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Abstract: In this paper, we have introduce an algorithm and proved theorems for Jungck-Ishikawa iteration for 
non-self – mappings pair, study its sconvergence property, stability and  dependency of data . It is seen that this 
iterative scheme has much better convergence rate than those of Jungck–Mann, Jungck–Noor in case of complex 
numbers. Numerical examples are also given in support of validity and applications of our results taking complex 
values. We introduce in this paper the complex dynamics of various functions like increasing functions, decreasing 
functions, oscillating functions and biquadratic functions and compared their convergence speeds and applied Jungck 
Ishikawa iteration to generate Relative Superior Mandelbrot set and Relative Superior Julia set. Only mathematical 
explanations are derived by using Jungck Ishikawa Iterative scheme for the above functions but in this paper we 
have generated  Mandelbrot sets and its Relative  Julia sets. Our results are generalization and extensions of those of 
various authors in the literature.
Keywords: Complex dynamics, Relative Superior Mandelbrot set, Relative Julia set, Jungck Ishikawa Iteration.

1.  INTRODUCTION

“Fractal” came from Latin word “fractus” which means “broken”. The word fractal was fi rst time used by a 
mathematician Gaston Julia [Benoit B. Mandelbrot 1983], when he was studying the  behavior of  Newton’s 
method in complex plane also known as Cayley’s problem. Julia derived Julia set in 1919 by introducing  
the concept of iterative function system (IFS).In 1975, Benoit Mandelbrot after extending the ideas of Julia, 
introduced the Mandelbrot set by using the complex function z2 + c, where z is used as a complex function and 
c as a complex parameter [Ashish Negi et al. 2008].
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Benoit B. Mandelbrot , mathematician introduced Fractals in 1979 for describing irregular and chaotic 
natural phenomenon as lunar landscapes, mountains, trees branching and coastlines etc. The object Mandelbrot 
set and its relative object Julia set due to their complex nature and beauty have become superior in areas of 
research nowadays. These graphics are  obtained by “coloring” the escape speed of the seed points within the 
certain regions of the complex plane that give rise to the unbounded orbits.

Julia and Mandelbrot sets are always studied under the effect of noises [M Rani 2010] arising in the 
objects. In 2004, Rani and Kumar [M Rani et al. 2009], introduced superior iterates (a two-step feedback 
process) in the study of fractal theory and created superior Julia and Mandelbrot sets. Later on, in a series of 
papers Rani et al. have generated and analyzed superior Julia and superior Mandelbrot sets for quadratic, cubic, 
biquadratic and nth degree [J.O. Olaleru et al. 2010] introduced Julia and Mandelbrot sets in Jungck Mann and 
Jungck Ishikawa orbits. 

1.1. Preliminaries

1.1.2. Jungck Ishikawa Iteration[8]
Let (X, ||.||) be a Banach space and Y an arbitrary set. Let S, T: Y  X be two non-self-mappings such that T(Y) 
 S(Y), S(Y) is a complete subspace of X and S is injective. Then for xo Y, defi ne the sequence 

{Sxn} iteratively by  
 Sxn + 1 = n Tyn + (1 – n ) Sxn

 Syn = n Txn + (1 –  n ) Sxn

where 0  n  1 and 0  n  1 and n & n  both convergent to  non-zero number.         
We will be using the contractive defi nition[20] which Olatinwo has used to prove the strong convergence 

results for the Jungck-Ishikawa Iteration, that there exists a real number  a  (0,1) and a monotone increasing 
function   R+  R+ such that 

 (0) = 0 and for x, y Y,we have
 Tx – Sy   (Sx – Tx) + a(Sx – Sy) (1)
This condition will be used to prove the theorems.

2. MAIN RESULTS

2.1. Algorithm to Find the Roots or Fixed Points of Different Functions Having Complex Values 
using Jungck Ishikawa Iteration

Read x
Where x is the initial complex value found out from Julia set (i.e c), n is the numbers iterations.
1.  Tx = f(x)
2.  Sx = f1(x)
3.  Sy = (1 – an )* Sx + an *Tx
4.  f1(y) = Sy.
 Find out the value of y by equating the above equation.

5.  Ty = f (y)

6.  Sx = (1 – bn)* Sx +  bn * Ty

7. f1(x) = Sx
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 Find out the value of x by equating the above equation.

8. Repeat step 4 to 8 until Tx = Sx = p

 where p is the point where Sx , Tx sequences converges to a fi xed point i.e p.

2.2. Theorem
Let (X, ||.||) be an arbitrary Banach space, and Let Q, P: Y  X be non-self-operators on an arbitrary set 
satisfying contractive Condition. Assuming that P (Y)  Q (Y ), Q(Y) is a complete subspace of X and 
Qz = Pz = p(say). For ex- x0 € Y, let {Qxn}¥

n = 0  be Jungck Ishikawa iterative scheme,w here  n & n  are the 
sequences of positive numbers in [0,1] with n satisfying å¥

n n = 0 = ∞.Then Jungck Ishikawa iterative scheme 
{Qxn}¥

n = 0 converges strongly to p. Also, p will be the  unique common fi xed point of Q, T provided that 
Y = X, and Q, P are weakly compatible.

Proof : First we prove that Jungck Ishikawa iterative scheme {Qxn}¥
n = 0 converges strongly to p.

It follows from Jungck Ishikawa iterative scheme and contractive condition (7) that
 ║Qxn + 1 – p║ = ║ (1 – a n )Qxn + a n Pyn – (1 – a n + an ) p║ £ (1 – a n ) ║ Qxn – p║ + an ║Pyn – p║

  =  (1 – an ) ║ Qxn – p║+ an ║Pyn – Pz ║

   (1 – an) ║Qxn – p║+ an ║Pz – Pyn ║

   (1 – an) ║Qxn – p║ + an {  (║ Qz – Pz ║) + a(║Qz - Qyn ║)}

  = (1 – an ) ║ Qxn – p ║+  n { * 0) + a(║Qyn – p║)}

  = (1 – an ) ║Qxn – p ║+ aan ║ Qyn – p ║ (2)

Similarly

 ║ Qy n – p║ =   ║ (1 – n ) Qxn + n Pxn – (1 – n + n ) p║ (1 – n ) ║Qxn – p║+ bn ║Px n – p║

  = (1 – n ) ║ Qxn – p║+ n ║Px n – Pz ║

   (1 – n) ║Qxn - p║ + bn ║Pz – Pxn ║

   (1 – n ) ║Qxn – p║ + n { (║Qz – Pz ║) + a (║Qz – Qxn ║)}

  = (1 – n ) ║Qxn – p║+ n {f * 0) + a (║Qx n - p║)

  = (1 – n ) ║Qx n – p║+ a n ║Qx n – p║

   (1 –  bn (1 – a )) ║Qx n – p║ (3)

It follows from (1) that

 ║Qxn + 1 – p║ = (1 – n ) ║Qx n – p║  + an (1 – n (1 – a )) ║Qxn – p║ (4)

Using an (1 – n (1 – a ))  an inequality (4) yields

 ║Qxn + 1 – p║   (1 – n ) ║Qxn – p║ + an ║Qxn – p║

   (1 – n + an ) ║Qxn – p║

   (1 – n (1 – a )) ║Qxn – p║

   (1 – (1 – ) (Q 0 – ) – (1 – 0 )
n

k
k = 0

a x p a k k∞α ∑ = α∏  (5)
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Hence it follows from (5) that lim n   ║Qxn – p║ = 0 .Therefore {Qxn}
n = 0 converges strongly to p.

Now we are proving that p is unique common fi xed point of S and T. Let there exist another pair of 
coincidence say p* .then, there exists  r *  X such that Qr * = Pr * = p*. But from contractive condition 
(1), we have

 0  ║ p – p * ║ = ║Pr – Pr* ║  (║Qr – Pr ║) + a ║ Qr – Pr* ║
  = a ║ p – p* ║

which implies that  p = p*as 0   a < 1.
Now as Q and P are weakly compatible and p = Pr = Qr, so Pp = P(Pr) = P(Qr) = Q(Pr) and hence 

Pp = Qp. Therefore,Tp is a point of coincidence of Q,P and since the point of coincidence is unique then 
p = Pp. Thus, Pp = Qp = p, and therefore p is fi xed point of Q and P and which is unique.

3.  FIXED POINT S
We have discussed here four cases to fi nd out the fi xed points.

Decreasing Function (1– x)6 + c = 0: In order to solve this function by Jungck Ishikawa Iterative scheme, 
we write it in the form of Sx = Tx where the function T, S is defi ned as T(x) = (1 – x) 9 + c and Sx = x, respectively.

Increasing Function x2 – 2x – 3 + c = 0: In order to solve this function by Jungck Ishikawa Iterative 
scheme, we write it in the form of Sx = Tx where the function T, S is defi ned as Tx = (x2 – 3) + c and Sx = 2x, 
respectively.

Oscillating Function 1/x + c = 0: In order to solve this function by Jungck Ishikawa Iterative scheme, we 
write it in the form of Sx = Tx where the function T, S is defi ned as Tx = 1/x + c and Sx = x, respectively.

Biquadratic Function x4 – 36x2 – 52x + 87 + c = 0 : In order to solve this function by Jungck Ishikawa 
Iterative scheme, we write it in the form of Sx = Tx where the function T, S is defi ned as T(x) = x4 – 36x2 + 87 + 
c and Sx = 52x, respectively.

3.1. Fixed Points of Decreasing Function

Table 1
Orbit of F (z) for (z0 = 1.325 – 0.1375i) at α = β = 0.5 and c = 0.1

Number of iterations z |Tz| |Sz|

11 0.2633 0.2599 0.2633
12 0.2627 0.2609 0.2627
13 0.2623 0.2611 0.2623
14 0.2621 0.2614 0.2621
15 0.2620 0.2616 0.2620
16 0.2619 0.2617 0.2619
17 0.2619 0.2617 0.2619
18 0.2619 0.2618 0.2619
19 0.2618 0.2618 0.2618
20 0.2618 0.2618 0.2618
21 0.2618 0.2618 0.2618
22 0.2618 0.2618 0.2618
23 0.2618 0.2618 0.2618
24 0.2618 0.2618 0.2618
25 0.2618 0.2618 0.2618
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Here we skipped 10 iterations and observe that the value converges to a fi xed point 0.2618 after 18 iterations.
Table 2 

Orbit of F(z) for (z0 = 0.83125 + 0.61875i) at α = 0.8, β = 0.6, c = 0.1

Number of iterations z |Tz| |Sz|

11 0.2622 0.2610 0.2622

12 0.2621 0.2613 0.2621

13 0.2620 0.2615 0.2620

14 0.2619 0.2616 0.2619

15 0.2619 0.2617 0.2619

16 0.2618 0.2618 0.2618

17 0.2618 0.2618 0.2618

18 0.2618 0.2618 0.2618

19 0.2618 0.2618 0.2618

20 0.2618 0.2618 0.2618

Here we skipped 10 iterations and observe that the value converges to a fi xed point 0.2618 after 15 iterations.

 3.2. Fixed Points of Increasing Function

Table 3
Orbit of F(z) for (z0= 1.21875 – 0.425i) at α = β = 0.5 and c = 0.1

Number of iterations z |Tz| |Sz|

11 -0.9738 -1.9537 -1.9476

12 -0.9743 -1.9487 -1.9517

13 -0.9746 -1.9492 -1.9507

14 -0.9748 -1.9494 -1.9502

15 -0.9748 -1.9496 -1.9499

16 -0.9748 -1.9496 -1.9498

17 -0.9748 -1.9497 -1.9497

18 -0.9748 -1.9497 -1.9497

19 -0.9748 -1.9497 -1.9497

20 -0.9748 -1.9497 -1.9497

Here we skipped 10 iterations and observed that the value converges to fi xed point -0.9748 after 16 iterations.
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Table 4
Orbit of F(z) for (z0= – 2.35 – 0.1i) at α = 0.8, β = 0.8 and c = 0.1

Number of  iterations Z |Tz| |Sz|

16 -0.9766 -1.9462 -1.9532
17 -0.9766 -1.9474 -1.9520
18 -0.9756 -1.9482 -1.9512
19 -0.9753 -1.9487 -1.9507
20 -0.9752 -1.9491 -1.9503
21 -0.9751 -1.9493 -1.9501
22 -0.9750 -1.9494 -1.9500
23 -0.9749 -1.9495 -1.9499
24 -0.9749 -1.9496 -1.9498
25 -0.9749 -1.9496 -1.9497
26 -0.9749 -1.9496 -1.9497
27 -0.9749 -1.9497 -1.9497
28 -0.9749 -1.9497 -1.9497
29 -0.9749 -1.9497 -1.9497
30 -0.9749 -1.9497 -1.9497

Here we skipped 15 iterations and observe that the value converges  to a fi xed point -0.9749 after 26  
iterations.

3.3.  Fixed Points Of Oscillating Function

Table 5
Orbit of F(z) for (z0 = 0.075 + 0.1125i)at α = β = 0.5, c = 0.1

Number of iterations z |Tz| |Sz|

11 1.0483 1.0539 1.0483

12 1.0498 1.0525 1.0498

13 1.0506 1.0519 1.0506

14 1.0509 1.0515 1.0509

15 1.0511 1.0514 1.0511

16 1.0512 1.0513 1.0512

17 1.0512 1.0513 1.0512

18 1.0512 1.0513 1.0512

19 1.0512 1.0513 1.0512

20 1.0512 1.0513 1.0512

21 1.0512 1.0513 1.0512

22 1.0512 1.0512 1.0512

Here we skipped 10 iterations and observed that the value converges to fi xed point 1.0512 after 21  iterations.
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Table 6
Orbit of F(z) for (z0 = 0.0625 – 0.375i) at α = β = 0.8 and c = 0.1

Number of  iterations z |Tz| |Sz|
21 1.0513 1.0512 1.0513
22 1.0513 1.0512 1.0513
23 1.0513 1.0512 1.0513
24 1.0513 1.0512 1.0513
25 1.0513 1.0512 1.0513
26 1.0513 1.0512 1.0513
27 1.0513 1.0512 1.0513
28 1.0513 1.0512 1.0513
29 1.0513 1.0512 1.0513
30 1.0512 1.0512 1.0512
31 1.0512 1.0512 1.0512
32 1.0512 1.0512 1.0512
33 1.0512 1.0512 1.0512
34 1.0512 1.0512 1.0512
35 1.0512 1.0512 1.0512

Here we skipped 20 iterations and observed that the value converges to fi xed point 1.0512 after 29 
iterations.

3.4. Fixed Points Of Biquadratic Function

Table 7
Orbit of F(z) for (z0 = 0.3375 + 0.18125i) at α = β = 0.5, c = 0.1

Number of  iterations z |Tz| |Sz|

21 1.6624 86.4469 86.4466

22 1.6624 86.4469 86.4468

23 1.6624 86.4470 86.4469

24 1.6624 86.4470 86.4469

25 1.6624 86.4470 86.4470

26. 1.6624 86.4470 86.4470

27. 1.6624 86.4470 86.4470

28. 1.6624 86.4470 86.4470

29. 1.6624 86.4470 86.4470

30. 1.6624 86.4470 86.4470

Here we skipped 20 iterations and observed that the value converges to a fi xed point 1.6624 after 24 iterations.
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Table 8
Orbit of F(z) for (z0 = 0.18125 – 0.1i) at α = 0.8, β = 0.8, c = 0.1

Number of Iterations z |Tz| |Sz|

6 1.6614 86.4383 86.3935

7 1.6622 86.4449 86.4340

8 1.6624 86.4465 86.4438

9 1.6624 86.4468 86.4462

10 1.6624 86.4469 86.4438

11 1.6624 86.4470 86.4462

12 1.6624 86.4470 86.4468

13 1.6624 86.4470 86.4469

14 1.6624 86.4470 86.4470

15 1.6624 86.4470 86.4470

Here we skipped 5 iterations and observed that the value converges to a fi xed point 1.6624 after 13 
iterations.

4. GENERATION  OF  RELATIVE  SUPERIOR MANDELBROT   SETS   FOR   DIFFERENT  
FUNCTIONS

We generated the Relative Superior Mandelbrot sets. We present here some beautiful fi lled Relative Superior 
Mandelbrot sets for quadratic, cubic and biquadratic function.

4.1. Relative Superior Mandelbrot Sets For Decreasing Function

Figure 1: Relative Superior Mandelbrot Set for α = β = 0.5, c = 1.325 – 0.1375i
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Figure 2: Relative Superior Mandelbrot Set for α = 0.8, β = 0.6, c = 0.83125 + 0.61875i

4.2. Relative Superior Mandelbrot Sets For Increasing Function

Figure 3: Relative Superior Mandelbrot Set for α = β = 0.5 and c = 1.21875 – 0.425

Figure 4: Relative Superior Mandelbrot Set for α = β = 0.8 , c = –2.35 – 0.1i
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4.3. Relative Superior Mandelbrot Sets For Oscillating Function

Figure 5: Relative Superior Mandelbrot Set for α = β = 0.5, c = 0.075 + 0.1125i

    

Figure 6 : Relative Superior Mandelbrot Set for α = β = 0.8, c = 0.0625 – 0.375i

4.4. Relative Superior Mandelbrot Sets For Biquadratic Function

Figure 7:  Relative Superior Mandelbrot Set for α = β = 0.5, c = 0.3375 + 0.18125i
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Figure 8: Relative Superior Mandelbrot Set for α = β = 0.8, c = 0.18125 – 0.1i

5. GENERATION  OF  RELATIVE   SUPERIOR JULIA SETS FOR DIFFERENT FUNCTIONS
We generated the Relative Superior Julia sets. We have presented here some beautiful fi lled Relative Superior 
Julia sets for quadratic, cubic and biquadratic function.

5.1. Relative Superior Julia Sets For Decreasing Function

Figure 9: Relative Superior Julia Set for α = β = 0.5, c = 1.325 – 0.1375i

Figure 10: Relative Superior Julia Set for α = 0.8, β = 0.6, c = 0.83125 + 0.61875i
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5.2. Relative Superior Julia Sets For Increasing Function

Figure 11: Relative Superior Julia Set for α = β = 0.5 and c = 1.21875 – 0.425i

Figure 12: Relative Superior Julia Set for α = β = 0.8 and c = –2.35 – 0.1i

5.3. Relative Superior Julia Sets For Oscillating Function

Figure 13: Relative Superior Julia Set for α= β = 0.5, c = 0.075 + 0.1125i
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Figure 14: Relative Superior Julia Set for α = β = 0.8, c = 0.0625 – 0.375i

5.4. Relative Superior Julia Sets For Biquadratic Function

Figure 15: Relative Superior Julia Set for α = β = 0.5, c = 0.3375 + 0.18125i

Figure 16 :  Relative Superior Julia Set for α = β = 0.8, c = 0.18125 – 0.1i
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6. CONCLUSION
In this paper we have given an algorithm to fi nd fi xed point of any functions having complex values using Jungck 
Ishikawa Iteration .We have proved theorem for Jungck Ishikawa Iteration which were till now not proved for 
Jungck Ishikawa Iteration .We have compared the stability results of decreasing, increasing, oscillating and 
quadratic functions by taking complex values and found that we are getting the stability point of oscillating 
function later as compared to other functions and as we are increasing the value of alpha and beta we are getting 
fi xed point later as compared to smaller values .Relative Superior Mandelbrot sets and Relative Superior Julia 
Sets for different functions appear like beautiful images which follow some symmetry in different functions.
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