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A Novel 4-D Hyperchaotic System with
Three Quadratic Nonlinearities, its
Adaptive Control and Circuit Simulation

Sivaperumal Sampath?, Sundarapandian Vaidyanathan** and Viet-Thanh Pham’

Abstract: Recently, Vai dyanathan et al. (2015) announced aseven-term nove 3-D chaotic sysem with three quadratic
nonlinearities. The Lyapunov exponents of the novel Vaidyanathan chaotic system are found as L, = 2.71916,
L,=0and L,=-13.72776. The Kaplan-Yorke dimension of the novel Vaidyanathan chaotic system is derived as
D, =2.19808. In this paper, we derive anovel 4-D hyperchaotic system by introducing a feedback control to the
novel 3-D Vaidyanathan chaotic system. The phase portraits of the novel 4-D hyperchaotic system are displayed
and themathematical propertiesarediscussed. The novel 4-D hyperchaotic system hasauniqueequilibrium at the
origin, which is a saddle-point. The Lyapunov exponents of the novel 4-D hyperchaotic system are obtained as
L, = 3.05638, L, = 0.08646, L, = 0 and L, = —20.12087. Also, the Kaplan-Yorke dimension of the novel 4-D
hyperchaotic systemisderived asD, = 3.15619. Next, an adaptive controller is designed to globally stabilize the
novel 4-D hyperchaotic system with unknown parameters. Finally, an eectronic circuit simulation of the novel
hyperchaotic system is presented using SPICE to confirm the feasi bility of the theoretical model.
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1. INTRODUCTION

Chaos theory describes the qualitative study of unstable aperiodic behaviour in deterministic nonlinear
dynamical systems. A dynamica system is called chaotic if it satisfies the three properties. boundedness,
infinite recurrence and sensitive dependence on initial conditions [1]. Chaos theory has applications in
severa areas in Science and Engineering.

A significant development in chaos theory occurred when Lorenz discovered a 3-D chaotic system of a
weather model [2]. Subsequently, Rosser found a 3-D chaotic system [3], which is algebraically simpler
than the Lorenz system. Indeed, Lorenz’s system is a seven-term chaotic system with two quadratic
nonlinearities, while Rosder’s system is a seven-term chaotic system with just one quadratic nonlinearity.

Some well-known paradigms of 3-D chaotic systems are Arneodo system [4], Sprott systems[5], Chen
system [6], LU-Chen system [7], Liu system [8], Cal system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],
Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems
[36-37], Jafari system [38], etc.

Chaostheory has applicationsin several fields of science and engineering such aslasers[39], oscillators
[40], chemical reactions[41-50], biology [51-66], ecology [67], artificial neural networks[68-69], robotics
[70-71], fuzzy logic [72], electrical circuits [73-76], cryptosystems [77-78], memristors [79-81], etc.
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A hyperchactic attractor is typicaly defined as chaotic behavior with at least two positive Lyapunov
exponents. The first hyperchaotic system was proposed by Rosder in 1979 [82]. The Lyapunov exponents
of the hyperchaotic Rossler system were determined asL, = 0.112,L,=0.019, L,=0and L, =-25.188. In
the last few decades, many hyperchaotic systems have been reported in the literature such as hyperchaotic
Lorenz system [83], hyperchaotic Ll system [84], hyperchaotic Chen system [85], hyperchaotic Li system
[86], hyperchaotic Vaidyanathan systems [87-95], etc.

In this paper, we announce a novel 4-D hyperchaotic system with three quadratic nonlinearities. The
novel 4-D hyperchaotic system has been derived by introducing a state feedback control to novel 3-D
Vaidyanathan chaotic system [27]. We discuss the qualitative properties of the novel 4-D hyperchaotic
system and display the phase portraits of the novel 4-D hyperchaotic system. The proposed novel 4-D
hyperchaotic system has a unique equilibrium at the origin, which is a saddle-point.

The Lyapunov exponents of the novel 3-D Vaidyanathan chaotic system [27] are obtained as
L, =271916, L,=0and L, = -13.72776. The Kaplan-Yorke dimension of the novel Vaidyanathan chaotic
system is derived as D, , = 2.19808. The Lyapunov exponents of the novel 4-D hyperchaotic system are
obtained as L, = 3.05638, L, = 0.08646, L, = 0 and L, = —20.12087. Also, the Kaplan-Yorke dimension of
the novel conservative chaotic system is derived as D, = 3.15619.

Next, this paper derives an adaptive control law that stabilizes the novel hyperchaotic system with
unknown system parameters. This paper also derives an adaptive control law that achieves global chaos
synchronization of identical conservative chaotic systems with unknown parameters.

Synchronization of chaotic systems is a phenomenon that may occur when a chaotic oscillator drives
another chaotic oscillator. In most of the synchronization approaches, the master-dave or drive-response
formalism is used. If a particular chaotic system is called the master or drive system, and another chaotic
system is called the dave or response system, then the idea of synchronization is to use the output of the
master system to control the response of the dave system so that the slave system tracks the output of the
master system asymptotically.

In the chaos literature, a variety of techniques have been proposed to solve the problem of chaos
synchronization such as PC method [96], active control method [91-112], adaptive control method [113-
125], backstepping control method [ 126-134], fuzzy control method [ 135-136], sliding mode control method
[137-146], etc. Anti-chaos control and synchronization of chaotic and hyperchaotic systems are important
research problems in the chaos literature.

This paper is organized asfollows. In Section 2, we describe the novel 4-D hyperchaotic system with three
quadratic nonlinearities. In Section 3, we describe the quditative properties of thenovel 4-D hyperchaotic system.
In Section 4, we detail the adaptive control design for the global chaos ahilization of the novel hyperchaotic
system with unknown system parameters. In Section 5, we detall the SPICE smulation of the proposed novel
hyperchaotic system. In Section 6, we give a summary of the main results derived in this research work.

2. ANOVEL 4-DHYPERCHAOTIC SYSTEM

In[27], Vaidyanathan et al. (2015) announced a novel 3-D chaotic system described by
% =a(X, = %)+ dxX
X, =bX = %% 1)
X = %X —CX
In (1), x,, X,, X,arethe states and a, b, ¢, d are constant, positive, parameters.
In (1), it was shown that the system (1) is chaotic when the parameter values are taken as
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a=10, b=15 c=1 d=12 2
For numerical smulations, we take the initial values of the novel chaotic system (1) as
%(0)=0.6, x,(0) =1.8, x,(0)=1.2 (3)
The Lyapunov exponents of the novel Vaidyanathan system (1) are obtained as
L, =271916, L, =0, L,=-13.72776 4
Figure 1 describes the two-scroll strange attractor of the novel Vaidyanathan chaotic system (1).
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Figure 1: Phase portrait of the novel 3-D Vaidyanathan chaotic system

In this paper, we propose a novel 4-D hyperchaotic system by introducing a state feedback control to
the novel Vaidyanathan chaotic system (1). Our system is described by the 4-D dynamics

¥ =a(x, —x) + X
X, =X = X% + pX,
X = %% —CX% (5)
X4 =—0x
In(5), X, X,, X, X, arethe statesand a, b, ¢, d, p, g are constant, positive, parameters.
The system (5) is hyperchaotic when we take the parameter values as
a=15 b=18 c=2, d=13 p=04, g=14 (6)
For numerical smulations, we take the initial values of the novel 4-D system (5) as
%, (0) =0.6, x,(0) =18, x,(0)=1.2, x,(0)=0.5 @)
The Lyapunov exponents of the novel 4-D system (5) are numerically obtained as
L, =3.05638, L, =0.08646, L, =0, L,=-20.12087 (8)
Since the novel 4-D system (5) has two positive Lyapunov exponents, it is hyperchaotic.
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Figures 2-5 show the 3-D projections of the novel hyperchaotic system (5) in (x,, X,, X,), (X, X;, X,) and
(X, X, X,) spaces, respectively. Figure 2 exhibits atwo-scroll strange chaotic attractor of the novel hyperchaotic
system (5) inthe (x,, X,, X,) space.
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Figure 2: 3-D projection of the novel hyperchaotic system Figure 3: 3-D projection of the novel hyperchaotic system
on the (x,, X,, X,) space on the (x,, X,, X,) space
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Figure 4. 3-D projection of the novel hyperchaotic system Figure 5. 3-D projection of the novel hyperchaotic system
on the (x,, X,, X,) space on the (x,, X,, X,) space

3. PROPERTIES OF THE NOVEL HYPERCHAOTIC SYSTEM
In this section, we discuss the qualitative properties of the hyperchaotic system (5) introduced in Section 2.
We suppose that the parameter values of the system (5) are asin the hyperchaotic case, i.e.

a=15 b=18 c=2, d=13 p=04, g=14 9

3.1. Dissipativity
In vector notation, we may express the 4-D hyperchaotic system (5) as

£ (% %00 X5, %,)

_ (=] 2% %)
fa (X0 %5, %50 %,) (10)

f (X %o, %55 %,)



ANovel 4-D Hyperchaotic System with Three Quadratic Nonlinearities, its Adaptive Control... 343

where

fl(X1’ Xp1 %35 X4) = a(x2 - X'l) + dX2X3
Fo (6 %50 %5, %) = X, — X, %, + pX,
Fa(X %0 %5, X,) = XX, — € (11)
f4()(1’)(21)(31)(4) =—0X
Let Q be any region in R* with a smooth boundary and also Q(t) = @ (), where @, is the flow of the
vector field f. Furthermore, let V/(t) denote the hyper-volume of Q(t).

By Liouville's theorem, we have

V= I(V-f)dxldxz dx, dx,

ot (12)
The divergence of the novel hyperchaotic system (5) is easily found as
v.f =a—fl+i+a—f3+8—f4:—a+0—c+0=—(a+c):—y (13)
oX% OX, 0% OX,
wherep=a+c=17>0.
Substituting (13) into (12), we obtain the first order ODE
V= I (=) dx dx, dx, dx, = —uV (14)
Q(t)
Integrating (14), we obtain the unique solution as
V(t) =exp(—ut) V(0), foral t >0 (15)
Since p > 0O, it follows from Eq. (15) that V(t) — O exponentially ast — .
Thus, the novel 4-D hyperchaotic system (5) is dissipative.
3.2. Symmetry and Invariance
It is easy to see that the hyperchaotic system (5) is invariant under the coordinates transformation
(X1'X2'X31X4):(_X1'_X2’X3’_X4) (16)

Thus, the novel hyperchaotic system (5) has rotation symmetry about the x —axis. As a consequence,
any non-trivial trgjectory of the system (5) must have atwin trajectory.

It is also easy to check that the x —axis is invariant for the flow of the novel hyperchaotic system
(5).
Also, the invariant motion along the x.—axis is characterized by the scaar dynamics

%, =—CX;, (C>0) (17)
which is globally exponentialy stable.

3.3 Equilibrium Points
The equilibrium points of the system (5) are obtained by solving the system of equations
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a(x, — %) +dx,x; =0

bx, — XX+ px, =0

XX, —C%; =0 (18)
~0% =0

Solving the system (18), we obtain the unique solution as

0| (19)

The Jacobian matrix of the system (5) at the equilibrium point Eis given by

-a a 0 O -15 15 0 O
0 0 p 188 0 0 O
vJ :\] = =
0= J(E) 0 c O 0 0 -2 0 (20)
-9 0 0 0| |[-14 0 0 O

The matrix J has the eigenvalues
A =0, 4,=-2, 1,=-255624, 1, =10.5624 (21)
This shows that the equilibrium point Eis a saddle-focus point, which is unstable.

3.4. Lyapunov Exponents and K aplan-yorke Dimension
We take the parameter values of the novel system (5) asin the hyperchaotic case, i.e.
a=15 b=18 c=2, d=13 p=04, q=14 (22
We choose the initial values of the state as
%, (0) =0.6, x,(0) =18, x,(0)=1.2, x,(0)=0.5 (23)
The Lyapunov exponents of the novel 4-D system (5) are numerically obtained as

L, =3.05638, L, =0.08646, L, =0, L,=-20.12087 (24)
Since the novel 4-D system (5) has two positive Lyapunov exponents, it is hyperchaotic.
Figure 6 shows the Lyapunov exponents of the system (1) as determined by MATLAB.
Also, the Maximal Lyapunov Exponent of the system (1) isL, = 3.05638.
The Kaplan-Yorke dimension of the novel hyperchaotic system (5) is derived as
oy =3+ 5 s 15 -

4

4. ADAPTIVE CONTROL DESIGN FOR THE STABILIZATION OF THE NOVEL
HYPERCHAOTIC SYSTEM

In this section, we use adaptive control method to derive an adaptive feedback control law for globally and
exponentially stabilizing the novel 4-D hyperchaotic system with unknown parameters.
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Figure 6: Lyapunov exponents of the novel hyperchactic system
Thus, we consider the novel 4-D hyperchaotic system given by
% =a0% = X) + X+ Uy
X =0 = XX + PX, + U,
X5 = %X, = CX + Ug (26)
X, =—0% +U,

In(26), x,, X,, X, X, arethe statesand u,, u,, U, u, are adaptive controlsto be determined using estimates

of the unknown system parameters.
We consider the adaptive control law defined by

Uy ==8(1)(%, ~ %) ~d ()% ~k X
u, = _B(t))ﬁ XX~ f)X4 —kx,

Ug ==X X, + é(t)X3 —ksX

u, = Q(t)xl —K,X,

wherek , k,, k,, k, are positive gain constants.
Substituting (27) into (26), we get the closed-loop plant dynamics as

% =[a— &) (% — %) +[d - d(O)]x% — kX,
%, =[b—b(t)]x +[ p— P)]IX, —K,X,

% = —[c— E()]% — ko,

X4 = _[q - Q(t)]xl - k4X4

(27)

(28)
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The parameter estimation errors are defined as

e, (t)=a-4a(t)
& (1) =b-b(t)
e (t)=c—&(t)
&®=d-d® 29)
e,(t) = p—p(t)
e, () =9-q(t)

Using (29), we can simplify the closed-loop plant dynamics (28) as

)'(1 = ea(XZ - X1) T & XX — klx'l

X, =X + €, X, — kzxz

X5 = —6.% — KX (30)
X, = —€% — KX,

Differentiating (25) with respect to t, we obtain

&, () =-a()
&(t) =)
&.(t) =—C(t)
& = _a(t) (31)
e, () =-p(t)
&,(t) =—q(t)

We use adaptive control theory to find an update law for the parameter estimates.
We consider the quadratic candidate Lyapunov function defined by

V(x,€,,6,€,.86,6,,6) :%(xf +X X+ + €+ e+ +€]) (32)
Clearly, V is a positive definite function on RY.
Differentiating V along the trgjectories of (30) and (31), we obtain

A

v :_k1X12 _k2X22 —k3X§ —k4Xf +ea[X1(X2 _)('1)_5':|+e0[xlxz _b}
+e [—x,j —6]+ed [xlxzx3 —dA}ep [xzx4 - f)}teq [—xlx4 —(ﬂ (33)

In view of (33), we take the parameter update law as follows:
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d =x%% (34)

Theorem 1. The novel 4-D hyperchaotic system (26) with unknown system parametersis globally and
exponentially stabilized for al initial conditions x(0) e R* by the adaptive control law (27) and the parameter
update law (34), where k, k,, k,, k, are positive gain constants.

Proof. We provethis result by using Lyapunov stability theory [ 147]. We consider the quadratic Lyapunov
function defined by (32), which is positive definite on R,

By substituting the parameter update law (34) into (33), we obtain the time derivative of V as
V= _k1x12 - kzxz2 - k3X§ - kAXj (35)
From (35), it is clear that \/ is a negative semi-definite function on R,

Thus, we can conclude that the state vector x(t) and the parameter estimation error are globally bounded, i.e.

[xt) e® &) e a® e®) e®] el (36)
We define k = min {k,, k,, k,, k}.
Thus, it follows from (35) that
V < —k|x(®)[ (37)
Thus, we have
kx| <-V (38)
Integrating the inequality (38) from O to t, we get

k[|x(@)[ dr <V (©) -V (t) (39)

From (39), it followsthat xeL,. Using (30), we can conclude that xe L.

Using Barbalat’s lemma [147], we can conclude that x(t) — O exponentially ast — oo for all initia
conditions x(0)eR".

This completes the proof. m

For numerical simulations, the classical fourth-order Runge-Kutta method with step size h = 108is
used to solve the systems (26) and (34), when the adaptive control law (27) is applied.

The parameter values of the novel hyperchaotic system are taken as in the hyperchaotic casg, i.e.

a=15 b=18 c=2, d=13 p=04, g=14 (40)
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We take the positive gain constantsask = 5fori = 1, 2, 3, 4.
Furthermore, as initial conditions of the novel hyperchaotic system (22), we take
%(0)=8.5, x,(0)=4.7, x,(0)=-5.9, x,(0)=12.8 (41
Also, as initial conditions of the parameter estimates, we take
4(0) =15, b(0)=9, &0)=4, d(0)=3, p(0)=11 G(0)=5 (42)

Figure 7 shows the exponential convergence of the controlled state trajectories of the 4-D novel
hyperchaotic system (26).

i 3 4 ) B
Time (sec)

Figure 7: Time-history of the controlled state trajectories of the hyperchaotic system

5. CIRCUIT SIMULATION OF THE NOVEL HYPERCHAOTIC SYSTEM

Inthis section, an electronic circuit isdesigned to show the feasibility and complex dynamicsof the theoretical
model (5). The circuit employs common electronic components such as resistors, operational amplifiers,
analog multipliers, and capacitors.

The schematic of the proposed circuit is shown in Fig. 8 in which the output voltages on the capacitors
(V, Ve, s Ve, » Ve, ) correspond to the state variables (x,, X,, X, X,) of the model (5). The circuital equations of
the circuit are given by

e 1 Ve — 1 Ve + Ve V,

d RC, * RC © RC *°

e, | 1 Ve - VoV +—y,

d RC, © 10RC, *“ RC, “

dve, _ 1 vov. — 1 v 3
& RC, e Re @ (43)
dve, 1

dt RC,
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Figure 8: The eectronic circuit of the novel 4-D hyperchactic system

The values of electronic componentsin Fig. 8 are chosen as:
R =R, =26.667kQ, R, =3.077kQ, R, =22.222kQ), R, = 4kQ R, =1MQ, R, =40kQ, R, = 200kQ2,
R, = 285.714kQ, R=400kQ,and C,=C,=C,=C, =1nF.

The outputs of the circuit in Fig. 8 are displayed in Figs. 9-12 by using OrCAD-PSpice. Obtained
results indicate the feasibility of the theoretical hyperchaotic system (5). Moreover, this circuit is useful in
potential chaos-based applications.
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- - —_— i -
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Figure 9: Phase portrait of the electronic circuit in the Figure 10: Phase portrait of the electronic circuit in the

VCl —VCQ plane VCl —VCs plane
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Figure 11: Phase portrait of the electronic circuit in the Figure 12: Phase portrait of the electronic circuit in the
Ve, — Ve, plane V, —V,, plane

6. CONCLUSIONS

In this paper, we derived anovel 4-D hyperchaotic system by introducing a feedback control to the novel 3-
D Vaidyanathan chaotic system. The phase portraits of the novel 4-D hyperchaotic system are displayed
and the mathematical properties are discussed. The novel 4-D hyperchaotic system has aunique equilibrium
at the origin, which is a saddle-point. The Lyapunov exponents of the novel 4-D hyperchaotic system are
obtained as L, = 3.05638, L, = 0.08646, L, = 0 and L, = —20.12087. Also, the Kaplan-Yorke dimension of
the novel 4-D hyperchaotic systemisderived asD, = 3.15619. Next, we designed an adaptive controller to
globally stabilize the novel 4-D hyperchaotic system with unknown parameters. Finally, an electronic circuit
simulation of the novel hyperchaotic system was presented using SPICE to confirm the feasibility of the
theoretical model.
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