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ABSTRACT

Lifetime of the sensor nodes can be enhanced by using a technique which minimizes the energy consumption.
Compressed Sensing (CS) is one such technique which helps achieving image compression and energy efficiency.
However it adopts random projection of signal components, which reduces the quality of the reconstructed image.
In order to achieve better image quality, adaptive projection of signal components is required. Coefficient Permuted
Energy based Re-weighted Sampling (CPERWS) is used to adaptively extract high energy frequency components
of the image. Hence Block CS (BCS) with Daubechies Wavelet Transform (Daub WT) based CPERWS technique
is proposed to distinctly sample components based on their information content. Analysis confirms that proposed
method outperforms conventional CS and the reconstructed image quality is greatly enhanced even for lesser number
of measurements. Experimental analysis is done using Atmega128 of Mica2 mote. Execution time and energy
consumed are computed in the hardware platform. DaubWT based CPERWS has approximately 33% lesser energy
consumption than DCT based BCS techniques.
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1. INTRODUCTION

WSNs are resource constrained and have high band width demand. It is essential to reduce the energy
consumption involved in image transmission to increase the lifetime of nodes [3]. In order to achieve this,
data transmitted within the nodes should be compressed. Conventional compression techniques are not
efficient in achieving compression of data for WSN.

CS technique is used for reconstruction of the image from relatively fewer measurement values. However
it follows non adaptive random projection of signal components. Signal components are chosen in a random
manner irrespective of their energy contribution to the image. This significantly degrades the quality of the
reconstructed image. In order to overcome this, Block compressed sensing (BCS) techniques are adopted.
BCS [9] follows adaptive projection of signal components i.e., projection of vectors is along the direction
of signal components with higher energy. Moreover same measurement matrix is applied to all the blocks
which reduces storage space and computation complexity.

2. RELATED WORKS

D.L.Donoho [11] explains about the basic concepts of CS. He claims that certain signals and images can be
recovered from fewer samples or measurements. In [9] Lu Gan discussed about block compressed sensing
of natural images. Image acquisition is conducted in block by block manner thereby capturing the complicated
geometric structures of the natural images

Zhirong Gao, Chengyi Xiong, Lixin Ding, Cheng Zhou[4], investigated a method called CRP which is
effective in balancing the sparsity of sampled vectors in DCT domain. As a result performance gain will be
high.
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Yi Yang, Oscar C. Au, Lu Fang, Xing Wen and Weiran Tang [7] introduced a weighting scheme into
conventional CS framework. Weight values are determined based on statistics of image and a weight matrix
is designed. This matrix extracts signal components with larger magnitude thereby enhancing quality of
reconstructed image. Alternatively Energy matrix is designed in [2]. Energy values are determined based
on the energy distribution of the image. The quality of the reconstructed image was found to be better than
all other existing methods.

In this paper, coefficient permuted energy based reweighted sampling in DCT and DaubWT domain are
investigated. This technique is extension of one proposed in [2]. This technique involves balancing the
sparsity of the blocks and acquiring the frequency components of the image which has very high energy.
Hence poorly sparse blocks are reconstructed well and higher energy components which contribute for
reconstruction of image with better psnr is effectively extracted. The measurements are taken using daub
DWT, which reduces the energy consumption effectively.

The performance of DCT, DWT and wavelets like Haar Wavelet and Daubechies Wavelet for still
image compression system is discussed in [5]. Daub WT is used in this paper. This technique is capable of
reducing the calculation work and run time. Summing and difference coefficients are obtained faster than
other techniques.

The rest of the paper is organized as follows: overview of CS is provided in Section III, Section IV
discusses about the CPERWS, Section V discusses about DaubWT based CPERWS, experimental results
are provided in Section VI and Section VII concludes the paper.

3. OVERVIEW OF CS

Consider a signal X of length N. suppose if we can choose n measurements (n << N) from X then CS
process is defined as follows

Y X (1)

Where Y represents n × 1 sampled vector and � is n×N measurement matrix. If a signal is sparsely
represented in certain domain �  then X can be represented as

X S (2)

Where S denotes sparse representation of discrete signal X.

The sampling process can be expressed in general form as

Y S (3)

When � and�  are incoherent and if their product satisfies RIP [4] then K-Sparse (Non zero values)
can be well reconstructed from n � cK log(N/K) where c is a constant.

Sparse binary random matrix is used as measurement matrix. This has performance similar to
gaussian random matrix. This matrix uses only binary digits 0’s and 1’s. Hence it  simplifies
computation complexity. Sparse binary random matrix will have RIP with high probability irrespective
of the choice of transform basis [4]. Orthogonal matching pursuit(OMP) [10] is used as reconstruction
algorithm.

4. PROPOSED METHOD CPERWS

CS uses a fixed measurement matrix, which identically samples all signal components irrespective of their
information content. As a result reconstructed image quality is poor. In order to achieve efficiency low
frequency components which occupy larger part of energy are to be extracted. In [2] adaptive measurement
matrix is designed based on the energy distribution of the image. However sparsity of the sampled blocks
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are not balanced which reduces the sampling efficiency. In CPERWS, the coefficients are permuted to
achieve balance in sparsity and Energy matrix is designed to extract the high energy components of the
image.

Fig. 1. shows the transmitter section. High energy components of the image are chosen by multiplying
the image vector with energy matrix. These high energy components are then passed on to the receiver
section. The block diagram of the receiver section is shown below in Fig. 2. OMP reconstruction algorithm
is used for fast reconstruction. Energy inverse matrix is multiplied at the receiver side to recover the
coefficients. Recovered coefficient are grouped together to form image.

4.1. CPERWS Sampling scheme

1. The input image of size M × N is divided into blocks of size m×n and then sparsified by using 2D DWT.

2. Vectorize the DWT coefficients of each block into 1D sequence.

3. Coefficients belonging to same frequency from all blocks are grouped and randomly permuted to achieve
balanced sparsity.

4. Blocks are rebuilt from the permuted vectors.

5. Energy values corresponding to each frequency component is then calculated and assigned as {E
1
, E

2
,

… E
m×n

}.

6. Energy values are calculated by using the formula

2

i iE (4)

Where

�
i 
denotes the mean of components with same frequency. i�

�
i 
denotes the variance of components with same frequency.

i = 1, 2… m × n.

7. Energy values are placed along the leading diagonal of the matrix with other elements as zeroes. Energy
matrix is represented as

Figure 1: Transmitter section

Figure 2: Receiver section
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8. CPERWS is performed for each rebuilt vector and is described as follows

cpY ES (6)

Where S
cp

 denotes sparse representation of coefficient permuted discrete signal X.

9. The recovered coefficients are regrouped.

10. Inverse permutation is performed for recovered frequency components.

11. Coefficients are rebuilt for each recovered image block.

12. At the receiver side energy inverse matrix is multiplied.

13. IDWT is taken for all blocks.

5. DAUB WT BASED CPERWS

DCT is floating point transform. Coefficients are calculated using multiplications and additions. Floating
point implementations are slow in hardware. As a result it occupies more space and power. Conventional
DWT [1] involves convolution procedure which makes them more complicated. Hence simpler and faster
DWT, Daub WT is used in this paper.

The Daub WT decomposes a discrete signal into two sub signals of half its original length. One sub
signal is running average and other one is the running difference. They use overlapping windows which
easily reflects all high frequency changes [5]. Hence reconstructed image is of high quality and are more
suitable for image compression applications. Daubechies 4tap wavelet has been chosen for implementation.
Daub WT is conceptually simple and fast. It is memory efficient. Hence Daub WT based CPERWS is more
advantageous than DCT based CPERWS.

6. EXPERIMENTAL RESULTS

Simulation and energy analysis is done for the proposed method. Mica2 platform with Atmel Atmega128L
processor is used for energy analysis. Computation is performed using WinAVR with ‘-O3’ optimization
for 8 × 8 image blocks. The test image [Cameraman (256 × 256)] is taken from image database [16,17].

Table 1
PSNR Comparison for Various Techniques

Cameraman (256 × 256), Block size = 8 × 8

TECHNIQUES

No of DCT DWT

measurements RWS [7] CPERWS RWS [7] CPERWS

10 21.3802 24.8632 23.3002 25.3432

8 18.8479 23.3004 23.1547 25.0452

6 17.3005 22.0002 23.0012 24.8246

4 15.4388 20.5064 22.7892 24.0024
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Sparse binary random matrix is used as measurement matrix. PSNR comparison for DCT and DWT based
RWS and CPERWS is tabulated in table 1.

It is evident from Table 1 that DWT based CPERWS is more efficient than DCT based CPERWS.
However they involve convolution procedures which increase the CPU cycles when implemented in hardware
platform. Hence simplest and fastest DWT calculation procedure, Daub WT is chosen for the energy
efficiency of Sensor nodes. Also CPERWS is more efficient than RWS [7] in improving the PSNR values.
Therefore reconstructed image is of better quality

From Table II it is clear that Daub WT based CPERWS has achieved better PSNR values than DCT and
conventional DWT based CPERWS. Although there is only slight improvement in the PSNR values, when
implemented in hardware platform they show significant improvement in reducing the CPU cycles. As a
result energy consumption is also reduced to great extend.

Fig. 3. shows graphical representation of PSNR value comparison for DCT, DWT and Daub WT based
CPERWS techniques. It is evident that proposed method is very efficient in increasing the PSNR for lesser
number of measurements.

In hardware platform DCT based CPERWS consumes more time and energy because of the complexity
involved in the calculation procedure. It involves floating point multiplications and additions. As a result
CPU cycles, execution time and energy consumed is more. Conventional DWT is also not so efficient
because it involves convolution procedures thereby increasing the complexity.

In order to reduce the execution time and energy consumed, faster DWT calculation procedure – Daub
WT is used. It involves averaging and differencing the coefficients which consumes less energy.

Table 2
PSNR Comparison for CPERWS using various Techniques

Cameraman (256 × 256), Block size = 8 × 8

NUMBER OF MEASUREMENTS

Techniques 10 8 6 4

DCT 24.8632 23.3004 22.0002 20.5064

DWT 25.3432 25.0452 24.8246 24.0024

DAUB WT 25.6542 25.4941 25.4200 24.8542

Figure 3: PSNR comparison
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From Table III, it is clear that number of cycles for RWS is more than that of CPERWS. Daub WT
based RWS and CPERWS has less number of cycles than DCT based RWS and CPERWS. It is evident that
Daub WT is efficient than DCT and CPERWS is efficient than RWS. Hence Daub WT based CPERWS is
the most efficient one in reducing the CPU cycles.

From Table IV it can be seen that proposed method has less Execution time than DCT based CPERWS.
From TableV it can be found that energy consumption is also significantly reduced for proposed method.
Hence proposed technique is the most efficient one for wireless sensor networks.

Table 6
Percentage reduction in CPU cycles, Execution Time and Energy Consumed

Evaluation Parameters Percentage Reduction

CPU Cycles 32.78 %

Execution time 34.29 %

Energy Consumed 32.5 %

7. CONCLUSION AND FUTURE WORK

Image representation using BCS in Daub WT for compression application is investigated in this paper.
Proposed CPERWS is very efficient in extracting only high energy components of the image and also in
balancing the sparsity of blocks. This technique has achieved a significant increase in PSNR value than
other techniques. CPU cycles, energy consumption and execution time in hardware platform is very less.
Daub WT based CPERWS takes 33% less CPU cycles than DCT based CPERWS. Hence Daub WT based

Table 4
Comparison of Execution time for DCT and Daub WT based CPERWS

Transform No. of measurements Total cycles Execution time (ms)

DCT 10 3053454 382.7

8 3052286 382.6

6 3051120 382.5

4 3049954 382.3

Daub WT 10 2052364 251.8

8 2051196 251.6

6 2050030 251.4

4 2048864 251.2

Table 5
Comparison of Energy consumption for DCT and Daub WT based CPERWS

Transform No. of measurements Total cycles Energy consumed (mJ)

DCT 10 3053454 8.3102

8 3052286 8.3008

6 3051120 8.2978

4 3049954 8.2900

Daub WT 10 2052364 5.6320

8 2051196 5.6228

6 2050030 5.6200

4 2048864 5.5980
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CPERWS is the most efficient method for WSN. Future work is to propose a technique which is less
complex and more efficient in terms of memory.
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