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SECOND ORDER STOCHASTIC PARTIAL INTEGRO
DIFFERENTIAL EQUATIONS WITH DELAY AND IMPULSES

M.V.S.S.B.B.K. SASTRY AND G.V.S.R. DEEKSHITULU*

ABSTRACT. This paper manages the approximate controllability of second
order neutral stochastic partial integro differential equations with infinite de-
lay and non-instantaneous impulses. The results are acquired by employing
Sadovskii’s fixed point approach and firmly persistent cosine family of op-
erators. A set of adequate stipulations for the approximate controllability
of second order neutral stochastic partial integro differential equations with
non-instantaneous impulses are provided beneath the situation that the re-
lating linear system is approximately controllable. Further, an application is
proposed to represent the acquired results.

1. Introduction

Many evolution processes are described with the aid of the occurrence of quick
modifications in their state. The length of these momentary perturbations are
unimportant in assessment with the span of the whole process. These perturba-
tions might be viewed as impulses. Impulsive issues can be observed in population
dynamics, pharmacokinetics, optimal control framework, economical control sys-
tems and others. The properties and basic theory of impulsive differential equa-
tions (IDEs) is studied by Benchohra et al. [4], Laskshmikantham et al. [11].

Sometimes an impulsive action which starts suddenly at an arbitrary time
and stays dynamic on a confined time interval. Such impulses are called non-
instantaneous impulses. Hernandez and O’Regan [9] studied this kind of IDEs.
Further, many authors [7, 16] proposed the qualitative properties of non-instantan-
eous IDEs because of their pertinence in various fields, for example, the hypothesis
of stage by stage socket combustion, hemodynamical equilibrium of a person etc.
A very well known application of non-instantaneous impulses is the introduction
of the drug in the blood stream causes an abrupt change in the system, followed
by a continuous process until the drug is completely absorbed.

However, in many cases, the deterministic fashions frequently change because of
noise, which is arbitrary or if nothing else seems to be so. Consequently, we need
to shift from deterministic issues to stochastic ones. In stochastic case, the exis-
tence of solutions and optimal control problems of stochastic differential equations
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(SDEs) with non-instantaneous impulses are established in [19, 21] respectively
and the references in that.

The theory of controllability of both linear and nonlinear SDEs have been
broadly examined by numerous authors since it has various applications in sci-
ence and technology. Controllability of SDEs with instantaneous impulses are
studied recently in [5, 12, 20].

As a rule, it is invaluable to explore the second order SDEs straightforwardly
instead of changing them to first order systems. Second order SDEs are more
fitting to display the issues like mechanical vibrations, charge on a capacitor or
condenser exposed to repetitive noise. The existence and controllability of second
order SDEs with delay have been discussed in [2, 3, 14, 15]. In [1, 22|, the re-
searchers investigated the controllability of second order SDEs using Sadovskii’s
fixed point theorem. Recently, in deterministic case, Kumar et al. [10] observed
the controllability of second order DEs with non-instantaneous impulses by em-
ploying Banach fixed point theorem.

To the best of our insight, there has not been many contribution on the control-
lability of mild solutions for second order SDEs with non-instantaneous impulses.
On the other side, to address the problems involving like hereditary influence and
memory which arise in biological population models, ecological models with delay,
theory of heat conduction for materials and continuous model nuclear reactor, we
need to include generalized Volterra integral terms.

Inspired by the aforementioned works, we address the approximate controlla-
bility of second-order neutral stochastic partial integro differential equation with
infinite delay and non-instantaneous impulses of the form

dv'(t) — G(t,v¢)] = [Av(t) + Bu(t)]dt + G, (t,vt,/o g, (t,r, Vr)dr> dt

t
+ G, <t,vt,/ gQ(t,r,vr)dr> dw(t),
0

te (Tj7tj+1]aj = Oa 17 "'7k7 (11)
Vo = C € '%a
vI(0) = e,

v(t) =Lt v(t))), te(trlj=12..k,
VI(t) = L (t,v(t))), te (ty,r],j=1,2,..k,

where v(.) takes values in a real separable Hilbert space U with inner product (. ,.)
and norm ||.||,. The prefix impulse times ¢; satisfy 0 = tg =19 < t; <13 <tz <
v <t < TR < tge1 =T < 00. The operator A is closed, densely defined operator
on U. The history v; : (—00,0] — U, v¢(0) = v(t + 0), for ¢t > 0, related to the
phase space %. The control function u(.) is given in Uuq = £3(.J, X) of admissible
control functions with X as a Hilbert space. B is a linear operator from X into U.
Here J =[0,7]. G: Jx B - U, G, : IxBxU—-U,G,:JxBxU— LY,
g I XTI XxAB 5 U,g,: IxIxB U I : (tj,rj] x B - U (i =1,2)
are appropriate functions to be specified later. The initial data ¢ and 1 are §o—
measurable random variables with finite second moment.
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The article is classified as follows. Section 2 presents a few fundamental defini-
tions and notation that are useful for our study. Section 3 confirms the existence
of mild solution for the control system (1.1). In section 4, we explore approximate
controllability of control system (1.1). An application is provided to illustrate our
outcomes in the last section.

2. Preliminaries

Let (£2,F, P) be a complete probability space furnished with a normal filtration
Si,t € J =1[0,T]. We utilize the following all through the paper.

e Let U,V be separable Hilbert spaces.

e {w(t) : t > 0} is a Wiener process with the linear bounded covariance
operator Q such that tr(Q) < co.

e £(U) denotes the space of bounded linear operators from U to U.

e Assume that there exists a complete orthonormal system {e;, };,>1 in V,
a bounded sequence of nonnegative real numbers p, such that Qe,, =
Hmem, m = 1,2,... and a sequence {A,,},n,>1 of independent Brownian
motions such that

(w(t),e) = > Viimlem, )Am(t), e€V, te .l (2.1)

LY = £5(QY?V,U) be the space of all Hilbert-Schmidt operators from
Q'/2V to U with the inner product (@, () = tr[pQC*].
The collection of all §; measurable, square integrable U-valued random
variables, denoted by £2(, §:, U), is a Banach space equipped with norm
I¥lle, = (Ellv]2)/2.
E‘;(J, U) is the space of all F;-adapted, U-valued measurable square inte-
grable processes on J x €.
C(J; L2(£2, T+, U)) be the Banach space of all continuous maps from J into
L5(Q, F¢, U) satisfying sup E||v(t)|2 < oc.

teJ

¢ is the space of all §; adapted, measurable process v € C(J; L2(2, ¢, U))
1/2
endowed with the norm ||v|le = (sup E|v(r) g) Jit is clear that (€, ||.]|¢)
reJ

is a Banach space.

Definition 2.1. [18] (1) The one parameter family {C(s) : s € R} C L(U) satis-

(i) C(0) =T,
(ii) C(s)v is continuous in s on R, for all v € U,
(iii) C(s+71)+C(s—r)=2C(s)C(r), for all s,r € R

is called a strongly continuous cosine family.

(2) The corresponding strongly continuous sine family {S(s) : s € R} ¢ L(U)
is defined by

S(s)v= / C(ryvdr,s e R,v e U.
0
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(3) The infinitesimal generator A : U — U of a strongly continuous cosine family
{C(s) : s € R} is given by Av = %C(s)v\szo for all v.€ D(A) = {v € U :
C(s)v is twice continuously differentiable function of s}.

Such cosine and corresponding sine families and their generators fulfill the going
with properties:

Lemma 2.2. [6] Let A generate a strongly cosine family of operators {C(s) : s €
R}. Then, the following hold:

(i) there emists H > 1 and b > 0 such that ||C(s)| < He® and therefore
IS(s)I| < He®

(i) A ['S(s)vds = [C(t) — C(r)]v for all 0 <7 < t < 00
(iii) there exists Hy > 1 such that [|S(t) —S(r)|| < Hy f: e0ldg for all0 < r <
t < oo.

The following Lemma is a result of a phase space axiom.

Lemma 2.3. [8] Let v : (—o0,T] — U be an F+— adapted measurable process such
that the Fo— adapted process vo = ¢ € L(Q, B) and v|; € €. Then

[vrllz < K sup |[v(r)]| + N|¢||z,
0<r<T

where K = sup{K(t):t € J} and N =sup{N(t):t e J}.

The next theorem is proposed by Sadovskii’s in [17].
Theorem 2.4. Let Y be a condensing operator on a Banach space U, that is, T
is a continuous and takes bounded sets into bounded sets, and (Y (D)) < B(D)
for every bounded set D of U with f(D) > 0. If T(r) C S for a convex, closed

and bounded set S of U, then T has a fized point in U (where B(.) denotes the
Kuratowski measure of noncompactness).

Definition 2.5. An F;-adapted stochastic process v € € is said to be a mild
solution of (1.1) with respect to u € Ugg, if

(1) vo=¢,v'(0) =,
(2)

v(t) = Li(t,v(t))), t € (tj,r5),5 =1,2,..., k,
VI(t) = L (t,v(t;)), t € (tj,rs),5 =1,2,...k

(3) v(t) satisfies the subsequent integral equations

v(t) = C(t)C(0) + S(t)[yp — G(0,0)] + /0 C(t —r)G(r,v,)dr + /O S(t — r)Bu(r)dr

t r
+/ S(t—-r)aG, (r, VT,/ g, (r,s,vs)ds> dr
0 0

+ /OtS(t -G, (r, Vo, /OT g, (r,s,vs)ds) dw(r), te]0,t]
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v(t) =C(t TJ)I]l(TW ( i)+ St - TJ)[IJQ(T]7V(t;)) G(rj,vtj—)]

/St—rBu dr—i—/Ct—r (ryv,.)dr

+/ St —r)G, <r, vr,/ 9, (r,s,vs)ds> dr

Tj 0
t r

—|—/ St —1r)aG, <r, V,»,/ 9y (r,s,vs)ds> dw(r),
’I“]‘ O

t e (Tj,tj+1],j = 1,2, veny k.

Definition 2.6. Let v,.((;u) be the state value of the system (1.1) at the terminal
time T corresponding to the control u and the initial value (. The system (1.1)
is said to be approzimately controllable on the interval J if R(T,¢{) = U, where
R(T, () is the closure, in U, of the reachable set

R(T,¢) = {v,(Gu)(0) : u(.) € Uaa}

of the system (1.1).

3. Existence of Mild Solution
We derive the existence of mild solution for (1.1) by imposing the following
hypotheses.
(H1) ||C(t)|]? < M and ||S(t)||> < M,t € J, where M = M.
(H2) The function G : J x # — U is continuous and there exists L > 0 and
L1 > 0 such that

E|G(t,v) - G(t,y)|” < Llv - yll%
E[G(t,v)II* < Li(1 + |Iv][*).
(H3) The functions G, : J x Zx U — U and G, : J x B x U — LY satisfy the
following conditions:
(i) G,(t,.) : B x U — U is continuous for t € J and G, (.,v,y) : J - U

is measurable for (v,y) € # x U. Moreover, three exist Ly > 0 such
that

E||G, (t,v,9)lI* < La(1+ Iv]* + [ly]*).

(i) G,(t,.): ZxU — LY is continuous for t € J and G, (.,v,y) : J — L3
is measurable for (v,y) € # x U. Moreover, three exist L3z > 0 such
that

E|G,(t,v,)I* < Ls(1 + [Iv]* + lyl*).

(H4) The functions g; : J x J x % — U are continuous and there exist Ly > 0
and L > 0 such that

Elg, (t,r,v)[* < La(1 + [Iv]]*)
E|lg, (t,r,v)II* < Ls(1 + [|v]]*)
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(H5) The function I} : (t;,7;] x Z — U,j = 1,2,...,k,i = 1,2, are continuous
and there exist L;: > 0 and Ci,7 = 1,2, ..., k, such that
E|;(ty,v) = L(t2,9)lI” < Ly (It =t + IV — ylIZ)
E[L(t,v)* < Cri(1 + |Iv]).
(H6) For being easy, we propose the notation ||B||? = M;.

(H7) We assume that the second order linear deterministic system correspond-
ing to (1.1)
dv'(t) = [Av(t) + Bu(t)|dt, teJ
v(0) =vo, V(0)=w;
is approximately controllable on J.
For each 0 < t < T, the operator §(61 + Hi@*l)_l — 0 in the strong

operator topology as § — 0T, where the controllability operator Hi’ﬂﬁ“ is
defined by

(3.1)

tj+1
Hfﬁ;rl = / S(tj+1 — T)BB*S*(tj+1 — T)d’l‘,
T
where 79 = 0,t;41 =7T,7 =0,1,...,k and B* represents the adjoint of B.
Observe that (3.1) is approximately controllable iff the operator §(61 +
Hiﬂ“)*l — 0 as strongly as § — 07 [13].

Lemma 3.1. [13] For any v, € La2(Q,§r,U), there exists p € L3 (J,LY) such that
T
v, =Ev,. + [5 o(r)dw(r).

The following lemmas are useful to prove our main results.

Lemma 3.2. If all the suppositions of (H1)-(H6) are fulfilled, then the required
control functions for the equation (1.1) has an estimate, for v € €,

k
E[u’(t,v)[I* < Lu(1+ |[vrl%),  fort e |l t4l, (3.2)
=0
where L, > 0.

Proof. For any § > 0 and t € [0,t1], the control function is defined by,

u’(t,v) = B*S*(t1 — t) {(51 +T05) " By, — C(t1)¢(0) — S(t1) (¥ — G(0,¢))]
- /0 1(5I+H61)71<p(r)dw(r) - /0 1(5I—|—H61)71C(t1 —r)G(r,v,)dr
_/0 (T + 11571 S(t, — )G, (nvr,/o g, (r,s,vs)ds> dr
_/0 (5I+H(t)1)_18(t1 -G, (r,vr,/o gz(r,s,vs)ds> }dw(r),
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for t € [rj,tj+],
u’(t,v) = B*S*(tj41 — t) { (OI + 107+ ) " [Bvyy,, = Ctja — i) L (15, v(E])
= Sltys1 =) I3, v(t))) = Gy v, )

tjra
- / (61 +T0+) () du(r)

J

tjt1
= / (oI + H£§+1)_lc(tj+1 —1r)G(r,v,)dr

j
- /thrl((SI—i— Hi§+1)_18(tj+1 - )G, <r, VT,/T g, (r,s,vs)ds) dr
— /T (5I—|—Hi7j‘_+1)718(tj+1 —r)G, (r, V,,,/O 9, (r,s,vs)ds) dw(r)}
Now, for ¢ € [O,Jtl], we get
Bl ()1 < T [Blva |+ MBICO)I? + 221[BWI? + LBl

ty ty
+ [ Bl Par+ 3t [ BIGE v
0 0

t1 r
[ mla, ( / gl<r,s,vs>ds) 12dr
0 0

t1 r
+ M E| G, (r, V,.,/ gZ(T,s,vs)ds> ||2] dr
0 0

7TMM,
S5 [Ellwl 12+ ME||C(0)]I* + 2M[E||%||* + L E|[¢||?]
t TMM
+/ E||g0(r)||2dr} 5 ! [Mtng + ME2Ly(1 + Laty)
0

M L1+ Lm)} (1L +Elv,I1%)

< Lu, (14 El[v,[|%)
where
TM My

Lu, =~

{EII Vi |I” + ME[C(0)[* + 2M [El|y|* + Ly El|¢]|°]

ty
+ / E|lo(r)||?dr + Mt2Ly + Mt3Lo(1 4 Lyty) + Mty Ls(1 + Lsty) |.
0
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Similarly, for any ¢ € (rj,t;41]
E[w’(t,v)|
M M,y

S5 [EIV@H I+ MCp (1 +E|v(t;)?) +2M[Cr2 (1 + Ellv(t;)I)

[ZEE
LU+ Bl )+ Mt =) [ BIGG v

J

tjt+1 ) tj+1 r )
+ [ Bl 4 0 - ) [ BIG, (rve [ vas) Par
T T 0

' j
tj+1 r
+M/ E|G, (7“, vT,/ gQ(r,s,Vs)ds) 2} dr
’r‘j O
TM My

<

tit1
Elvil?+ [ Bl + [MCy + 221G + L)

J

62
+ M(tjp1 —r5)°Ly + M(tjp1 — 75)*La(1 + La(tj41 — 15))

M {tje1 = 1) Ea(1 4 Lo(tyer = )] 1+ Bl )]

< Lu, (1 4+ E[[v[|%)
where

7TM M ti+1
Ly, = 2T hax {Envt,+1 H2 + / E||<p(r)||2dr + MCIJ; + 2M(C’IJg + Ly)

02 1<j<k g

+ M(tj1 —15)? Ly + M(tjp1 = 75)°La(1 + La(tjr1 —75))

J

+ M(tj41 —rj)La(1+ Ls(tjs1 — Tj))] :

k
Then, for all t € | [r;,tj41], we have
=0

E[w’(t, V)| < Lu(1+ E[|v,[|%),
where L,, = max{ Ly, , Ly, } |

Theorem 3.3. Suppose that the hypothesis (H1)-(HG) are fulfilled. Then (1.1)
has a mild solution on [0,T], provided

max {12MC,J; K? [C,]; +2(Cp2 + Ly) + T(TLy + M TL,

1<j<k
+ TLy(1+ LyT) +L3(1+L5T))]} <1, (3.3)
and
2 2
max, {4MK (L +Lp2 + LT )} <1. (3.4)

Proof. For every p > 0, let B, = {v € € : E||v(t)||* < p}. Then B, is surely a
bounded, closed and convex set in €.
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Define T : € — € by

(Tv)(#) = C()C(0) + S(B)[y — G(0, Q)] + / C(t = r)G(r, v, )dr

,
/St—rBu rvdr—i—/St—r 1(7“,V,,7/ gl(ns,vs)ds)dr
0
/St—r 2(r,vr,/ QQ(T,S,VS)dS) dw(r),t € [0,t1];
0

(Tv)(t) = I; <t,C(tj = i) (rjm, V() + S(t; — rj—) L (rj, v(t )

tj
— G(rj_hvtll)] + / S(t; —r)Bu’ (r,v)dr

tj
+ C(t; —r)G(r,v,)dr
tj

+ S(tj - T)Gl (Ta V'm/ 9, (T7S,Vs)d8) dr
1 0

T’j,
tj

+ [ s —-na, (r,vr,/orgz(r,s,vs)ds) dw(r)),

Tj—1

te (tj,rl,j =12,k
(YV)(t) = C(t = r) I} (ry, v(t;) + St — 7)) [ (ry, v(E;)) — Glrj, v, )l

/St—r)Bu (rvdr+/ C(t —r)G(r,vy)dr

/ S(t—r)aG, (T,VT,/ gl(r,s,vs)ds> dr
0
—|—/ S(t—1r)aG, (r,v,.,/ gz(r,s,vs)ds> dw(r),
’I“]‘ O

te (Tj,tj+1],j = ].,2, ,]{3

We require the following lemmas to prove this theorem under the suppositions
(H1)-(H6) hold.

Lemma 3.4. For each 6 > 0, there exists a p > 0 such that Y(B,) C B,.

Proof. Suppose the above statement is false. Then for every p > 0, there is a
function v*(.) € B,, yet Yv* & B,, that is E||Yv*(t)| > p for some t € J.
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For t € [0, 1], we have
p < E[Tv(1)|?

< 6E[|C(£)¢(0)[]” + 6E[S(t)[ — G(0, O)]||* + 6E|| /OtC(t —7)G(r, v, )dr|?
—|—6E||/ S(t — r)Bu (r, v)dr|
+6E||/O S(t—r)G, (r,w, 9,(7,5,Vs ds> dr?
+6E||/OtS(tr)G2 (r,vr, 95 (7, 8,V d5> dw(r)|?

< GM[EC( )1+ 2(E[[9[* + LiE[|¢]|) +t1/0 E|G(r,v,)|?dr

—|—t1/ ||BH2E||U (r, V)|| dr+t1 E||G (r Vi, g1 r,8,Vs)d s) |2dr

+/ E| G, <r,vr,/ gz(r,s,vs)ds> ||2dr}
0 0

< 6MEJIC(0)]” + 2(Bl|0|> + LiE[¢]?)
+6Mty[ty Ly + MLy 4t Lo(1 4 Lyty) + Ls(1 + Lst1)](1 + E|[v,]|%)-
For t € (rj,t;41], we have
p <E[TvP (1)

< GE(C(t —ry)Ij (rj, v(t DI? + GBIS (= )1 (15, v(t5) = Gry, v ]

t t
+6EH/ S(t—r)Bu‘;(r7v)dr||2—|—6E||/ C(t—r)G(r,vr)drH2

t r
+ GEH/ S(t—-r)aG, (r,vr,/ g, (r,s,vs)ds) drH2
T 0
t r
+ 6EH/ S(t—r)aG, (r, V»,n,/ 95 (r,s,vs)ds> dw(r)|?
rj O

<6M [01;(1 +E[v(E)?) + 201+ Ellv(t;)II*) +2L:1(1 + Elv,- %)

+ (t41 — 1) / E(G(r,v,)[2dr + (51 — 1) / | BIPE[lu? (r, v)|dr

T

+ (tj41 —rj)/ E|G, (7’, Vr,/ g, (r,s,vs)ds> |2 dr
T 0

J

t r
+/ E|G, (nvr,/ gz(ns,vs)ds) ||2dr}
T 0

J
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S 6M[Cp +2(Cpz + L) + (41 — 7)) [(G1 — ) Ly + Ma(tj41 — 75) Lu

(
+ (tje1 = 15) La(l + La(tjp1 — 75)) + La(1+ (tj01 — 75) Ls)]J(1 + E|lv,[|%)
Similarly, for ¢t € (¢;,r;], we obtain

p <E|Tvr(t)|
< G [+ 0BIC( — 1y 1,305 )P
GBS — 1y )21, v(E5 ) — Gl I

—1

tj 12}
+6E||/ S(tj—r)Bu‘s(r,v)dr||2+6E||/ Clt; — )G, vo)dr|?

t; r

+o| [ St -G, ( w [ o <r,s,vs>ds> dr|?
Tj71 0
tj T

+ 6E|| S(t; —r)G, <r7 v,«,/ g, (1, s,vs)ds> dw(r)||2}
Tj71 0

< Cp +6MCp[Cp +2(Cp2 + L) + (1 — t5)[(rj — t;) Ly + My (rj — t5)Lu
+ (rj = t;)La(1+ La(rj — t7)) + La (1 + (r; — t;) Ls)])(1 + E||v, || ).
Then, for all ¢ € [0, T], we have
p < E[Tv(1)[?
< 6M[E[C(0)]|* + 2E[[|* + 2L E[|¢|[%] + 6MCp [Cp +2(Cpz + L)
+ T(TLy + MiTLy + TLy(1 + LyT) + L3(1 + LsT))E||v, | %
< 6MIE[|C(0)[1* + 2E[[¢]|* + 2L, E|¢| %] + 12MCp(Cr +2(Cp2 + Ln)
+T(TLy + MyTL, + TLy(1 + LyT) + L3(1 + LsT))|(N*E|[C||% + K?p)
=L*+12MCp K? [Crr +2(Cpz2 + Ly) + T(TLy + MyTLy + TLy(1+ LyT)
+ L3(1+ LsT)]p,
where L* = 6 M[E||¢(0)|]* + 2E[[¢||* + 2L1E|¢[1 3] + 12M C: [Cpr +2(Cz2 + La) +
T?Ly + MyT?L,, + T?Lo(1 4 L4T) + LsT(1 + LsT)|N?E|/¢||%,

multiplying with % on both sides and proceeding as p — 0o, we get

1< max {12MC’,J; K2 [Cp +2(Cp2 + L1) + T(TLy + MyTLy + TLy(1 + LyT)
/S 7

+ Ly(1 +L5T))”

which contradicts to our assumption (3.3). Hence for some positive p, Y(B,) C
B,. O

Next, we intend to demonstrate that the operator T has a fixed point on B,,
which suggests that (1.1) has a mild solution. Now, we decompose T as T =
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T1 + Yo, where Ty, Ty are defined on B, respectively. Then

C(t)¢(0) + ( )W - G(0,¢)]
+f0 (t —r)G(r,v,)dr, t € [0,t1];
(T 1) (1) = 0, te (ty,ril,i =1
C(t — )i (r,v(t;))
+S(t =) [IF (g, v(t;)) — G(rj,v,)]
+f:j C(t —r)G(r,v,)dr, te(rj,tjt1),j > 1.
(Tav)(t)

1 (101t =m0 10305 )
+8(tj — T] 1)[IJQ(TJ 1LV ( 1)) — G(Tj—hvtjil)]
—l—ft] —7)G(r, v, )dr
—I-fr7 ) (tj r)Bul (r,v)dr
—|—f S(t; —r)G, (r V,-,for g, (r,s,vs)ds) dr
)

f?“7 . S(t; —r)G, (r vT,fOT gz(r,s,vs)ds) dw(r))7 te (tj,ril,i>1

f:j S(t —r)Bu® (r,v)dr
+ f:] St —nr)G, (r,vy, for g,(r,s,v5)ds) dr
+f:j S(t—r)G, (r, vy, [y 9.(r,5,vs)ds) dw(r), te(rj,tjt1),7 > 0.

Lemma 3.5. T is a contraction.

Proof. Let v,y € B,. For t € [0,t1], we obtain

E[[(T1v)(t) = (Tiy)(®)]* < Mty /OtEIIG(T, Vi) = G(r,y,)|Pdr
< MAL|[v: -y %-
Similarly, for t € (r;,t;41], we have
E[|(Y1v)(t) = (T1) (O < 4AM(Lpy + Lp2)|[v(t5) = y(t5)II* + 4ML||v,- =y, |*
+AML(tj1 = 15)? (v — yrl|%.
Then, for all ¢ € [0, T], we have
E[[(T1v)(t) = (T1m)(®)]* < Millve — e l%

< MK? sup Elv(r) —y(r)|2,
0<r<T

where M; = max, AM(Lj + Ly + LT?). From (3.4), we conclude that T is a
<5< J J

contraction. O
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Lemma 3.6. Ty maps bounded sets into bounded sets in B,.

Proof. Tt is adequate to determine that for any p > 0, there exists a A > 0 such
that for each v € B, one has E[|Tav||? < A.

Let p > 0 be such that Yo5, C B,. In what pursues, p* is the number defined
by p* = 2]\~72E||C||2% +2K2p. For any t € (rj,tj+1], 7 =0,1,..., k, we have

t
E|[(Tov)(t)|* < 3MMi(tj1 — Tj)/ E|[u’ (r, v)|*dr

Tj

t s
+3M(tj41 — rj)/ E|G, <r, VT,/ 9, (r,s,vs)ds> dr
; 0

Tj

t r
+3M/ E| G, (7“, V,«,/ gz(r,s,vs)ds) dr
’I"]‘ 0

< 3M(tjpa —15) {M1(fj+1 = 75) Ly + (tj41 = 75) La(1 + La(tj41
= 1)) + La(1 + Lo(t1 = 73) | (L + v 1%)
= 3M(tj41 — 1) [Ml(tj+1 =)L+ (tj41 = 75) La(1 + La(tj41
= 13)) + La(L+ Ls(ti41 — 1)) | (1 + ")
— A,
Similarly, for any ¢ € (¢j,7;], j = 1,2, ..., k, we have
E[[(T2v)(t)[* < Cpp +6MCpx [Cpr +2(Cpy + La) + (r = t5)[(r; — ;)M Ly
+ (rj = tj)La(1 + La(rj — t;)) + La(1 + Ls(r; — t;))]] (1 + p*)
=A;.
Take A = 1r£a§k{Aj, AJ} Then for each v € B,, we have
S)s

E|Tz|? < A.

Lemma 3.7. The set of functions {Yov : v € B,} is equicontinuous on J.
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Proof. Let ni,m2 € (r5,tj41), 5 =0,1,...,k, ;1 <mn2 and v € B,, we have
E[[(Y2v)(n2) — (T2v)(m)|I?

72
< 6E|| S(na — T)Bué(r, V)drH2

m
et
+GE[| [ [S(n2 —r) = S(m — )| Bu’ (r, v)dr]||?
o "
+6E[| [ S(n2—1)G, (T, VT,/ 9 (r,s,vs)ds> dr||?
At 0
st r
+ 6EH [8(7]2 — T‘) - 8(7}1 - T)}Gl (7‘, VT,/ g9, (r, S,Vs)ds> d’rH2
T 0

2 r
+6E[ [ S(p—r)G, (7", Vm/ 9,(r, Savs)d8> dr||?
Ui 0
M T
+ GEH/ [S(ne —7) = S(m — )]G, (r,v,«,/ 92(r,3,vs)ds> dr||?
75 0

72
< 6MMi(n — 1) / Elu (r, v)|2dr

Uit
m
+6M: (1 — T’j)/ 1S(n2 =) = S(mi = r)[IPE[Ju’ (r, v)||*dr

+6M (n2 —m1)?La(1 4 Ly(ne —m))(1 4 p*)

62 — ) La(L+ LaC — 1)L +7) [ 18 =) = S(an =)l

MG — m)La(1 4 L —m))(1 4 57)
+6M(m — ;) La(1 4 Ls(m —r5)) (1 +p) /Tm 1Sz = 1) = S — r)||*dr.
For any ni,m2 € (tj,75], j =1,2,...,k, m < np and if € B,, we have
E[[(T2v)(12) = (Y2v)(n)|I* < Lyaln2 — -
The right hand side tends to zero as 172 — 17;. Hence proved. O

Lemma 3.8. Ty maps B, into a precompact set in U.

Proof. Let rj <t < t;41 be fixed and let € be a real number satisfying r; < e < t.
For v € B,, we define

(T5v)(1) = S(e) / fg S(t —r — &)Bud (r, v)dr

t—e T
+ S(e) / St—r—¢e)G, (r, vr,/ g, (r, s,vs)ds> dr
Tj 0
t—e T
+S(e) St—r—e)G, (r, VT,/ g, (r, s,vs)ds> dw(r).
0

T
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Since S(t) is a compact operator, the set X°(t) = {(Y5v)(¢) : v € B,} is relatively
compact in U for every e, r; < ¢ < t. Also, using an equivalent contention as
lemma 3.7, it seeks after that

E[[(T2v)(t) — (Y5v) (1)

t
SGMMle/ E|[u’ (r,v)|/?dr
t—e

t—e
—|—6M1e’:‘/ HS(t—T)—S(t—r—6)H2E||u5(r,v)||2dr

+6Me*Lo(1 + Lae)(1+ p*)

t—e
+6M5L2(1+L45)(1+p*)/ |S(t —7) —S(t —r —¢)|*dr

t—e
+6MeL3(1+ Lse)(1 + p*) / ISt —7) = S(t —r—e)||*dr.
Therefore E||(Tav)(t) — (T5v)(¢)]|* — 0 as e — 0. Thus it is clear that precompact
sets exists which are arbitrary near to X(¢). Therefore X(t) = {(T2v)(t) : v € B, }
is precompact in U.

Let t; <t < r; be fixed and let £, be a real number satisfying ¢; < e, < t. For
v € B,, we define

(T59)(1) = I (t e Clty — )T (ry ()
St = 1y 201 v(E ) = Gl )

tj

+ /tj S(t; —r)Bu’ (r,v)dr +/ C(ty —r)G(r,ve)dr

Tj—1 Tj—1

tj T
+ S(t; —r)G, (7‘, Vr,/ g, (r,s,vs)ds> dr
0

J

tj T
+ S(t; —r)G, (r,vr,/ 9,(7,8,vs ds) )
Ti 1 0

J
Since both S(t) and C(t) are component operators, the set X! (t) = {(Y5'v)(¢) :
v € B,} is precompact in U for every ¢, t; < e; < t.
Similarly, we get
E[[(T2v)(t) = (Y3 v)(0)]* < Ly |ea]*.

Therefore E||(Tav)(t)—(Y5'v)(t)||*> — 0 ase — 0. Thus it is clear that precompact
sets exists which are arbitrary close to X(¢). It pursues that X(¢) = {(Tov)(¢) :
v € A,} is precompact in U. O

Hence from Arzela-Ascoli theorem, 15 is completely continuous. Presently, we
have T = T + T is a condensing map on B, so Sadovskii’s fixed point Theorem
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2.4 is fulfilled. Hence we infer that there exists a fixed point v(.) for T on B,,
which is the mild solution for the system (1.1). O

4. Approximate Controllability

Now, we present our principle results on approximate controllability of the
system (1.1). For this, we additionally require the following hypothesis:

(A1) the function G : J x 4 — U is continuous and there exists a constant
A1 > 0 such that
E|G(t.v)|* < Ay
fort e J,ve R
(A2) The functions G, and G, are uniformly bounded, then there exist a con-
stant As > 0 such that
E|G, (t,v,y)* + ElG,(t,v,y)|
fort € J, (v,y) € (B xU).

2§A23

Theorem 4.1. Assume that the hypothesis of Theorem 3.3 are hold and , more-
over, suppositions (H7), (A1) and (A2) are fulfilled. Further, if S(t) and C(t) are
compact, then the system (1.1) is approximately controllable on J.

Proof. Let v° be a fixed point of T in €. By Theorem 3.3, any fixed point of T is
a mild solution of the system (1.1). By using the stochastic Fubini theorem, it is
easy to observe that, for t € (r;,t;41], j = 1,2,..., k, we have

VO(tj41) = Vi = 601 +TLI) 71 By, = Cltjn — )L (r, 2 (t))
tj+1
= S(tyr = )0 (6) = Glryal N+ [ el

J
ti+1

+4 (6T + Hfﬁj’_“)_lC(th — )G (r, x0)dr
]tj+1 r

+0 (61 + H?Jﬂ“)*lS(th - )G, (7‘, xf.,/ g, (r,s,a:f,)ds) dr
Tj 0

L+t r
+ 5/ (61 + Hf,ijﬂ“)*lS(th -G, (r, :cf,,/ 9, (r,s,xi)ds) dw(r).
T 0

' (4.1)
For ¢ € [0, 1], we have

v(12) = vay = 881 +115) ™" [ Bve, = C(1)(0) = S(0) (4 — G(0.¢))
’ r)dw(r ! oyt —7)G(r,v0)dr
A
0 1— T L\ TV, g9,\r,s,xrg)as T
Ot1 0
+ 5/0 (6T + )18t — )G, (r, a:5/0

r

0 (15,05 ) ()
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By condltlons (A1) and (A2) we observe that the sequences {G(r,v)}, {G, (r,v?,
Jo 9.(r,s,v3)ds)} and {G,(r, V0, [ g,(r,s,v] ds)} are umformly bounded on J.
Then there is a subsequence denoted by {G(r,v vl [ g, (r, s, vE)ds),

G, (r, r’fo g,(r,5,v2)ds)} which converges Weakly to sauy7 {G(r),G,(r ) ,(r)}in
U, U and L9 respectively.
Now, from (4.1), we get

EHvé(tj-i'l) — Vit ”2

< 8[6(0 +T0) ™ [ Bviyo, = Cltjan — )1} (.2 (1)

+S(tjr =)L (ry, 2’ (7)) — Glry, @) i)l I

L+t
+ 8/ 18(81 + T15+4) o) 2

2
tj+1
+8 </ 1887 + 1L =) HIC (g1 — )G (r,27) — G(T)Hldr>
tjt1

+8

2

( LGS T [ r)G(r)Hdr)

tjt+1 r
( [ s ) S e 1) |G (et [ trsadias)
T 0

2 2

L+t

|dr> +8</ 16061 + ) 150501 — )G <>||dr>

G, (r,xf,/ gz(r,s,xi)ds)
0

2 -~ 2
dw(?’)) +8</ 18062 +TLp ) "M S (tj41 — 1) G, (7) | dw(r ))

J

+8

J

_Gl (T)

tjt+1
+8 ( [ 86T+ mg) S )

J

7G2 (t)

Similarly, from (4.2), we get
E[[v°(t1) = ve, |1°

< 8861 +115) [ B, — C(1)¢(0) ~ S(0) (6 — G0, O)] |1

+8/0 ' ||5(5I+H61)71g0(r)||2dr
T8 ( [ 181+ 1) - e - G(r)]ndr)

2

t8 ( | ater+ ) iec - r>G<r>|dr)
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G, (r,vf,/ gl(r,s,x‘;)ds)
0

2

ty
s ([ 1ar+ s -
0

e, ||dr> +8< | 1ser+ mg) st - e <>||dr)

G, <r,xf,/ QQ(T‘,S,IEg)dS>
0

2 4 2
—Gm] ||dw<r>> +8( [ 861+ 1) st - e, el >) |

Since by assumption (H7), for 0 < s < tj41 = T, the operator 5(6[—1—1’[7‘%“)*1 -0
strongly as & — 07 and moreover ||§(61 + IL7*')~1| < 1. Therefore by the
Lebesgue dominated convergence theorem, we get

E|v(T) —v,|?* — 0.
This shows the approximate controllability on J. O

ty
48 ( e+ 1) s - )
0

5. Example

Example 5.1. Consider the following partial stochastic neutral integro differential
equations with non-instantaneous impulses of the form

d [;y(t,v) _ /_ ; bi(r — OV, v)dr}

2
[882)7(75 v) + Bu(t / filt,r —t,v,Y(r,v))dr

+ /0 /_TOO ba(t) fa(r,s — r,V,y(s,v))dsdr} dt

* U_; o(t,r = t,v, Y(r,v))dr
+/t/7“ bg(t)UQ(T,s—T,V,y(s,v))dsdr] duw(t), (5.1)

k
U i, tiv1] x [0,7],0 € (—00,0),

j=1

Y(£,0) = Y(t.m) = 0, ,t € [0,T],

V(t,v) = (t,v), %y(uv) = (), (%) € (00,0] x [0,

Y(t,v) =1} (t,V(t;,v)), v e 0,7t € (tj,r], j=1,2,...k,

Y(t,v) =Lt V(t7,v)), ve0,n],t € (tj,r], j=1,2,...k,
where w(t) is one dimensional Wiener process defined on (€, §, P). We take U =
V = L2[0,7] with the norm .|| and A : D(A) C U — U be defined by AY =
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V" with the domain D(A) = {Y(.) € U;),)’ are absolutely continuous, " €
U, Y(0) = Y(n) = 0}.

The spectrum of A consists of the eigenvalues —m? for m € N, with the associ-
ated eigen vectors e, (v) = \/gsin mv, m = 1,2,.... Furthermore, {e,, : m € N}
is an orthogonal basis in U. Then

Ay = Z )Y, em)em, Y € D(A).
The operator A generates a cosine family {C(t) : t € R} on U is given by

Cit)y = Z cosmt(Y, em)em, Y €U,

m=1

and sine family is

)Yy = mzzl - sinmt(Y, em)em, YV € U.
For all Y € U, one can observe easily that t € R,C(.)Y and S(t)) are periodic
functions with ||C(¢)|| < 1 and ||S(¢)|| < 1. Thus (H1) is true.
For (t,2) € [0,T] x B, set Z(0)(v) = Z(0,v), (0,v) € (—00,0] x [0, 7], define
the functions G : [0, T)|x % — U, G, : [0,T|xBxU - U, G, : [0, T)|x ZxU — L9,
9 [0,T] x [0,T] x B = U,i = 1,2 and I} € (t;,r;] x B U, j=1,2,....k (i =

1,2) by
= /t by (r —t)Z(r,v)dr,
G, (t, 2 / g, (t,r, Z)dr)( / filt,r —t,v, Z(r,v))dr
+ / / ba(t) fa(rys — v, Z(s,v))dsdr,
0 J—oo

Gz(t,Z,/O g, (t,r, Z)dr)(v) :/_ o1(t,r —t,v, Z(r,v))dr

t r
+ / / bs(t)oa(r,s —r,v, Z(s,v))dsdr,
0 —00

IH(t, 2)(v) = I(t, Z(t; ,v)), i =1,2.

Define H%“ = f:jj“ S(tj41—r)BB*S*(tj41—r)dr. We claim that S*(tj11—r)Z =
0, r; <r <t;y, implies that Z = 0.

With the decision of above functions, the system (5.1) can be written in the form
of (1.1). Further, we can force appropriate conditions on the above characterized
functions to check the suppositions of Theorem 3.3 and 4.1 and the related linear
system comparing to (5.1) is approximately controllable. We can establish the
system (5.1) is approximately controllable on [0, 7.
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