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Abstract. In the current literature we can find mainly two approaches to the
SDE regime switching modeling. The traditional one, the externally induced

regime switching diffusions is described by the switching being derived from
a separate continuous time Markov process, with a finite, or denumerable,
state space – indexing the regimes – the random times of the regime switches

being exactly the jump times of the finite valued Markov process. There is a
first alternative approach in which the regime switching occurs whenever the
trajectory enters in some prescribed region on the state space; the regions we
consider will be mainly open intervals defined by unknown thresholds for the

trajectories; thresholds that, in principle, should also be estimated. In this
approach the partitioning of the the state space is already defined in the drift
and volatility of the SDE. In a second alternative approach the switching occurs
in a random way but at some random times defined when the trajectories hit

some prescribed thresholds, that again, must be estimated. We may designate
these two alternative approaches as auto-induced regime switching diffusions
as there is no external noise source to force the switching occurrence. We prove
a generalization of an existence result of the existence of auto-induced regime

switching SDE solutions for irregular coefficients and a result that encompasses
some of the cases of both externally and auto-induced regime switching SDE
solutions.

The first author dedicates this work to his teacher Eric Langlart to whom he owes a first opportunity to answer a

non trivial problem in Probability theory and a consequent lifelong passion.

1. Introduction

It is a natural assumption, in modeling, that phenomena that are shown to
present oscillations – around some observable stable equilibrium – must be sub-
jected to different types of influences that match each other in such a way as to
originate the equilibrium. For unidimensional variables, for instance, the equilibria
we mention can take several forms, to wit: the observed values oscillate around a
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certain unknown value; the observed values are contained in some band of values
in the state space.

If the model we consider is given by a stochastic differential equation (SDE) of
Ito’s type a natural way to model different influences at work at a given observed
phenomena is to consider that there is some regime switching.

The following is a first fundamental idea: a regime switching process may be
defined by an increasing sequence of distinct random times at which the regime
switches occur. A natural way to imagine a regime switch – in a process solution
of an SDE – is to consider that, for a given trajectory of the process, at a certain
date – a random time – the drift and the volatility of the SDE change; the changes
can be either structural – the drift and volatility changing their functional form
– or merely parametric in nature, that is, the functional form remains but some
parameters changes as the regime switches.

A second fundamental idea is that the regimes may correspond to the partitioning
in several distinct regions of the state space of the SDE solution process. For
instance, when the process oscillates around some value there are essentially two
regions: the points above the value and the points below the value; when the
process is confined to some band of values in the state space there are essentially
three regions: above the upper level of the band, below the lower level of the band
and in between the upper and the lower levels of the band. Let us stress that due
to the behavior – on a level set – of a process with continuous trajectories – given
as a solution of some SDE – the points at the boundary of the regions mentioned
may require a special treatment. We will detail this question further on as there
are several ways of addressing this question.

Following these two fundamental ideas, in the current literature we can find
mainly two approaches to the SDE regime switching modeling. The traditional one
is roughly described by the idea that the switching is derived from a separate con-
tinuous time Markov process, with a finite, or denumerable, state space – indexing
the regimes – the random times of the regime switches being exactly the jump times
of the finite valued Markov process. We will designate this case by externally in-
duced regime switching diffusions. There is a first alternative approach in which the
regime switching occurs whenever the trajectory enters in some prescribed region
on the state space; the regions we consider will be mainly open intervals defined
by unknown thresholds for the trajectories; thresholds that, in principle, should
also be estimated. In this approach the partitioning of the state space is already
defined in the drift and volatility of the SDE. In a second alternative approach
the switching occurs in a random way but at some random times defined when the
trajectories hit some prescribed thresholds, that again, must be estimated. We may
designate these two alternative approaches as auto-induced regime switching diffu-
sions as there is no external noise source to force the switching occurrence. The
main subject of this paper is a synthesis of the the first approach and the second
alternative approach. Let us briefly describe the plan.

• In Section 2 we summarize the main features – and some of the most impor-
tant bibliographic references – of the externally induced regime switching
diffusions alternative approach of regime switching diffusions.

• In Section 3 we describe the auto-induced regime switching diffusions high-
lighting the main published results and references as well as the evolution
of the subject. We prove a generalization of an existence result of the
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existence of auto-induced regime switching SDE solutions for irregular co-
efficients and a result that encompasses some of the cases of both externally
and auto-induced regime switching SDE solutions.

• In Section 4 we present an analysis of some of the published articles that
either refer to our work or explicitly use the results in our publications.

2. Externally induced RSD

Let us briefly expose some fundamental concepts related to this approach. The
literature on the subject of externally induced regime switching diffusions is vast
and we may have a comprehensive view of the subject in the reference work [YZ10]
where there are 190 bibliographic items referred to. The contents of the book
is perfectly described by the following words in the preface, and we quote: This
book encompasses the study of hybrid switching diffusion processes and their ap-
plications. The word hybrid signifies the coexistence of continuous dynamics and
discrete events, which is one of the distinct features of the processes under con-
sideration. Much of the book is concerned with the interactions of the continuous
dynamics and the discrete events.

As far as we know, [MB85], [Mar91], [GAM93] and [GAM97], the first pub-
lished references to this approach, are related to control problems. In the reference
text [Mar90, p. 141] the author briefly states ...the interpretation of this diffusion
with markovian switching coefficients is a collection of piecewise defined Ito sto-
chastic differential equations which is a broad sense definition of regime switching
diffusions. A technical and most important aspect of the subject is the stability.
The work [KZY07] is an authoritative reference.

2.1. Externally induced RSD – a recent existence result. The more re-
cent works [Zha20] and [XYZ19] address the existence and uniqueness of strong
solutions and also the strong Feller property of solutions of externally induced
regime-switching processes whose coefficients may be singular, for instance, non
Lipschitz. In order to gave a flavor of the hypothesis and results of this approach
we may briefly describe the first theorem in the first work and comment on it. By
definition, an externally induced RSD is, according to [Zha20], a two component
stochastic process (Xt,Λt)t≥0, defined on a complete probability space (Ω,F ,P),
such that,

dXt = b(Xt,Λt, t)dt+ σ(Xt,Λt, t)dBt (2.1)

where (Bt)t≥0 is a Brownian motion with respect to some right continuous filtration
(Ft)t≥0, Λt is a continuous time Markov chain taking integer values – indexing the
regimes – independent of (Bt)t≥0, and so, verifying:

P [Λt+∆t = j | Λt = i ,Xs,Λs , s ≤ t] =

{
qij(Xt)∆t+ o(∆t) if i ̸= j

1 + qii(Xt)∆t+ o(∆t) if i = j
(2.2)

with, b, σ and qij measurable functions and the Q-matrix [qij ] is conservative, that
is:

i ̸= j , qij(x) ≥ 0 and
∑
j ̸=i

qij(x) = −qii(x) .

An example of a quite general existence result in this context is given by Theo-
rem 2.1. Essentially, this theorem says that if there are unique strong solutions
in a – possibly random – time interval for each of the regimes then there exist a
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strong solution obtained by glueing together solutions of the SDEs – corresponding
to different regimes – obtained between the consecutive jump times of the contin-
uous time Markov chain (Λt)t≥0. We observe, for further reference, that this idea
is close to the main idea in our work [EM14].

Theorem 2.1. Suppose that for each integer i ≥ 1 and for each t0 ≥ 0 and initial
value x0, there is an unique local strong solution for the SDE

Xi
t = x0 +

∫ t

0

b(Xi
s, i, t0 + s)ds+

∫ t

0

σ(Xi
s, i, t0 + s)dBs (2.3)

defined for all t ∈ [0, τ [ for a stopping time τ > 0. Then, if for each integer i, the
function

∑
j ̸=i qij(x) is locally bounded, there exist for each initial state k integer

and initial value x0 a process (Xt)t∈[0,τ [ that coincides – between two consecutive
jump times of Λt – almost surely, with a solution of some of the SDE given by
formula (2.3).

The proof of this theorem, for a multidimensional state space and for an infinite
valued continuous time Markov chain, relies essentially, as in [EM14], in using the
jump – stopping – times of the Markov chain to define solutions of SDE, starting
anew at each stopping time and then glueing these solutions as a well defined
process.

We stress that there are two independent noise sources in a model built upon a
process like (Xt,Λt)t≥0; the one associated with the process (Bt)t≥0 and the one
associated with the process (Λt)t≥0. As a consequence it not possible, in general, to
partition the state space of (Xt)t≥0 – the SDE part of the two component process
– in disjoint regions with each region corresponding to a given regime. This is a
major difference with the first alternative formulation of auto-induced RSD we will
present in Section 3, a difference that may matter for the applications of regime
switching diffusions to stock prices modeling.

3. Auto-induced RSD

The approach to which we contributed the most to the subject of switching
diffusions is described now. For us, the main motivation for considering auto-
induced RSD – instead of externally induced RSD – is related to the efficient market
hypothesis stating that asset prices reflect all available information of the market.
In fact, assuming this hypothesis and in the case we may observe a regime switch
in the stock price there should be no external shock causing this regime switch. As
so, the uncertainty in the regime switch should just result from the implicit noise
source in the stochastic market model. There is another possible restrictive natural
assumption which is to consider that whenever the trajectories of the process occupy
some prescribed region in the state space of the process, these trajectories may be
modeled by a correspondent uniquely defined regime; this leads to partition the
state space in intervals and to the definition the regions for the different regimes as
the topological interiors of these intervals. As previously stated when the partition
has two regions the model may be parametrized by, essentially, one threshold and
whenever the partition has three regions, we may consider, essentially, two threshold
parameters.

The analysis of these kind of models was started, as far as we know, in the
PhD thesis [Mot07] of Professor Pedro P. Mota developed around a problem posed
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by his thesis co-director Professor Mathieu Kessler from the University of Carta-
gena in Spain. The almost immediate next step was to try an application of the
auto-induced RSD to the stock market, first in a condensed form for the geometric
Ornstein-Uhlenbeck functional form model [Mot13] and then with full development
for the geometric Brownian model [ME14] which, after completion, was published
only in 2014 after several years development. In the mean time, in the publica-
tion [NLPC09] – done in collaboration with a MSc student Nelson Rianço – we
considered a first approach to a model with a coupled system of SDE – one for
prices and another for liquidities – in the stock market, thus having a two dimen-
sional state space and with a large set of varied possible combinations of regimes.
The general existence result for auto-induced RSD – published in [EM14] – was
obtained as an answer to one of the referee’s questions to one of the first versions
of [ME14]; in this work, having in mind an application to stock market modeling,
we also showed that if the SDE models – for each one of the regimes – are ar-
bitrage free and complete then the RSD model would also be arbitrage free and
complete. Finally, in [ME16] a thorough statistical study was performed investi-
gating the usual geometric Brownian motion (gBm) against the auto-induced RSD
having as regimes gBm processes with different parameters; the general conclusion
being that under the usual statistical criteria there is a clear advantage in using
the gBm auto-induced RSD.

3.1. Auto-induced RSD – an existence result. In this section we formulate
an existence result which is a generalization of the result in [EM14] which was
proved by resorting to classical existence and unicity of strong solutions for SDE as
in [LS01, p. 134] or [Øksendal03, p. 68]. This new formulation will be in terms of
natural increasing sequences of stopping times that can be seen as associated with
the regime switches.

For completeness we briefly expose some necessary essential results for existence
and uniqueness of SDE, following the masterful expositions of [LS01, pp. 132]
and [Kal02, pp. 412–426].

Let (Ω,F ,P) be a complete probability space with F = (Ft)t≥0 a right-conti-
nuous complete filtration on it. Let B([0, T ]) be the Borel σ-algebra on [0, T ]).

Definition 3.1 (Progressively measurable processes). A process (Xt)t≥0 is pro-
gressively measurable – with respect to F – if for every T > 0 the process (Xt)t≤T

is such that for every t ∈ [0, T ] we have that Xt : Ω × [0, T ] 7→ R is measurable
with respect to Ft × B([0, t]).

We observe that as sections of functions defined on a product measure space are
measurable, a progressive measurable process is adapted to the filtration F. Now,
consider a SDE given by:{

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dBt , t ∈ [0, T ] ,

X0 = Z ,
(3.1)

with (Bt)t∈[0,T ] a Brownian motion with respect to some filtration F = (Ft)t∈[0,T ]

such that, almost surely, for all t > 0∫ t

0

|µ(u,Xu, θ)|+ |σ(u,Xu, θ)|2 du < +∞ , (3.2)
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MANUEL L. ESQUÍVEL, NADEZHDA P. KRASII, AND PEDRO P. MOTA

in order for the Lebesgue and Ito’s integrals in Formula (3.1) to exist, and such
that the integrands in Formula (3.1) are progressively measurable.

Definition 3.2 (Strong solutions). Let us suppose to be given the probability space
(Ω,F ,P), the filtration F, (Bt)t∈[0,T ] a Brownian motion with respect F and Z an
F0 measurable random variable. A strong solution – for a SDE such the one
in Formulas (3.1) – specified by its coefficients µ and σ, is a F-adapted stochastic
process satisfying Formula (3.3), which is equivalent to Formula (3.1),

Xt = Z +

∫ t

0

µ(u,Xu, θ)du+

∫ t

0

σ(u,Xu, θ)dBu , t ∈ [0, T ] , (3.3)

in particular, such that X0 = Z.

In case of strong solutions the probability space, the filtration and the Brownian
motion are prescribed. If F is the natural filtration associated with the Brownian
motion then, as the solution is F-adapted, we have that:

σ (Xs : s ≤ t) ⊆ σ (Bs : s ≤ t) =: Ft , t ≥ 0 .

We may say that there is strong existence – for a SDE specified by its coefficients
µ and σ – if given some random variable Z then for every prescribed probability
space, filtration and Brownian motion there exists a strong solution according to
Definition 3.2.

Definition 3.3 (Weak solutions). Let us suppose to be given a probability law
L and (progressive) functions µ and σ such that, for every x ∈ R, Formula (3.2)
is verified. A process (Xt)t≥0 is a weak solution, for a SDE specified by its
coefficients µ and σ, if there exists a probability space (Ω,F ,P) a filtration F
a (Bt)t∈[0,T ] a Brownian motion with respect F such that (Xt)t≥0 is F adapted,
condition given by Formula (3.2) is verified, equation given by Formula (3.1) – or
equivalently by Formula (3.3)– is verified and the probability law of X0 is L.

In the case of weak solutions, if F is the natural filtration associated with (Xt)t≥0

then as (Bt)t∈[0,T ] a Brownian motion with respect F we have that:

σ (Bs : s ≤ t) ⊆ σ (Xs : s ≤ t) =: Ft , t ≥ 0 .

For some prescribed law L, we may say that there is weak existence – for a SDE
specified by its coefficients µ and σ – if there exists a weak solution according to
Definition 3.3.

There are also associated notions of uniqueness that are essential for the devel-
opments ahead.

Definition 3.4 (Uniqueness in Law). There is uniqueness in law if the processes
(Xt)t≥0 and (Yt)t≥0 being weak solutions of an SDE – specified by its coefficients
µ and σ – for a given initial law L we have that both processes have the same
distribution (that is have the same finite dimension probability laws).

Definition 3.5 (Pathwise uniqueness). Given an initial law L, we have pathwise
uniqueness for solutions of an SDE – specified by its coefficients µ and σ – if given
two processes (Xt)t≥0 and (Yt)t≥0 defined on a common filtered probability space
(Ω,F ,P) being solutions of the SDE in formula (3.1) with a common Brownian
process such that X0 = Y0 almost surely with law L, we have that the processes
are indistinguishable that is: P [Xt = Yt : ∀t ≥ 0] = 1.
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Example 3.6 (Tanaka equation). (see [KS91, pp. 301–302].) The equation given
by:

dXt = sign (Xt)dBt , X0 ≡ 0 ,

has no strong solution. In fact the volatility is not Lipschitz and so the Ito’s
existence and unicity theorem does not apply. Nevertheless, it can be shown that
it admits a weak solution, uniqueness in law holds, but pathwise uniqueness cannot
hold for this equation.

It is well known that if the processes are modifications of one another – that
is if for every t ≥ 0 we have P [Xt = Yt] = 1 – and if the trajectories are right-
continuous, then the processes are indistinguishable (see [KS91, p. 2]).

It is also well known that pathwise uniqueness implies uniqueness in law (Propo-
sition 1 in [YW71, p. 158] or Proposition 3.20 in [KS91, p. 309]). Furthermore,
there is a remarkable result connecting strong existence and pathwise uniqueness
due to Yamada and Watanabe [YW71] that may also be read with a thorough
treatment in [Kal02, p. 424].

Theorem 3.7 (Strong solutions and pathwise uniqueness). Let an SDE – specified
by its coefficients µ and σ – have weak solutions and pathwise uniqueness for
a given initial law L. Then strong existence and uniqueness in law hold for
such solutions.

We now follow the indication given in [Pig19] pointing to results presented
in [LG84] in which there is an important result on the existence and uniqueness
of strong solutions of SDE with possibly non regular coefficients; regular, in this
context means at least Lipschitz with sub-linear growth as in the classical existence
and unicity of Ito. Theorem 3.7 is essential to establish Theorem 3.8. For that, as
in [LG83], we consider the following two hypothesis.

A There exists ρ : [0,+∞[7→ [0,+∞[, increasing and bounded, possibly
dependent of each θ ∈ Θ, such that:

lim
ϵ→0

∫
ϵ

du

ρ(u)
= +∞ ,

and
∀t, x, y, θ (σ(t, x, θ)− σ(t, y, θ))

2 ≤ ρ(|x− y|) .
B There exists a increasing and bounded function f , possibly dependent

of each θ ∈ Θ, such that:

∀t, x, y, θ (σ(t, x, θ)− σ(t, y, θ))
2 ≤ |f(x)− f(y)|

and
∃ϵ > 0 ∀t, x, y, θ σ(t, x, θ) > ϵ .

The next result, Theorem 3.8, is a powerful tool for dealing with SDE with irregular
coefficients; for this purpose there are alternatives. A very thorough presentation
but with almost no proofs – by S. V. Anulova and A. Yu. Veretnnikov – of the main
results on solutions of SDE with irregular coefficients is in collective book [PS98,
pp- 39–75].

Theorem 3.8 (Strong solutions for irregular drifts and volatilities). Consider a
parameter set Θ = {θ1, θ2, . . . θm}with m regime parameters. Let µ(t, x, θ) and
σ(t, x, θ) be two real valued measurable functions defined on R × Θ such that,
either, for every θ ∈ Θ:
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(1) σ(t, x, θ) verifies hypothesis A and µ(t, x, θ) is Lipschitz.
(2) σ(t, x, θ) verifies A and there exists ϵ > 0 such that |σ(t, x, θ)| > ϵ
(3) σ(t, x, θ) verifies B.

Then for any random variable Z, θ ∈ Θ and t0 ∈ [0, T ] the following stochastic
differential equation{

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dBt , t ∈ [t0, T ] ,

Xt0 = Z ,
(3.4)

has an unique strong solution on any filtered probability (Ω,F ,P,F) space, with
F = (Ft)t≥0, carrying a Brownian motion.

The proof, in [LG84, pp. 55–56] (see also [LG83]) – following [YW71], [Nak72]
and [OS75] – is firstly based on a clever use of local times to prove pathwise unique-
ness results, implying weak existence results and then by using the Theorem 3.7 –
first published in [YW71] – ensuring that there exists an unique – in law – strong
solution with a given random variable as initial value.

Let us observe that, according to [LP19b], this result covers the case – of the
partition of the state space in two regimes – where we have, for γ+ > 0 and γ− > 0:

µ(t, x, β) = β+1I{x≥0} + β−1I{x<0} and σ(t, x, γ) = γ+1I{x≥0} + γ−1I{x<0} ,

and so, also, the case in which the state space of the diffusion is partitioned in
two intervals, each one corresponding to some regime. In fact, supposing that
γ+ > γ− > 0, for instance, and as, by a quick examination, we have always,

(σ(t, x, γ)− σ(t, y, γ))
2 ≤ |γ+ − γ−|2 ≤ γ2

+ + γ2
− ,

by considering, the increasing bounded function:

f(z) :=
(
γ2
+ + γ2

−
)
1I{z≥0} +

(
γ2
− − γ2

+

)
1I{z<0} ,

and observing that:

|f(x)− f(y)| =


∣∣γ2

+ + γ2
− −

(
γ2
− − γ2

+

)∣∣ = 2γ2
+ x ≥ 0 , y < 0∣∣γ2

− − γ2
+ −

(
γ2
+ + γ2

−
)∣∣ = 2γ2

+ x < 0 , y ≥ 0

0 x ≥ 0 , y ≥ 0 or x < 0 , y < 0 ,

we have that, whenever x ≥ 0, y ≥ 0 or x < 0, y < 0,

(σ(t, x, γ)− σ(t, y, γ))
2
= 0 = |f(x)− f(y)| ,

and whenever, x ≥ 0, y < 0 or x < 0, y ≥ 0,

(σ(t, x, γ)− σ(t, y, γ))
2 ≤ γ2

+ + γ2
− ≤ 2γ2

+ = |f(x)− f(y)| ,

and, as σ(t, x, γ) ≥ min (γ+, γ−) = γ− > 0, we have that the third condition of
Theorem 3.8 is verified.

Remark 3.9 (Partition of the state space in three regimes). We suppose that, to-
gether with a similar expression for the drift, we have:

σ(t, x, γ) = γ−1I{x≤0} + γ01I{0<x<1} + γ+1I{x≥1} ,

that, for instance, γ− < γ+ < γ0 and we define the increasing bounded function f
by:

f(z) :=
(
−γ2

− − γ2
+ − γ2

0

)
1I{z≤0} +

(
−γ2

+ + 2γ2
0

)
1I{0<z<1} + 3γ2

01I{z≥1}.
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By observing that,

|f(x)− f(y)| =

=



∣∣−γ2
− − γ2

+ − γ2
0 −

(
−γ2

+ + 2γ2
0

)∣∣ = γ2
− + 3γ2

0 x ≤ 0 , 0 < y < 1∣∣−γ2
− − γ2

+ − γ2
0 − 3γ2

0

∣∣ = γ2
− + γ2

+ + 4γ2
0 x ≤ 0 , y ≥ 1∣∣−γ2

+ + 2γ2
0 −

(
−γ2

− − γ2
+ − γ2

0

)∣∣ = 3γ2
0 + γ2

− 0 < x < 1 , y ≤ 0∣∣−γ2
+ + 2γ2

0 − 3γ2
0

∣∣ = γ2
0 + γ2

+ 0 < x < 1 , y ≥ 1∣∣3γ2
0 −

(
−γ2

− − γ2
+ − γ2

0

)∣∣ = 4γ2
0 + γ2

+ + γ2
− x ≥ 1 , y < 0∣∣3γ2

0 −
(
−γ2

+ + 2γ2
0

)∣∣ = γ2
0 + γ2

+ x ≥ 1 , 0 < y < 1

0 all other cases ,

and that, by a quick inspection,

(σ(t, x, γ)− σ(t, y, γ))
2 ≤ max

(
|γ− − γ0|2 ; |γ− − γ+|2 , |γ0 − γ+|2

)
≤

≤ max
(
γ2
− + γ2

0 ; γ
2
− + γ2

+; γ
2
0 + γ2

+

)
≤

≤ γ2
0 + γ2

+ ,

as we have that (σ(t, x, γ)− σ(t, y, γ))
2
= 0, in the cases where |f(x)− f(y)| = 0,

we then have that, for all possible combinations of cases,

(σ(t, x, γ)− σ(t, y, γ))
2 ≤ |f(x)− f(y)| .

Finally, as σ(t, x, γ) ≥ min (γ0, γ+, γ−) = γ− > 0, we have, again, that the third
condition of Theorem 3.8 is also verified and so we may consider solved the existence
of regime switching SDE solutions that correspond to the partition of the state space
in three different regions, having in each region a different regime.

In order to describe an alternative model for a two regime SDE – corresponding
to the partition of the state space – we now address the problem of building some
process by glueing the solutions of two different types of SDE – corresponding to two
alternating regimes – in time intervals of random length defined by an increasing
sequence of stopping times. We observe that the subject of building a process from
a collection of random variables indexed by a family of stopping times has roots in
the early eighties of the twentieth century (see for instance [DL81] and [DL82]).

For our purpose we formulate a third hypothesis.

C Let 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · · be an increasing sequence
of F-stopping times, denoted by T , such that: we have, almost surely,
limn→+∞ τn = +∞ and, for any T ∈ R+ and almost all ω ∈ Ω:

# {k ≥ 1 : τk(ω) ≤ T} < +∞ . (3.5)

Now for any T ∈ R+ define n(T ) : Ω 7→ N such that, almost surely τn(T )(ω)(ω) < T
and for all k ≥ n(T )(ω) + 1 we have that τk(ω) ≥ T .

Theorem 3.10 (Existence of RS SDE). Let (Ω,F ,P,F) be a filtered complete
probability space, with F = (Ft)t≥0, carrying a Brownian motion (Bt)t≥0. Con-
sider a parameter set Θ = {θ1, θ2} with two regime parameters, some fixed T > 0
and µ(t, x, θ) and σ(t, x, θ) two real valued measurable functions defined on R×Θ
satisfying at least one of the conditions of Theorem 3.8. Define, for n ≥ 0,

n̂ :=
1− (−1)n

2
+ 1 .
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Then, for any increasing sequence of F stopping times (τn)n≥0 satisfying hypothesis
C, and taking alternatively the two values of Θ, and for any T > 0, the stochastic
differential equation defined with Xθ

0 = x0 for t ∈ [0, T ], by

Xθ
t = x0 +

∫ t

0

µ
(
u,Xθ

u, θ
)
(u)du+

∫ t

0

σ
(
t,Xθ

u, θ
)
dBu , (3.6)

has an unique – in law – strong solution which is a regime switching process
(Xθ

t )t∈[0,T ] given by:

Xθ
t =

n(T )−1∑
n=0

Xθn̂
n,t1I[τn,τn+1[(t) +

[
Xθn̂

n,t1I[τn,T [(t)
]
n=n(T )

, (3.7)

with the excursion process (Xθn̂
n,t)t∈[τn,τn+1[ given by the unique – in law – strong

solution of the stochastic differential equation in Formula (3.8), that exists by The-
orem 3.8,{

dXθn̂
n,t = µ(t,Xθn̂

n,t, θn̂)dt+ σ(t,Xθn̂
n,t, θn̂)dBt , τn ≤ t < τn+1 ,

Xθn̂
n,0 = X

θ
n̂−1

n,τn and X
θ
n̂−1

n,τn |n=0= x0 ,
(3.8)

SDE that may be interpreted, for instance, by Formula 3.9.

Proof. Let the initial condition x0 ∈ R be such that the process (X
θ0̂
0,t)t∈[τ0,T ] is the

strong solution of the SDE in Formula (3.4) given by:{
dXt = µ(t,Xt, θ1)dt+ σ(t,Xt, θ1)dBt , t ∈ [0, T ] ,

X0 = x0 ,

thus considering that – as (X
θ0̂
0,t)t∈[τ0,T ] ≡ (Xθ1

0,t)t∈[0,T ] – we start in the first regime.
Supposing that, almost surely, τ1 ≤ T , solve the SDE:{

dXt = µ(t+ τ1, Xt, θ2)dt+ σ(t+ τ1, Xt, θ2)dBt , t ∈ [0, T ] ,

X0 = Xθ1
τ1 ,

to obtain the process (X
θ1̂
1,t)t∈[τ1,T ] ≡ (Xθ2

1,t)t∈[τ1,T ], a process in the second regime.
Supposing, again that, almost surely, τ2 ≤ T solve the SDE:{

dXt = µ(t+ τ2, Xt, θ1)dt+ σ(t+ τ2, Xt, θ1)dBt , t ∈ [0, T ] ,

X0 = Xθ2
τ2 ,

to obtain the process (X
θ2̂
2,t)t∈[τ2,T ] ≡ (Xθ1

2,t)t∈[τ2,T ] , a process, again, in the first
regime. By induction, as long as, almost surely, τn ≤ T we have that there exists
a process (Xθn̂

n,t)t∈[τn,T ] which is a solution of:{
dXt = µ(t+ τn, Xt, θn̂)dt+ σ(t+ τn, Xt, θn̂)dBt , t ∈ [0, T ] ,

X0 = X
θ
n̂−1

τn .
(3.9)

We may now glue together the processes (Xθn̂
n,t)t∈[τn,τn+1[, for n ≥ 0 to define the

regime switching process (Xθ
t )t∈[0,T ] by:

Xθ
t =

+∞∑
n=0

Xθn̂
n,t1I[τn,τn+1[(t) :=

n(T )−1∑
n=0

Xθn̂
n,t1I[τn,τn+1[(t) +

[
Xθn̂

n,t1I[τn,T [(t)
]
n=n(T )

,
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that can interpreted to satisfy the SDE 3.10 given, for t ∈ [0, T ], by:

Xθ
t = x0 +

∫ t

0

(
+∞∑
n=0

µ
(
t,Xθn̂

u , θn̂
)
1I[τn,τn+1[(u)

)
du

+

∫ t

0

(
+∞∑
n=0

σ
(
t,Xθn̂

u , θn̂
)
1I[τn,τn+1[(u)

)
dBu ,

(3.10)

which, in turn, may be taken as the full interpretation of formula 3.6. �

We now present some comments on this result.

• Theorem 2.1 in [ME14, p. 763] is a particular case of Theorem 3.10 in
the case where the coefficients are Lipschitz and have sub-linear growth
ensuring, by the classical Ito’s theorem, existence and unicity of strong
solutions. In this case the solution has also the strong Markov property
(see Theorem 5.4 in [Kle99, p. 127]); extensions of this result for the case
of weak solutions can be stated, by means of the solution of a martingale
problem in the sense of Stroock-Varadhan (see [Kle99, p. 130] and for the
case where the – multidimensional – volatility is continuous and the drift
is measurable, Theorem 10.4 in [Pin95, p. 34]).

• For stock price modeling Theorem 3.10 may be applied to a partition of the
state space in three disjoint intervals with two very close thresholds – closer
than the least significative difference between two stock price values – in
such a way that we never observe price values between the two thresholds.
Then to each of the remaining intervals corresponds a distinct parameter
value in Θ = {θ1, θ2}. There is a most simple transition rule for the values
taken by the successive terms of the sequence of stopping times, namely:

θ1 → θ2 → θ1 ,

that allows an immediate application of Theorem 3.10 considering the
strictly increasing sequence of stopping times defined by the crossing of the
lower threshold – when the trajectory starts in the upper region – or the
crossing of the upper threshold when the trajectory comes from the lower
region. In [ME14, p. 763], for the diffusion case, we also show that the
increasing sequence of stopping times is a finite sequence in every bounded
interval and so, by construction, it satisfies hypothesis C as in page 9.

• A simple generalization of Theorem 3.10 may also be applied to a parameter
set with a finite number of elements with a similar proof as long as we
prescribe a transition rule, for the stopping times – over the parameter set.
For instance for Θ = {θ1, θ2, θ3} we could have the following transition
rules:

θ1 → θ2 → θ3 → θ1 .

corresponding in an obvious way to a stochastic transition matrix,0 1 0
0 0 1
1 0 0


or, the following transition rule,

θ1 → θ3 → θ2 → θ1
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with correspondent stochastic transition matrix,0 0 1
1 0 0
0 1 0

 .

If this is the case, it does not seem possible to partition the phase space
into three regions, each region corresponding to a different parameter value;
in fact, when the trajectory is getting out of the central region there will
be two possibilities: the upper region and the lower region and so there
is no transition rule of the type just described encompassing this kind of
evolution.

• In order to be able to glue the excursions in between stopping times we need
the existence of strong solutions. There are several results on the existence
of strong solutions under hypothesis different from the Lipschitz continuity
and sub-linear growth of the coefficients, for instance the beautiful result
in [Sko65, p. 129]; we opted for Theorem 3.8 as it allows us to consider
under a general framework, our result in [ME14], the results of Lejay and
Pigato – [Pig19], [LP19a] and [LP19b] – and also as we will see next, a
result on externally induced RSD thus providing an unified approach to
regime switching diffusions.

• With full rigor, Theorem 3.8 should be formulated up to T , a stochastic ex-
plosion time of the solution. When considering one dimensional processes of
diffusion type, that is with the SDE being associated with functions µ(x, θ)
and σ(x, θ) – that is, not depending on time – the condition µ(x, θ) bounded
prevents the explosion of any solution of the SDE (see, for instance [KS91,
p. 341] for a very thorough discussion of the subject) and we have (see, for
instance [IW89, p. 173]) with the notations of Theorem 3.8,

T = lim
n→+∞

inf{t ≥ 0 : Xt ≥ n} .

This is the situation most currently found in applications.

3.2. A companion result on (generally) induced RS SDE. Let us state in
broad terms our aim. We want to formulate an existence theorem for SDE with
possible irregular coefficients and with a determined random variable as an initial
condition; the goal is for this theorem to cover both the externally induced and the
auto induced cases, if not for all at least in some interesting instances. For that
purpose we will collect some fundamental results. We start with weak existence
result obtained via the solution of a martingale problem in the sense of Stroock-
Varadhan (see Theorem 6..16 in [SV79, p. 143]) in the formulation of Kallenberg
(see [Kal02, p. 418]). For completeness we state an important definition.

Definition 3.11 ((Local) Martingale problem). Consider the semi-elliptic differen-
tial operator defined for ϕ ∈ C∞

K – the space of indefinitely differentiable functions
with compact support – by:

A(ϕ) =
d∑

i=1

µi
∂

∂xi
ϕ+

d∑
i,j=1

aij
∂2

∂xi∂xj
ϕ ,

with the coefficients µi and aij being locally bounded measurable functions on Rd.
A process (Xt)t≥0 with law given by the probability measure QL over the canonical
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space of continuous functions C(R+,R) solves the (local) martingale problem for A
with initial law L – or starting at X0 a random variable with law L – if the process
defined by:

Mt = ϕ(Xt)− ϕ(X0)−
∫ t

0

A(ϕ(Xs))ds ,

is a (local) martingale, for every ϕ ∈ C∞
K . If the coefficients are bounded we have a

bona fides martingale problem.

The following result shows the important connection between the existence of a
week solution for some SDE and the existence of a solution for a (local) martingale
problem with an operator naturally associated to the coefficients of the SDE.

Theorem 3.12 (Stroock-Varadhan). Consider the canonical space of continuous
functions C(R+,R) some Wiener process on it and its correspondent natural filtra-
tion. Let µ, σ be progressively measurable functions (in the sense of Definition 3.1).
Let Q be some probability measure over C(R+,R). Then the SDE with drift µ and
volatility σ has a weak solution with distribution Q if and only if Q solves the (local)
martingale problem for σ · σt and µ.

With extra regularity on the coefficients of the SDE we have an weak existence
result (see [Kal02, p. 419]).

Theorem 3.13 (Skorokhod). Within the same context of Theorem 3.12, suppose
additionally that for any fixed t ≥ 0 the functions µ(t, ·) and σ(t, ·) are continuous
in C(R+,R). Then for any initial distribution L the martingale problem for µ and
σ has a solution QL.

The following result of Stroock-Varadhan show how to extend a solution for the
martingale problem with a real initial value to a solution with any initial distribu-
tion.

Theorem 3.14 (Stroock-Varadhan). Within the same context of Theorem 3.12,
suppose that the (local) martingale problem for µ and σ has an unique solution Qx

for any initial law L ≡ δx. Then for any initial law L the (local) martingale problem
for µ and σ has an unique solution QL.

The Markov property is one of the main properties of a stochastic process
(Xt)t≥0. Essentially, as it is wonderfully written in [Øksendal03, p. 115], ...the
future behaviour of the process given what has happened up to time t is the same
as the behaviour obtained when starting the process at Xt. In [Kha12, p. 60–63]
we find the following rigorous and yet very simple formulation of the concept of
Markov process.

Definition 3.15 (Markov property). A process (Xt)t≥0 with state space in Rd is
a Markov process if for all B ∈ B(Rd), the Borel σ-algebra and 0 ≤ s < t, we
have:

P
[
Xt ∈ B | FX

s

]
= P [Xt ∈ B | Xs] ,

with FX
s := σ (Xu : u ≤ s) the natural σ-algebra of the process (Xt)t≥0.

The strong Markov property is the extension of the Markov property for random
times (see for a reasonable simple formulation [Øksendal03, p. 117]).
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Definition 3.16 (Strong Markov property). A process (Xt)t≥0 with state space in
Rd is a strong Markov process if for all bounded Borel measurable functions f
on Rd, for all B ∈ B(Rd), the Borel σ-algebra, and for any stopping time τ with
respect to FX

s := σ (Xu : u ≤ s) – the natural σ-algebra of the process (Xt)t≥0 –
and 0 ≤ s, we have:

P [f(Xτ + s) ∈ B | Fτ ] = P [f(Xs) ∈ B | Xτ ] ,

with Fτ := {B ∈ FX
∞ : B ∩ {τ ≤ t} ∈ FX

t } and FX
∞ :=

∨
s≥0 FX

s the smaller

σ-algebra containing all the FX
s .

Finally the following result (see[Kal02, p. 421] and [SV79, p. 146]) ensures the
strong Markov property for the solution process distribution.

Theorem 3.17 (Stroock-Varadhan). Within the same context of Theorem 3.12,
suppose that the (local) martingale problem for measurable functions µ and σ has
an unique solution Qx for any initial law L ≡ δx. Then the family Qx satisfies the
strong Markov property.

We may now state the fundamental result which was initially formulated for
homogeneous SDE but is also valid in the non homogeneous case (see [RW00, p.
266]). In [PS98, p. 40] (and in [KS91, p. 291] with essentially the classical proof of
Yamada-Watanabe result) there is a formulation of Theorem 1 in [YW71, p. 164]
for non homogeneous drift and volatilities that – for dimension one – suits better
our purposes of having processes with continuous trajectories.

Theorem 3.18 (Yamada-Watanabe 1971). Suppose that µ and σ are progressively
measurable, bounded and satisfy the following hypothesis.

D There exists ρ1 : [0,+∞[7→ [0,+∞[, an increasing, continuous function
possibly dependent of each θ ∈ Θ, such that ρ1(0) = 0 such that:

lim
ϵ→0

∫
ϵ

du

ρ1(u)
= +∞ ,

and
∀t, x, y, θ (σ(t, x, θ)− σ(t, y, θ))

2 ≤ ρ1(|x− y|) .
E There exists ρ2 : [0,+∞[7→ [0,+∞[, an increasing, concave function pos-

sibly dependent of each θ ∈ Θ, such that ρ2(0) = 0 such that:

lim
ϵ→0

∫
ϵ

du

ρ2(u)
= +∞ ,

and
∀t, x, y, θ (µ(t, x, θ)− µ(t, y, θ)) ≤ ρ2(|x− y|) .

Then for any random variable Z, and θ ∈ Θ and t0 ∈ [0, T ] the following stochastic
differential equation{

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dBt , t ∈ [t0, T ] ,

Xt0 = Z ,
(3.11)

pathwise uniqueness holds. Moreover, by the continuity of both µ and σ apply-
ing Skorokhod’s theorem 3.13 we have that there is a weak solution. Finally, by
Theorem 3.7 there is strong existence and uniqueness in law holds.

We observe next that boundedness of the coefficients imply the continuity of
trajectories.
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Corollary 3.19. Let (Xt)t≥0 be a strong solution of the SDE (3.11) given by
Theorem 3.18. Then (Xt)t≥0 has continuous trajectories.

Proof. We apply Kolmogorov criteria with Kµ and Kσ bounds of µ and σ.

E
[
|Xt −Xs|4

]
= E

[ ∣∣∣∣∫ t

s

µ(u,Xu, θ)du+

∫ t

s

σ(u,Xu, θ)dBu

∣∣∣∣4
]
≤

≤ 8

(
E

[(∫ t

s

|µ(u,Xu, θ)| du
)4
]
+E

[(∫ t

s

|σ(u,Xu, θ)| dBu

)4
])

≤

≤ 8
(
K4

µ |t− s|4 +K4
σE
[
(Bt −Bs)

4
])

≤

≤ 8max
(
K4

µ,K
4
σ

) (
|t− s|4 + d(d+ 2) |t− s|2

)
.

for the Brownian motion in dimension d, as (a + b)4 ≤ 22(a2 + b2)2 ≤ 8(a4 + b4),
by Jensen’s inequality and by the properties of the Brownian process. �

In order to cover the externally induced RSD, we first detail the structure of a
continuous time process that induces the regime switching. For that we will look for
general processes that can be written as jump processes driven by a strictly increas-
ing sequence of non accumulating stopping times. Consider a sequence of random
variables (Zn)n≥0 taking values in a finite parameter space Θ = {θ1, θ2, . . . , θm}
and an increasing sequence of F-stopping times 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · ·
verifying hypothesis C as in page 9. Let us define the continuous time process
(Yt)t≥0 by:

Yt =
+∞∑
n=0

Zn1I[τn,τn+1[(t) . (3.12)

It is well known – see [Res92, pp. 367–379] and [RSST99, pp. 317–320] – that if
(Zn)n≥0 is a Markov chain and the time intervals (τn+1 − τn)n≥0 are exponentially
distributed then (Yt)t≥0 can be taken to be a continuous time homogeneous Markov
chain. In case if (Zn)n≥0 is a Markov chain and the time intervals (τn+1 − τn)n≥0

have a distribution that can depend on the present state as well as on the one
visited next then (Yt)t≥0 can be taken to be a semi-Markov process (see [Ios80, pp.
261, 262] and [IT73, pp. 295–299], for brief references. In the case of semi-Markov
processes a nice result of Ronald Pyke (see [Pyk61, p. 1236] guarantees that when
the state space if finite the process is regular implying that almost all paths of such
a semi-Markov process are step-functions over [0,+∞[.

In another more general case (see [Ios80, pp. 262–266] and [IT73, pp. 195–244]),
adequate hypothesis on the distribution of the stopping times and on the sequence
(Zn)n≥0 implies that (Yt)t≥0 will be a non homogeneous Markov chain process in
continuous time, whose trajectories are step functions.

Theorem 3.20 (On the existence of (generally) induced RS SDE). Consider a
finite set Θ = {θ1, θ2, . . . , θm} as the parameters of the different regimes. Let the
functions µ(t, x, θ) and σ(t, x, θ) satisfy the hypothesis of theorem 3.18. Let (Yt)t≥0

be an F adapted continuous time process defined in Formula (3.12) and consider that
T the increasing sequence of F-stopping times 0 ≡ τ0 < τ1 < τ2 < · · · < τn < · · ·
verifies hypothesis C. There exists a process (Xt)t≥0 which is an unique in law
regime switching process associated with the parameter space Θ and the Markov
process (Yt)t≥0 with continuous trajectories.

40
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Proof. Now, consider some random variable X0 measurable with respect to F0 and
consider the SDE given by:{

dX1
t = µ(t,X1

t , Yt)dt+ σ(t,X1
t , Yt)dBt , t ∈ [0, τ1] ,

X1
t0 = X0 ,

(3.13)

where the functions µ(t, x, θ) and σ(t, x, θ) satisfy the hypothesis of theorem 3.18.
We observe that as in each trajectory of (Yt)t≥0 takes one only value θ ∈ Θ in
[0, τ1[ the strong solution (X1

t )t∈[0,τ1[ exists and is unique in law. Now, consider
again the SDE{

dX̃2
t = µ(t+ τ1, X̃

2
t , Yt+τ1)dt+ σ(t, X̃1

t , Yt)dBt , t ∈ [0, τ2 − τ1] ,

X̃2
0 = X1

τ1 .
(3.14)

Again, as before, the strong solution and unique in law solution (X̃2
t )t∈[0,τ2−τ1]

exists and we may define (X2
t )t∈[τ1,τ2[ ≡ (X̃2

t−τ1)t∈[τ1,τ2]. By induction, we may so
have a sequence ((Xn

t )t∈[τn−1,τn[)n≥1 of unique in law processes and so – using the
hypothesis of the sequence of stopping times stated in Formula (3.5), in page 9 –
we may define the process, for almost all ω ∈ Ω:

Xt =
+∞∑
n=1

Xn
t 1I[τn−1,τn[(t) ,

which is the unique in law process obtained by glueing together excursions cor-
responding to regimes prescribed by the initially given sequence of stopping times
and the continuous time Markov chain. As a consequence of Corollary 3.19 we have
the continuity of the glued trajectories. �

Remark 3.21 (The strong Markov property of the solutions). As a consequence of
the strong Markov property given by Theorem 3.17 and then by Theorem 3.14,
we have that, given the sequence of stopping times T , the excursions given by
((Xn

t )t∈[τn−1,τn[)n≥1 have independent laws and so are independent processes.

Remark 3.22. The idealized behavior of a typical trajectory of the regime switching
process obtained in Theorem 3.20 is as expected; the trajectory is governed by a
specific regime, until a change of regime occurs at a certain random time then,
again, during an interval of time of random duration the regime stays the same
until the next change dictated by the following random time in the sequence. Let
us stress that this behavior does not correspond to the partition of the state space
of the process in a finite union of intervals. This is due to the fact that the level
sets of the Brownian process are perfect sets, that is, closed sets in which all points
are accumulation points of the set (see [Str94, pp. 247–249] and [RY99, p. 109]).
Moreover, the level sets have null Lebesgue measure, have the cardinality of the
continuum and the complement is a countable union of disjoint intervals. The same
applies to any continuous local martingale as such process is, in law, a Brownian
process with the time changed by a continuous increasing process (see [BS15, p.
155]).

3.3. Auto-induced RSD: a two threshold example. A natural set of open
questions is to identify the auto-induced RSD threshold models that can be brought
under some of the hypothesis of Theorem 3.20 concerning the structure of process
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(Yt)t≥0. We know that if the Markov process is to be homogeneous then the dura-
tion times in each state must be exponentially distributed (see [IT73, p. 221]). In
general it will not be the case, even for a simple diffusion, like the Brownian process
itself. Nevertheless we know the distribution of hitting times of many interesting
processes, for instance, for the geometric Brownian motion and that can be put to
some use; we will present a more general result.

For illustration of our purpose we consider the case of a parameter space Θ =
{θ1, θ2} and some SDE solution, for θ ∈ Θ given by:{

dXθ
t = µ(t,Xθ

t , θ)dt+ σ(t,Xθ
t , θ)dBt , t ∈ [0, T ] ,

Xθ
0 = x0 ,

(3.15)

with the drift µ ∈ R and the volatility σ > 0 and such that the existence Theo-
rem 3.8 can be applied. We consider the case of two regimes corresponding to two
thresholds M1 < M2 in the state space with, for instance, θ1 being associated with
the lower threshold M1 and θ2 being associated with the upper threshold M2. If
the process is in the regime corresponding to θ1 then the regime switch occurs at
the hitting time of M2 and vice versa. For the initial condition x0 at t = 0 we
suppose that the process starts with the regime θ1 if |x0 −M1| ≤ |x0 −M2| and it
starts with the regime θ2 if |x0 −M1| > |x0 −M2|.

We suppose, for instance, that x0 = M1 and so the first non trivial stopping
time is τ1 = inf{t > 0 : Xθ1

t = M2}. Now, at the time τ1 a regime witch occurs and
we wave a second excursion, solution of:{

dXθ2
t = µ(t,Xθ2

t , θ2)dt+ σ(t,Xθ2
t , θ2)dBt , t ∈ [τ1, T ] ,

Xθ2
τ1 = Xθ1

τ1 ,

or in an equivalent way,{
dXθ2

t+τ1 = µ(t+ τ1, X
θ2
t , θ2)dt+ σ(t+ τ1, X

θ2
t , θ2)dBt+τ1 , t ∈ [0, T ] ,

Xθ2
τ1 = Xθ1

τ1 ,

with parameter θ2 until this excursion hits M1. The next random time for a regime
switch to occur is τ2 = inf{t > τ1 : Xθ2

t = M1}.
Let us consider T = {τ1, . . . , τn, . . . } the increasing sequence of hitting times

that we can define by induction in this way. In this case of two thresholds and for
a general SDE solution process such as the one given by Formula (3.15), in order
to apply Theorem 3.20, we have to prove that the successive hitting times of the
thresholds satisfy Hypothesis C given by Formula 3.1 (in page 9).

Remark 3.23. We observe that following the same reasoning exposed in [EM14, p.
763] we have that as the excursions process, given by Theorem 3.20, have continuous
trajectories by Corollary 3.19, the hitting thresholds stopping times are isolated.

Theorem 3.24. If σ is such that the Ito’s stochastic integral part in the SDE given
by Formula (3.15) is a martingale then T verifies Hypothesis C.

Remark 3.25 (On deterministic times to hit a threshold). The proof is based on
the following observation. Given a function f : R 7→ R, such that we can apply
the fundamental theorem of calculus, we have that:

t2 − t1 =
1

1
t2−t1

∫ t2
t1

f ′(t)dt
(f(t2)− f(t1))
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and so the time t2−t1 taken to go from f(t1) to f(t2) is proportional to f(t2)−f(t1),
the proportionality constant being the inverse of the average derivative of f between
the dates t1 and t2.

Proof. We always have, with t1 < t2 and Xt1 = M1 and Xt2 = M2, for a general
SDE:

M2 −M1 =

∫ t2

t1

µ(s,Xs)ds+

∫ t2

t1

σ(s,Xs)dBs

and so then, for instance, when the stochastic integral defines a martingale,

M2 −M1 =

∫ t2

t1

E [µ(s,Xs)] ds = (t2 − t1)
1

t2 − t1

∫ t2

t1

E [µ(s,Xs)] ds

and so,

t2 − t1 =
M2 −M1

1
t2−t1

∫ t2
t1

E [µ(s,Xs)] ds

and, furthermore if µ is continuous and bounded, say by K,

t2 − t1 =

∣∣∣∣∣ M2 −M1

1
t2−t1

∫ t2
t1

E [µ(s,Xs)] ds

∣∣∣∣∣ ≥ |M2 −M1|
1

t2−t1

∫ t2
t1

E [|µ(s,Xs)|] ds
≥

≥ |M2 −M1|
K

=: Λ .

Now, for random hitting times τ1 < τ2,

P
[
τ2 − τ1 ≥ Λ

∣∣τ2 = t2, τ1 = t1
]
=

= P

[∣∣∣∣∣ M2 −M1

1
τ2−τ1

∫ τ2
τ1

E [µ(s,Xs)] ds

∣∣∣∣∣ ≥ Λ
∣∣∣τ2 = t2, τ1 = t1

]
≥

= P

[∣∣∣∣∣ M2 −M1

1
t2−t1

∫ t2
t1

E [µ(s,Xs)] ds

∣∣∣∣∣ ≥ Λ

]
≥

= P

[
|M2 −M1|

1
t2−t1

∫ t2
t1

E [|µ(s,Xs)|] ds
≥ Λ

]
≥

≥ P [Λ ≥ Λ] = 1 .

and so, for random hitting times τ1 < τ2,

P [τ2 − τ1 ≥ Λ] = E
[
P
[
τ2 − τ1 ≥ Λ

∣∣τ2 = t2, τ1 = t1
]]

= 1 .

Now, for N ≥ 1 we have that:

{τN ≥ NΛ} ⊇ {τN − τN−1 ≥ Λ} ∩ · · · ∩ {τ1 − τ0 ≥ Λ} ,

and so, as the excursions are independent given T , we have that

P [τN ≥ NΛ] ≥ P

[
N−1∩
k=0

{τk+1 − τk ≥ Λ}

]
=

N−1∏
k=0

P [τk+1 − τk ≥ Λ] = 1 .

We can then conclude, as the hitting times sequence is increasing that

P

[
sup
N≥1

τN = +∞
]
= lim

N→+∞
P [τN ≥ NΛ] = 1

43



ON REGIME SWITCHING DIFFUSIONS

and so we have

P

[
sup
N≥1

τN < +∞
]
= 0

as claimed. �

4. Short analysis of related literature

We now proceed to a summary description of some publications that most relate
to the main theme of this work.

• [LP17] considers an auto-induced regime switching geometric Brownian mo-
tion model, with two regimes – two distinct values for the drift and for the
volatility – and one threshold dividing the state space of the diffusion in
two regions; the region above and including the threshold value and the
region strictly below the threshold. The existence theorem for this kind of
diffusion may be deduced from the results in [LG84] – as pointed out in
[Pig19] – and so, the author’s claim to consider this model as an alterna-
tive to the model in [EM14] is vindicated; the estimation procedures they
develop is based on occupation times estimators and local time estimators.
The statistical analysis with this model uses the same set of 21 stock prices
as in [EM14].

• [BW18] uses exactly the estimation procedure of [ME14] in an application
of a regime switching diffusion model driven by an external Markov chain.

• [HS15] refers both to regime switching threshold models and to hybrid
switching diffusion models in the context of atmospheric modeling estab-
lishing a connection between the two types of models.

• [Pig19] considers the same model for the volatility parameter as in [LP17]
and refers to [ME14] for – and we quote – the estimation of similar conti-
nuous-time models on empirical time series of prices.

• [ES19] develops a regime classification algorithm aiming at determining the
number of regimes in the time series. For that purpose it uses the Bayesian
Information Criterion (BIC) in the sense of [ME16]. They consider the the
switching among regimes depends uponthe crossing of the thresholds as in
[EM14], [ME14] and [BW18]. As in [ME14], in order to validate a given
regime they consider that this regime must contain at least 15% of the total
observations.

• [LP19a] performs a thorough comparison between the model in [ME14]
and [EM14] and the model in [LP17] and [Pig19] by considering the same
data and comparing the results of the parameters estimation, finding good
agreement. In the section 4.1 of this work there is a rigorous description
of the model in [ME14] and [EM14], they quote the estimation results
in this model to finally compare the estimations results between the two
approaches. This paper is the most adequate work to get a wide perspective
between the similarities and the differences between the models. These
two models are essentially different as it seems impossible to express the
model of [LP19a] as a glueing procedure of processes between two successive
terms of an increasing sequence of stopping times by reason of the level sets
structure of continuous local martingales.

• [LP19b] considers the same model and in [LP17] and studies maximum
likelihood estimators for the drift of the model complementing [LP18] where
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the estimators for the volatility were studied. The reference made to [ME14]
is, again, that the model considered in their work may be thought as an
alternative to the model proposed in our work.

Conclusion

We showed that the subject of regime switching diffusions – both in the case of
externally induced and the case of auto-induced in the case of two thresholds – may
be unified if we consider that there is a sequence of stopping times that commands
the regime switches. These stopping times may be either the jump times of a
continuous time Markov chain or hitting threshold times for diffusions.
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[ES19] Endres Sylvia and Stübinger Johannes: A flexible regime switching model with pairs
trading application to the s&p 500 high-frequency stock returns. Quantitative Finance, 19

(10) (2019) 1727–1740, .
[GAM93] Ghosh Mrinal K., Arapostathis Aristotle and Marcus Steven I.: Optimal control of

switching diffusions with application to flexible manufacturing systems. SIAM Journal on
Control and Optimization, 31 (5) (1993) 1183–1204.

[GAM97] Ghosh Mrinal K., Arapostathis Aristotle, and Marcus Steven I.: Ergodic control of
switching diffusions. SIAM Journal on Control and Optimization, 35 (6) (1997) 1952–1988.

[HS15] Hottovy Scott and Stechmann Samuel N.: Threshold models for rainfall and convec-

tion: Deterministic versus stochastic triggers. SIAM Journal on Applied Mathematics, 75
(2) (2015) 861–884.

[Ios80] Iosifescu Marius: Finite Markov processes and their applications. John Wiley & Sons, Ltd.,
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