ≥ M , and remember that

E
[
χ{τn

M<t}

]
= P

{
ω ∈ Ω : τnM (ω) < t

}
.

Equation (3.16) gives

E
[
∥un(t ∧ τN )∥2V

]
= E

[
∥un(τM )∥2Vχ{τM<t}

]
+ E

[
∥un(t)∥2Vχ{τM≥t}

]
≥ E

[
∥un(τM )∥2Vχ{τM<t}

]
≥ M2P

{
ω ∈ Ω : τM (ω) < t

}
. (3.17)

Thus by using (3.15), we finally obtain

P
{
ω ∈ Ω : τM (ω) < t

}
≤ 1

M2
E
[
∥un(t ∧ τN )∥2V

]
(3.18)

≤ 1

M2

[(
1

λ1
+ α

)
E
[
∥u0∥2V

]
+Tr((I + αA)−1Q)t

]
.
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Hence, we have

lim
M→∞

P
{
ω ∈ Ω : τM (ω) < t

}
= 0, for all t ∈ [0, T ], (3.19)

and hence t ∧ τN → t as M → ∞. Then on taking limit M → ∞ in (3.15) and
using the dominated convergence theorem, we get

E
[
∥un(t)∥2H + α∥un(t)∥2V

]
≤
(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+Tr((I + αA)−1Q)t, (3.20)

for all 0 ≤ t ≤ T ∗. Thus we also have

sup
t∈[0,T∗]

E
[
∥un(t)∥2H + α∥un(t)∥2V

]
≤
(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+Tr((I + αA)−1Q)T ∗.

(3.21)

Let us take the supremum over t ∈ [0, T ∗] and then take expectation in (3.14)
to obtain

E

[
sup

t∈[0,T∗∧τM ]

(
∥un(t)∥2H + α∥un(t)∥2V

)]
≤ E

[
∥u0∥2 + α∥u0∥2V

]
+Tr((I + αA)−1Q)T ∗

+ 2E

[
sup

t∈[0,T∗∧τM ]

∣∣∣∣∫ t∧τM

0

(
√
QdW(s),un(s))ds

∣∣∣∣
]
=: I3, (3.22)

where I3 is the final term appearing in (3.22). Let us use the Davis, Hölder and
Young’s inequalities to obtain

I3 ≤ 2
√
3E

[∫ T∗∧τM

0

∞∑
k=1

µk∥ek(x)∥2H∥un(t)∥2Hdt

]1/2

≤ 2
√
3E

 sup
t∈[0,T∗∧τM ]

∥un(t)∥H

(∫ T∗∧τM

0

∞∑
k=1

µkdt

)1/2


≤ 1

2
E

[
sup

t∈[0,T∗∧τM ]

∥un(t)∥2H

]
+ 6Tr(Q)T ∗. (3.23)

Let us substitute (3.23) in (3.22) to get

E

[
sup

t∈[0,T∗∧τM ]

(
1

2
∥un(t)∥2H + α∥un(t)∥2V

)]
≤ E

[
∥u0∥2 + α∥u0∥2V

]
+
[
Tr((I + αA)−1Q) + 6Tr(Q)

]
T ∗. (3.24)

A calculation similar to (3.19) yields that as M → ∞, T ∗ ∧ τM → T ∗. Passing
M → ∞ in (3.24) and using dominated convergence theorem, we infer that

E

[
sup

t∈[0,T∗]

(
1

2
∥un(t)∥2H + α∥un(t)∥2V

)]

≤
(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+
[
Tr((I + αA)−1Q) + 6Tr(Q)

]
T ∗ < +∞, (3.25)
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which is a contradiction to (3.11) and hence T ∗ = T . Thus there exists an
(Ft)t≥0-adapted solution un(·) to the problem (3.3) with continuous trajectories
in C([0, T ];V), P-a.s.. □

Let us now show that the system (2.12) has a unique pathwise strong solution
by passing n → ∞ in (3.3).

Theorem 3.3 (Global existence and uniqueness). Let the F0-measurable initial
data u0 ∈ L2(Ω;V) be given. Then, there exists a unique strong solution to the
system (2.12) with (Ft)t≥0-adapted, continuous trajectories in C([0, T ];V), P-a.s.

Proof. We establish the existence and uniqueness of strong solution to the system
(2.12) in the following steps.

Step 1. Local strong solution. For each n ∈ N, let us define an (Ft)t≥0-adapted
stopping time

ϱn := inf
t≥0

{
t : ∥un(t)∥V ≥ n

}
. (3.26)

For each m ≥ n, we have

un(t) = um(t), P-a.s., for all t ∈ [0, T ∧ ϱm ∧ ϱn),

by using pathwise uniqueness of the system (3.3). For each m ≥ n, one can easily
see that ϱm ≥ ϱn, P-a.s. Since T is arbitrary, we can also obtain

un(t) = um(t), P-a.s., for all t ∈ [0, ϱn).

Let us now define

u(t) := un(t), for all t ∈ [0, ϱn], and ϱ := lim
n→∞

ϱn, P-a.s., (3.27)

where ϱ ≤ T , P-a.s., and T is arbitrary. Thus Proposition 3.2 ensures the existence
of a unique pathwise strong solution

u(t) = lim
n→∞

un(t), P-a.s.,

to the system (2.12) in the interval [0, ϱ]. Hence (u, ϱ) is a local strong solution to
the system (2.12).

Step 2. A probabilistic estimate of the stopping time. For a given 0 < δ < 1,
we now show that

P
{
ω ∈ Ω : ϱ(ω) > δ

}
≥ 1− Cδ2

{
1 + E

[
∥u0∥2V

]}
, (3.28)

for some positive constant C independent of u0 and δ. Since ⟨B(u,u),u⟩ = 0, a
calculation similar to (3.25) yields

E

[
sup

t∈[0,ϱ]

(
1

2
∥u(t)∥2H + α∥u(t)∥2V

)]
(3.29)

≤
(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+
[
Tr((I + αA)−1Q) + 6Tr(Q)

]
δ

≤ max

{(
1

λ1
+ α

)
,
[
Tr((I + αA)−1Q) + 6Tr(Q)

]}{
E
[
∥u0∥2V

]
+ δ
}
< +∞.
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For the given 0 < δ < 1, there exists a positive integer n such that

1

n+ 1
≤ δ <

1

n
.

Further, using Markov’s inequality, (3.29) and

1

n2
=

1

n2

(n+ 1)2

(n+ 1)2
≤ 1

n2
(n+ 1)2δ2 =

(
1 +

1

n

)2

δ2 ≤ 4δ2,

we have

P
{
ω ∈ Ω : ϱ(ω) > δ

}
≥ P

{
ω ∈ Ω : ϱn(ω) > δ

}
≥ P

{
ω ∈ Ω : sup

t∈[0,δ]

∥u(t, ω)∥V < n

}

= P

{
ω ∈ Ω : sup

t∈[0,δ]

∥u(t, ω)∥2V < n2

}

≥ 1− 1

n2
E

(
sup

t∈[0,δ]

∥u(t)∥2V

)

≥ 1− 1

n2
C(α, λ1,Q)

{
E
[
∥u0∥2V

]
+ δ
}

≥ 1− C(α, λ1,Q)δ2
(
1 + E

[
∥u0∥2V

])
. (3.30)

Similar methods for proving positivity of stopping times for different models can
be found in [23, 24, 25, 26], etc.

Step 3. Global strong solution. In order to prove that (u, ϱ) is a global pathwise
strong solution, we need to show that ϱ = T , P-a.s., where T is arbitrary. Once
again, a calculation similar to (3.25) yields

sup
n∈N

E

[
sup

t∈[0,T ]

(
1

2
∥un(t)∥2H + α∥un(t)∥2V

)]
(3.31)

≤ max

{(
1

λ1
+ α

)
,
[
Tr((I + αA)−1Q) + Tr(Q)

]}{
E
[
∥u0∥2V

]
+ T

}
< +∞.

Thus the solutions un(·) is uniformly bounded in L2(Ω; L∞([0, T ];V)). For any
T > 0, we assume that ϱ(ω) < T , P-a.s. Thus, for arbitrary T > 0, using Markov’s
inequality and (3.31), we have

P
{
ω ∈ Ω : ϱn(ω) < T

}
= P

{
ω ∈ Ω : sup

t∈[0,T ]

∥un(t, ω)∥V ≥ n

}

≤ 1

n2
E

[
sup

t∈[0,T ]

∥un(t, ω)∥2V

]

≤ 1

n2
C(α, λ1,Q)

{
E
[
∥u0∥2V

]
+ T

}
. (3.32)
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Let us take n → ∞ in (3.32) to infer that P
{
ω ∈ Ω : ϱn(ω) < T

}
→ 0 as n → ∞

and hence ϱ(ω) = T , P-a.s., which also gives a unique global pathwise strong
solution to the system (2.12). □

Remark 3.4. It should be noted that an another way to approach this problem is
to consider {

dv(t) = −[νAu(t) + B(u(t))]dt+
√
QdW(t),

v(0) = v0 = u0 + αAu0,
(3.33)

for ν ≥ 0, or equivalently{
du(t) = −(I + αA)−1[νAu(t) + B(u(t))]dt+ (I + αA)−1

√
QdW(t),

u(0) = u0.
(3.34)

A calculation similar to (3.25) yields the a-priori estimate:

E

[
sup

t∈[0,T ]

(
1

2
∥u(t)∥2H + α∥u(t)∥2V

)
+ 2ν

∫ T

0

∥u(s)∥2Vds

]
≤ E

[
∥u0∥2H + α∥u0∥2V

]
+
[
Tr((I + αA)−1Q) + Tr(Q)

]
T. (3.35)

Note that the right hand side of the inequality (3.35) is independent of ν. Using
a standard Galerkin approximation technique and then passing ν → 0 gives the
global solvability results as in Theorem 3.3.

Remark 3.5. For simplicity, we have taken our domain O as periodic. One can
consider Poincaré domains (so that the Poincaré inequality ∥u∥H ≤ 1

λ∥∇u∥H holds
true, see [30]) also and the global solvability results obtained for the system (2.12)
remains the same.

4. Inviscid Simplified Bardina Model with
Multiplicative Gaussian Noise

The stochastic inviscid simplified Bardina model perturbed by multiplicative
Gaussian noise in (0, T ) (after taking the Helmholtz-Hodge orthogonal projection
PH) can be written in the Itô stochastic differential equations as

dv(t) = −B(u(t))dt+Φ(u(t))dW(t),

v(t) = (I + αA)u(t) = u(t) + αAu(t),

u(0) = u0,v(0) = v0 = u0 + αAu0.

(4.1)

The above system is equivalent to{
du(t) = −(I + αA)−1B(u(t))dt+ (I + αA)−1Φ(u(t))dW(t),

u(0) = u0,
(4.2)

where u0 ∈ V. We need some additional assumptions on the noise co-efficient
to prove the existence and uniqueness of global pathwise strong solution to the
system (4.1).
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Let L2(H,H) be the space of all Hilbert-Schmidt operators from H to H (see
[9]). For an orthonormal basis {ej}∞j=1 in H, we know that

Tr((Φ(u))∗Φ(u)) =

∞∑
j=1

((Φ(u))∗Φ(u)ej , ej)H =

∞∑
j=1

(Φ(u)ej ,Φ(u)ej)H

=
∞∑
j=1

∥Φ(u)ej∥2H = ∥Φ(u)∥2L2(H,H). (4.3)

Also, since ∥(I + αA)−1/2u∥H ≤ 1
(1+αλ1)

∥u∥H, we have

Tr
(
((I + αA)−1/2Φ(u))∗(I + αA)−1/2Φ(u)

)
=

∞∑
j=1

(
(I + αA)−1/2Φ(u))ej , (I + αA)−1/2Φ(u)ej

)
H

=
∞∑
j=

∥∥∥(I + αA)−1/2Φ(u)ej

∥∥∥2
H
=

1

(1 + αλ1)

∞∑
j=

∥Φ(u)ej∥2H

=
1

(1 + αλ1)
∥Φ(u)∥2L2(H,H). (4.4)

Let us assume that the noise co-efficient Φ(·) satisfies the following hypothesis
of continuity, linear growth and Lipschitz condition.

Hypothesis 4.1. The noise co-efficient Φ(·) : H → L2(H,H) satisfies

(H.1) the function Φ ∈ C(V;L2(H,H)),
(H.2) (Growth Condition) There exists a positive constant K > 0 such that

∥Φ(u)∥2L2(H,H) ≤ K
(
1 + ∥u∥2V

)
,

for all u ∈ V.
(H.3) (Lipschitz Condition) There exists a positive constant L > 0 such that

∥Φ(u1)− Φ(u2)∥L2(H,H) ≤ L∥u1 − u2∥V,

for all u1,u2 ∈ V.

The existence and uniqueness of global pathwise strong solution for the sto-
chastic inviscid simplified Bardina model with multiplicative Gaussian noise can
be proved in a similar way as that of additive noise case. We explain here the ma-
jor differences, when we consider the system (4.1). We first consider the following
cut-off problem:{

dvn(t) = −Πn(∥un∥V)B(un(t))dt+Φ(un(t))dW(t),

un(0) = u0,vn(0) = v0 = u0 + αAu0.
(4.5)

The above system is equivalent to{
dun(t) = −Πn(∥un∥V)(I + αA)−1B(un(t))dt+ (I + αA)−1Φ(un(t))dW(t),

un(0) = u0.

(4.6)
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The Proposition given below is similar to Proposition 3.2 and we give a sketch of
the proof only.

Proposition 4.2. Let the F0-measurable initial data u0 ∈ L2(Ω;V) be given.
Under the Hypothesis 4.1, there exists a unique (Ft)t≥0-adapted strong solution
u(·) to the system (4.5) in L2(Ω; L∞([0, T ];V)) with continuous trajectories in
C([0, T ];V), P-a.s.

Proof. We define a map F(·) : X → X as

F(un(t)) := u0 +

∫ t

0

Πn(∥un(s)∥V)(I + αA)−1B(un(s))ds

+

∫ t

0

(I + αA)−1Φ(un(t))dW(s). (4.7)

In order to show that F(·) is a contraction on X, we need to establish estimates
similar to (3.8) and (3.9). An application of the the Burkholder-Divis-Gundy
inequality and Hypothesis 4.1 (H.2) yields

E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

Φ(un(t))W(t)

∥∥∥∥2
H

]
≤ E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

Φ(un(t))W(t)

∥∥∥∥2
H

]

≤ CE

[∫ T

0

∥Φ(un(t))∥2L2(H,H)dt

]

≤ CKE

[∫ T

0

(1 + ∥un(t)∥2V)dt

]

≤ CKT

{
1 + E

[
sup

t∈[0,T ]

∥un(t)∥2V

]}
< +∞,

for all un ∈ X and hence (3.8) holds true.
In order to establish (3.9), we need to estimate the following also. We have

E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

(Φ(u1
n(t))− Φ(u2

n(t)))dW(t)

∥∥∥∥2
V′

]

≤ 1

λ1
E

[
sup

t∈[0,T ]

∥∥∥∥∫ t

0

(Φ(u1
n(t))− Φ(u2

n(t)))dW(t)

∥∥∥∥2
H

]

≤ C

λ1
E

[∫ T

0

∥Φ(u1
n(t))− Φ(u2

n(t))∥2L2(H,H)dt

]

≤ CL2

λ1
E

[∫ T

0

∥u1
n(t)− u2

n(t)∥2Vdt

]
≤ CL2T

λ1
E

[
sup

t∈[0,T ]

∥u1
n(t)− u2

n(t)∥2V

]
, (4.8)

where we used the Burkholder-Divis-Gundy and Hölder inequalities, and Hypoth-
esis 4.1 (H.3). The rest of the arguments for unique local strong solution to the
system (4.5) follows similarly as in Step 2, Proposition 3.2.
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Using Burkholder-Divis-Gundy inequality, one can also establish that

E

[
sup

t∈[0,T∗]

(
1

2
∥un(t)∥2H + α∥un(t)∥2V

)]

≤
(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+ E

[∫ T∗

0

(
∥(I + αA)−1/2Φ(un(t))∥2L2(H,H) + 6∥Φ(un(t))∥2L2(H,H)

)
dt

]
. (4.9)

Let us use (4.4) and Hypothesis 4.1 (H.2) to obtain

E

[
sup

t∈[0,T ]

(
1

2
∥un(t)∥2H + α∥un(t)∥2V

)]

≤
(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+K

(
6 +

1

(1 + λ1α)

)
E

[∫ T

0

(
1 + ∥un(t)∥2V

)
dt

]
. (4.10)

An application of Gronwall’s inequality in (4.10) yields

E

[
sup

t∈[0,T ]

(
1

2
∥un(t)∥2H + α∥un(t)∥2V

)]

≤
{(

1

λ1
+ α

)
E
[
∥u0∥2V

]
+K

(
6 +

1

(1 + λ1α)

)
T

}
e

K
α

(
6+ 1

(1+λ1α)

)
T
. (4.11)

The estimate (4.11) ensures the existence of global strong solution to the system
(4.5) and the rest of the arguments can be completed as in Proposition 3.2. □

With the help of above Proposition, one can prove the following Theorem on
the existence and uniqueness of global pathwise strong solution to the system (4.1)
as in Theorem 3.3.

Theorem 4.3 (Global existence and uniqueness). Let the F0-measurable initial
data u0 ∈ L2(Ω;V) be given. Under the Hypothesis 4.1, there exists a unique
strong solution to the problem (4.1) with (Ft)t≥0-adapted, continuous trajectories
in C([0, T ];V), P-a.s., satisfying

u(t) = u0 +

∫ t

0

(I + αA)−1B(u(s))ds+

∫ t

0

(I + αA)−1Φ(u(s))dW(s), (4.12)

in V′, P-a.s., for all t ∈ [0, T ].
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