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ABSTRACT 

In this article short-term interest rates are studied by methods of spectral analysis, regular and singular 
perturbation theories which are described by Vasicek model with multidimensional stochastic volatility that 
has l-fast variables, r-slowly variables, � � 1, � � 1, � ∈ �, � ∈ �. The approximate value of securities and 
their rate of return are calculated. Applying the theory of Sturm-Liouville, Fredholm’s alternative and analysis 
of singular and regular perturbations at different time scales have enabled us to obtain explicit formulas for 
the approximate value of securities and their yield on the basis of the development of their eigen functions 
and eigenvalues of self-adjoint operators using boundary value problems for singular and regular 
perturbations. The theorem of closeness estimates for bond prices approximation is proved. 

JEL Classifications: G11, G13, G32. 

Keywords: Vasicek model, spectral theory, singular perturbation theory, regular perturbation theory. 

1. INTRODUCTION 

Short-term interest rate dynamics models were considered in the paper by Vasicek (1977) for derivatives 
pricing. Significant contributions to the theory of rate of interest were made by Brennan et al. (1979), Hull 
et al. (1987), J. Cox et al. (1985), Ho et al. (1986), Merton (1973), namely: finding a credit spread of credit 
market instruments, calculating option prices for interest rates, determining the risk and derivatives’ rate 
of return of the stock market financial instruments. The models developed by these scholars have their 
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advantages and disadvantages, but each of them is used to increase the liquidity of financial markets. 
Applying more sophisticated models, despite their theoretical justification, leads to obtaining of complex 
multi-parameter functions of the yield curve, which results in significant errors in calculations. 

Using spectral analysis, Linetsky (2004) applied a spectral theory of self-adjoint operators to different 
models, and to the Vasicek model, in particular. Lorig (2014) considered the short-term interest rates 
described by the Vasicek model with stochastic volatility, depending on two factors, one of which is fast, 
and the other is slowly variable. In our paper, the spectral theory and the theory of singular and regular 
perturbations are applied to self-adjoint operators in Hilbert spaces that describe processes with 
multidimensional stochastic volatility having l-fast variables, r-slowly variables, � � 1, � � 1, � ∈ �, � ∈
�. This theory is applied to the short-term interest rates described by the Vasicek model, in particular. 
The approximate value of securities and their yield are calculated. Applying the Sturm-Liouville theory, 
Fredholm alternatives, as well as analysis of singular and regular perturbations at different time scales, we 
obtained explicit formulas for convergence of bond prices and their yield. To obtain explicit formulas, we 
need to solve 2l Poisson equations. 

The purpose of the article is to establish bond indicative prices and their profitability by methods 
of spectral theory and theory of perturbations. 

2. RESULTS 

Let (Q, F, P) be the probability space that supports a correlated Brownian motion 
�W�, W�� , … , W��, W��, … , W��� and an exponential random variable ε~Exp (1), which is independent 
of �W�, W�� , … , W��, W��, … , W���. We will assume that the economy with (l+r+1) factors is described 
by the homogeneous time and continuous Markov process χ �  �X, Y�, … , Y�, Z�, … , Z��, which is defined 
in some state space E �  � �  R�  � R�, where �Y�, … , Y�� ∈ R� , �Z�, … , Z�� ∈ R� � is the interval at R 
with points ��and ��, such that �∞ � �� � �� � ∞. We assume that χ has the beginning at � and 
instantly disappears once � goes beyond �. In particular, the dynamics of χ with physical measure ℙ is as 
follows: 

χ� � �
���, Y��, … , Y��, Z��, … , Z����, �� � �,

 ∆,  �� � �,
 �� � inf�� � 0: �� ∉ ��, 

where, �X, Y�, … , Y�, Z�, … , Z��, are set 

 ��� � ������� � �������Y��, … , Y��, Z��, … , Z������
�, 

 ���� � 
�

��
��������� �

�

���
����������

��
, � � 1, �. 

 ���� � ����������� � �������������
��, � � 1, �. 

 ����, ����� � ����
��, � � 1, �. 

 ����, ����� � ����
��, � � 1, �. 

 �����, ����� � �����
��, � � 1, �, � � 1, �. 
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 �����, ��� �� � �����
��, � � 1, �, � � 1, �. 

 �����, ����� � �����
��, � � 1, �, � � 1, �. 

 ���, Y��, … , Y��, Z��, … , Z��� � ��, ���, … ���, ���, … , ���� ∈ �. 

where, �����
� 0, � � �, �����

� 0, � � � ����
, ����

,  �����
, meet the conditions �����

� , �����
�, 

������
� � 1, and correlation matrices of the form: 

�

1 ����
����

���� 1 �����

���� �����
1

� 

semipositively defined, that is 1 � 2����
����

�����
� ����

� � ����
� � �����

� � 0, � � 1, �, � � 1, �. 

Process � may represent many economic phenomena and processes. 

For example, the reserve size, the index price and reliable short-term interest rates, etc. Even more 
broadly, � is an external factor that characterizes the value of any of the above-mentioned processes. 
Physical measure ℙ of process � is understood as the process �, which has an instant drift ����� and 
stochastic volatility �������Y��, … , Y��, Z��, … , Z��� � 0, which contains both components: local ����� 
and nonlocal ��Y��, … , Y��, Z��, … , Z���. Note that infinitesimal generators (infinitized) for �� and �� have 
the form ∀ �, � 

���

��
�

1

��
�

1

2
��

����������
� � ���������

� , ���

�� � �� �
1

2
��

����������
� � ���������

� , 

are characterized by the measures 
�

��
 and ��, respectively. Thus, Y�, … , Y� and Z�, … , Z� have an internal 

time scale �� � 0 and 
�

��
� 0. We consider �� �� 1 and �� �� 1, so that the internal time scale �� is 

small, and the internal time scale �� is large. Consequently, �� , � � 1, �, are fast variables, and �� , � � 1, � 

are slowly variables. Note that ���

��  and ���

��  have the form 

 � �
�

�
��������

� � ������ � ����, � ∈ ���, ���, з ���� � 0 

for all � ∈ �, are always self-adjoint in the Hilbert space � � ����, ��, where � ∈ � is the interval with 
the points �� and �� and � is the diffusion density rate. Dom����� ∈ ����, ��: �, ��� ∈
��������, ������, ��, ��� �� �� ��� ��� where �������� is the space of functions which are absolutely 
continuous on each compact subinterval � Linetsky (2007). The boundary conditions for �� and �� are 
applied on the output, input, and regular bounds. 

We will evaluate the derivatives with payoff at time � � 0, which may depend on the trajectory �. 
In particular, we will consider the forms of payoff: 

Payoff � ����������� 
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where, τ is a random moment of time during which there is a failure to make a payment of premium. Since 
we are interested in the derivatives estimation, we must determine the dynamics �X, Y�, … , Y�, Z�, … , Z��, 
under the evaluation of the degree of neutral risk, which we denote as ℙ� . We have the following dynamics: 

 

��� � ������ � �������Y��, … , Y��, Z��, … , Z�����Y��, … , Y��, Z��, … , Z������

��������Y��, … , Y��, Z��, … , Z�������
�,

���� � �
�

��
������� �

�

���
����������Y��, … , Y��, Z��, … , Z���� �� �

�

���
�����������

��
,

���� � ���������� � �������������Y��, … , Y��, Z��, … , Z���� �� � ��������������
��,

�〈�� �, �� �� 〉� � ����
��, � � 1, �.

 �〈�� �, �� ��〉� � ����
��, � � 1, �.

�〈�� ��, �� ��〉� � �����
��, � � 1, �, � � 1, �.

�〈�� ��, �� ��〉� � �����
��, � � 1, �, � � 1, �.

�〈�� ��, �� ��〉� � �����
��, � � 1, �, � � 1, �.

���, Y��, … , Y��, Z��, … , Z��� � ��, ���, … ���, ���, … , ���� ∈ �,

 (1) 

where 

����
� ≔ ���

� � �
����� � �����

�������Y��, … , Y��, Z��, … , Z���
� ��Y��, … , Y��, Z��, … , Z���� ��, 

����

��
≔ ���

��
� ���Y��, … , Y��, Z��, … , Z�����, 

����
�� ≔ ���

�� � ���Y��, … , Y��, Z��, … , Z�����. 

where �����
� 0, � � �, �����

� 0, � � �. 

We establish such conditions so that the system (1) has the only strong solution. 

Random time τ is the time of the derivative asset. In our case, default can occur in one of two ways: 

when � fall outside the interval �, 

at random time �� , which is managed by the risk level ����� � 0. 

This can be expressed as follows: 

� � ��^��,

�� � ����� � 0: �� ∉ ��,

�� � ��� �� � 0: � ������� � ���, Y�, … , Y�, Z�, … , Z��
�

�

� ,

�~����1� ⫫.

 

Note that the random variable ε is independent of ��, Y�, … , Y�, Z�, … , Z��. 
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To track �� , we use the process indicator: �� � �������, where � � ���, � � 0�, is a filter generated 
by � and � � ���, � � 0� is filter’s generator ���, ���, … ��� , ���, … , ����. We use the filtering � �
���, � � 0�, where �� � ��⋁�� . Note that ��, Y�, … , Y�, Z�, … , Z�� are applied to � and � is a stopping 
time ���� � ��� ∈ �� for all � � 0�. 

We will evaluate the derivative asset of some payoff (payment) using the neutral pricing risk and 
Markovian chain �, the price ��,��

��, �, ��, … ��, ��, … , ��� of some derivative assets at the initial moment 

of time has the form: 

��,��
��, �, ��, … ��, ��, … , ���  � ���,��,…��,��,…,��

���� �� � �������
�

�

� ������������, 

Where, � � ���, … , ���, �� � ���, … , ���, and ��, ��, … ��, ��, … , ��� ∈ � is a starting point of the 
process ��, Y�, … , Y�, Z�, … , Z��. By Feynmann-Kac formulas, we can show that 

��,��
��, �, ��, … ��, ��, … , ��� satisfies the following Cauchy problem Linetsky (2007): 

 ���� � ��,��
� ��,��

� 0, ���, … ��, ��, … , ��� ∈ �, � ∈ �� (2) 

 ��,��
�0, �, ��, … �� , ��, … , ���  � ���� (3) 

where the operator ��,��  has the form: 

��,��
� ∑

�

��
��� � ∑

�

���
���

�
��� � ��� � ∑ �

��

��
�����,� � ∑ ������� � ∑ ������

�
��� , 

��� �
1

2
��

����������
� � ���������

, � � 1, �. 

 ��� � �����������
��������, … ��, ��, … , ����� � �����, … ��, ��, … , �������

, 

��� �
1

2
����������, … ��, ��, … , ������

�

� ����� � ��������, … ��, ��, … , �������, … ��, ��, … , ������ � ����, 

���� � ����
�����������������

� , 

��� � ������ �����
��������, … ��, ��, … , ����� � �����, … ��, ��, … , ���� ���

, 

��� �
1

2
��

����������
� � ���������

, ���� � ���� � ����, ��� � ���

� . 

We assume that the diffusion with the infinitesimal generator ���

�  has an invariant distribution Π 
with density ������. 

������ �
2

��
�����

exp � �
2�����

��
����

��

���

��� , ∀� � 1, �. 



International Journal of Economic Research 

Burtnyak Ivan Volodymyrovych and Malytska Anna Petrivna 

   

Besides the initial condition (3), the function ��,��
��, �, ��, … �� , ��, … , ��� must meet boundary 

conditions at the points of �� and �� of the interval �. The boundary conditions at points �� and �� belong 
to the domain ��,��  and will depend on the nature of process � on the points of � and are classified as 

natural, output, input or regular Borodin et al. (2002). The Cauchy problem (2)-(3) for 
��, ��, … ��, ��, … , ��, ��, … ��, ��, … , ��, ��, … ��, Γ�, … , ��� has no analytical solution. However, for 
fixed ��, the conditions containing � and are arbitrarily dviated in the � -axis, which causes singular 
perturbations. For a fixed �� condition containing �� are small for some small �� -axis, which causes regular 
perturbations. Thus, the �-axis and ��-axis yields the combined singular-regular perturbation of ��1� of 

the operator ��.To find the asymptotic solution of the Cauchy problem (2) ¬ (3), we develop ��,�� in 

orders ��� and ��� Burtnyak et al. (2014): 

��,��
� � … � � … � ���

��
… ���

��

����������������

���

��
… ���

��

���,…,��,��,…��  

where, 

� … � � … � ���

��
… ���

��

����������������

���

��
… ���

��

���,…,��,��,…��  

� lim ∑ … ∑ ∑ … ∑ √��
�� … ���

��
���

��

… ���

��

���,…,��,��,…��
,  �� → ∞,

����
����

������
����

����
����

��
����

… , ���� → ∞.  

The approximate price is calculated 

��,��
� �

�,�� � � ����
��,��

�

���

� � �����,��
�

�

���

. 

The choice of development in half-integer orders �� and �� are natural for ��,�� . 

By conducting an analysis of singular perturbations at the corresponding levels, we obtain that 
�

�,�� , �
��,��, �

�,��
�  do not depend on ��, … �� . The basic findings of the asymptotic analysis are given using 

the following formulas 

 ��1�: ∑ ������ �
��,�� � ���� � 〈��〉��

�,�� � 0, �
�,���0, �, ��, … , ��� � ����,  (4) 

 ������: ����
��,�� � ����

��,�� � ���� � 〈��〉��
��,�� � ∑ ����

���,����� � ∑ ������  

 � ���
�,��,  �

��,���0, �, ��, … , ��� � 0,  (5) 

1�� � � 0, … 1���
�

 0,1,0, … .0�������
�

� 

According to the analysis of regular perturbations we have 
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 ������: ���� � 〈��〉��
�,��

� � �����
�

�,��, �
�,��

� �0, �, ��, … , ��� � 0, � � 1, �.  (6) 

Operators 〈��〉, ��, ��  and ���
 are defined by the formulas 

〈��〉 �
1

2
�����������

� � ����� � ������������� � ����, � ∈ ���, ���, 

�� � ���� ��������������
� � ��� ��������

� � ��� ������������ � ���������, , 

�� � ���������� � ���  and ���
� ���

����� � ������′�������, ��� ≔ ������
〈�〉, �� � ��〈��〉, 

∀ � � 1, � and norm function 

〈�〉�: � � ����, … ������������ , ∀� � 1, �, 

〈�〉�,� � � ����, … ����������������������� ,… 〈�〉���,�  

� � ����, … �� ������� … ��������� … �����
, 〈�〉���,� � 〈�〉, 〈��〉 ≔ ������, 〈��〉 � ���. 

We find solutions to the equations (4)-(6) on the basis of eigenfunctions, eigenvalues of the operator 
〈��〉, each of which meets a corresponding Poisson equation 

����� � �� � 〈��〉� , ����� � 〈��〉� �  〈��〉�,�, … , ����� � 〈��〉���,��� �  〈��〉���,�  . 

����� � �� � 〈��〉� , … , ����� � 〈��〉���,��� �  〈��〉���,�, … ,  ����� � 〈��〉���,��� �  〈��〉���,�  

Theorem 1: Assume that we can solve the following equation to find an eigenvalue: 

 �〈��〉�� � ����, �� ∈ ����〈��〉�, (7) 

and also that � ∈  �. Then the solution ��,�� has the form: 

�
�,�� � � ������

�

���

 , �� � ���, ��, �� � ����� . 

Theorem 2: Let ��, �� , �� be described using Theorem 1. We define 

 ���,� ≔ ���, �����, ��,� ≔
�����

�����
. 

Then the solution ���,��  of equation (5) has the form: 

�
��,�� � � � �����,�

����

����,� � � �����,������

�

 

Note that ���,�� is linear in the parameter group ���� , ���, ���, ����. 

Theorem 3: Let ��, �� and �� be defined with Theorem 1, and ��,� with Theorem 2, we have 

����,� ≔ ���, �����
���, ���,� ≔ ���, �����, ���,� ≔

�����

�������� �
���

�����
. 
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Then the solution ��,��
�  has the form: 

�
�,��

� � � � ��

����

����,������,� � � ������,������

�

� 

� � �����
��

���

�

�

���,������,� � �����
������,������

�

 

� � � ��

����

���,�������
������,� � � �����,�������

���
1

2
����

�

. 

We draw attention to the fact that ��,��
�  is linear in ������′, ��� ��������, ��� ��′, ������������. 

Having obtained the approximate solution ��,��
� �

�,�� � ∑ ����
��,��

�
��� � ∑ ����

�,��
�

�
���  for the 

derivative asset pricing. 

For a more exact result we assume that the Payoff function ���� and its derivative are smooth and 

limited functions. Thus, we limit our derivative analysis to a smooth and limited payoff; in this case, the 

closeness estimates is based on the following theorem: 

Theorem 4: For the fixed ��, �, ��, … , �� , ��, … , ��� there exists an invariable � such that for any �� � 1, 
�� � 1 we have: 

���,��
� ��

�,�� � � ����
��,��

�

���

� � ����
�,��

�

�

���

�� � ��� ��

�

���

� � ��

�

���

� 

Theorem 4 gives us information on how the approximate price behaves when �� → 0 and �� → 0 

Let � be short interest rates. One of the most widely known models of short interest rates is the 

Vasicek model, in which � is modeled as the Ornshtein-Ulenbeek process with multidimensional 

stochastic volatility. ℙ dynamics of � are given, in particular 

��� � ���� � ��� � ��Y�, … , Y�, Z�, … , Z����Y�, … , Y�, Z�, … , Z����� � ��Y�, … , Y�, Z�, … , Z��

� ����
� , ����� � ��, ����� � 0, 

where, Y�, … , Y�, and Z�, … , Z� are fast and slowly variable volatility factors as described. We calculate the 

approximate price for a zero coupon bond. 

We write the operator 〈��〉 and the density associated with it at a rate ���� 

〈��〉 �
1

2
�� ����

� � ���̅ � ���� � �, �8� 

���� �
2

�� �
��� �

��

���
��̅ � ���� , �̅ � � �

1

�
������. 

���� �
2

�� �
��� �

��

���
��̅ � ���� , �̅ � � �

1

�
������. 
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To find a bond price with a payoff ����� � ������ � 1, we need to solve the equation (7) to find 

the eigenvalues for the segment � � �� ∞, ∞� with 〈��〉 in compliance with (8). Since both points ∞ and 

∞ are natural limits, then the solution has the form Gorovy et al. (2004). 

�� � �� exp ���� �
1

2
��� ���� � ��, 

�� � ��
�

�

��

2����!
�

�/�

 

� �
��

��/�
, � �

√�

��
�� � �̅�, 

�� � �� � �̅ �
���

2��
� ��, � � 0,1,2, … . 

Here, �� are Hermite polynomials. We will write the expressions for the operators  �� and 

��: 
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Operators ���,�, ���,�, and ����,� are written on the basis of recurrence relations: 

���� � 2�����, 2��� � ���� � ����, ���,� � ����  

� � �
3
�

� �
�1

�
�

���

�
2√�

��
�

��˄�

���

�! ��

�� � ��! ����
��,���� 

���� � ���� 

� � �
2
�

� �
�1

�
�

���

�
2√�

��
�

��˄�

���

�! ��

�� � ��! ����
��,���� 

���� ��
�1

�
� ��,� � �

2√�

��
�

�! ��

�� � 1�! ����
��,����, 

���,� � ��� ��
�1

�
� ��,� � �

2√�

��
�

�! ��

�� � 1�! ����
��,���� � �����,�, 

����,� � ������
����

��
�

��
�

���
�

��
���

�
��

����,� 
� ��

�1

�
� �

4

�
�
�

� � �
2√�

��
� �

1

2��
�

��

��
�

�

��
��

�! ��

�� � 1�! ����
��,��� 

� ��
�1

�
� �

�2

��
� � �

2√�

��
� �

4

�
�
�

��
�! ��

�� � 2�! ����
��,��� 



International Journal of Economic Research 

Burtnyak Ivan Volodymyrovych and Malytska Anna Petrivna 

   

� ��
2√�

��
� �

�2

��
��

�! ��

�� � 3�! ����
��,���� 

������� ��
1

2��
�

��

��
�

�

��
� ��,� � �

4

�
�
�

�
�! ��

�� � 1�! ����
��,��� 

� �
�2

��
�

�! ��

�� � 2�! ����
��,���� 

����������′ ��
1

��
� ��,� � �

�4

���
�
�

�
�! ��

�� � 1�! ����
��,��� � �

4

���
�

�! ��

�� � 2�! ����
��,���� 

����������′ ��
�1

��
� ��,� � �

2

��√�
�

�! ��

�� � 1�! ����
��,����. 

Calculation of �� can be found in Gorovy and Linetsky (2004) [12] 

�� � ���, 1� �
2

��
�

�

�
��������/�. 

The approximate price of a bond can now be calculated applying the theorems 1-3. 

For zero-coupon bonds, the bond curve is often considered, and not the bond price itself. The yield 

��,��  for a zero-coupon bond, on which one dollar is paid at time � is defined by the relation: 

 ��,��
� exp ����,��

��. 

We obtain the approximation for a zero-coupon bond, developing in series as bond prices ��,�� , and 

the yield ��,�� in orders ��� and ���: 
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Grouping in orders ��� and ��� we obtain: 

��,��
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�,��� , �
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, �
�,��

� �
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�,��
�

��
�,��

, 

Note that figures are constructed component-wise on each corresponding time scale, in much the 

same way as components in Lorig (2014) and Burtnyak et al. (2014). 
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3. CONCLUSIONS 

The spectral theory and the theory of singular and regular perturbations are applied to investigate the 

short-term interest rates described by the Vasicek model. The approximate price of bonds and their yield 

are calculated. Applying the Sturm-Liouville theory, Fredholm's alternatives, as well as analysing singular 

and regular perturbations in different time scales, we obtained explicit formulas for convergence of bond 

prices and yields. To obtain explicit formulas, we need to solve 2l Poisson equations. The main advantage 

of our pricing methodology is that by combining methods from spectral theory, regular perturbation 

theory, and the theory of singular perturbations, we reduce everything to the solution of the equations to 

find their eigenfunctions and eigenvalues. 
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