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ABSTRACT

In applied work, the need for combining data from different sources is often times
unavoidable, either for availability, practicality, or legality reasons. This is particularly
true in agricultural and/or environmental research, where the information is often
available on a national or a regional basis. One of these situations arises when the
researcher has only access to aggregated information about the dependent variable (where
the choices of n-individuals are averaged across groups) but possesses individual
information for the independent variables. In this document, we assess the performance of
two competing specifications for estimating this kind of models, a new beta-logit model,
and the standard normal-logit model. We also propose a methodology for simulating the
data that uses conditional and marginal distributions from which the true specifications
are derived. This method of simulation allows for the direct comparison of the models
without giving a computational advantage to either of them. We argue that a beta-
distributed model provides more accurate estimators than those provided by the standard
model.

JEL Cobes: C25; C46; C52; C81
Keyworps: Logit, aggregated choice data, combined data, beta regression.

Choice modeling endeavors require a set of characteristics of an economic agent, be a
consumer, a household, a firm, or a farm; and a set of choices made by the economic
agent. In a best case scenario, a researcher or policy maker has the ability to design a
statistical study focused on specific goals using specific variables of interest, most of
the time without taking into consideration the potential use and limitations that the
data would pose to other researchers. For instance, a study on credit card decisions
may include an array of sociodemographic characteristics of the individuals in a
household, including race, but might omit a very important variable for a sociologist
or a labor economist interested in phenotypical discrimination, such as skin tone.
When situations like these arise, the researchers have no choice but to aggregate,
consolidate, or combine information from different data sources to satisfactorily
answer a policy question.
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The need of combining data from different sources is particularly important on
choice in agriculture and environmental settings, where the information is often
available on a national or regional basis (Kurkalova and Wade, 2010). In studies of this
nature, the sheer amount of data makes it difficult, expensive, or impractical to
achieve a high level of specificity and the practitioner must conform tothe answers
provided togeneral questions. The obvious consequence is the widespread lack of
detailed information for state or smaller scale regions and the need to combine
information from supplemental sources to complete a research project (see Lambert,
Schaible, Johansson, Daberkow, 2006; Lambert, Schaible, Johansson, Vasavada, 2007;
Soule, Tegene, Wiebe, 2000). Besides the issues of practicality or prohibitive costs,
there might also exist a legal impediment from the researcher’s side to fully or
partially disclose detailed information about the data. In this situation, the use of
aggregated and/ or estimated values would be necessary.

It is that latter kind of models and the performance of two competing
specifications that are the focal point of this document. In particular, we assess the
performance of beta-logit and normal-logit specifications for a special case of data
combination models where the dependent variable is agrouped average of undisclosed
choices and the independent variables are observable individual characteristics
(Grouped Dependent Variable Logit models). This scenario is pervasive in
agricultural studies where the researcher might be able to obtain weighted averages
of individual responses from published reports and would require pairing them to
individual characteristics, usually taken from other datasets. As long as the response
variable has been weighted to approximate the expected value of the geographic area
(crop reporting district or county), it can be possible to match individual characteristics
with group responses despite them not coming from the same survey without
compromising the statistical integrity of the study (Kurkalova and Wade, 2010).

To assess the usefulness of GDVL models, we compare the estimation
performance of two competing specifications, the normal-logit and the beta-logit.
Both specifications use the sample average logit-link function to associate the
averaged dependent variable to the individual independent variables. The key
difference in the models is the specification of a normally distributed error, or a beta
distributed error, and their corresponding likelihood functions. The a priori
expectation is that the beta model will perform better in small samples. The rest of the
paper is as follows; section 2 describes grouped dependent variable models using
both the normal and the beta distribution. Section 3 provides the simulation and
estimation strategy. Section 4 presents the simulation results while section 5
summarizes this research.

2. GROUPED DEPENDENT VARIABLE MODELS

Kurkalova and Rabotyagov (2005) introduced the specification and estimation of
Group Dependent Variable Logit models (GDVL) as an alternative to grouping the
independent variables when the dependent variable is grouped (see Miller and
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Plantinga, 1999) or to disaggregating the dependent variable when information on
individuals is available for the independent variables. Their rationale for not
aggregating the independent variables is driven by the notion that when one is using
aggregated explanatory variables the estimated coefficients are in general biased and
inference conducted using this aggregated data may differ significantly from those
retrieved from individual level data (Steel and Holt, 1996; Train, 2009). On the other
hand, the GDVLavoids both the computational cumbersomeness and the creation of
pseudo-data points that results from disaggregating the average choice so that a
logistic regression can be run.

In its most general form, the GDVLconsiders a group of N agents, indexed by i,
each making a binary choice. The choice outcome variable Y’ is either 1 or 0 depending
on whether a certainalternative is chosen or not. If Y, is observed, the exact
relationship between Y, and the set of K explanatoryvariables x,= (x,,...,x,)" can be
established via a logistic regression. So that Pr[Y, = 1] = Pr[n <f’x ]; where n is the i.i.d.
logistic error term and B = (B,,... B,)" is the vectorof unknown parameters of interest.
If Y, is not observed directly, the researcher uses non-empty subsets, G, j = 1,...,J, of
the set of all respondents {1,..., N}, so that E], N6 = N, where N¢ is the number of
individuals in subset G],; and uses the expected value (or some other related central

measure statistic) of the choice variables, i.e., 5Gj = W LY, to perform the analysis.

7

The resulting general GDVL model, given p%, j=1,...,J, and x,= (x,..., x,)
is specified as,

r_)Gf = 1G. i =P () T =Y +o; (1)
N "1+exp B'x;) ' !

where ; is a stochastic error drawn from either the normal or the beta distribution?.

Assuming the normal distribution in Equation (1), the GDVL model leads to the
following probabilistic specification for the j-th group of observations,

e . 1 1 (g 2
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here 1, =—— 5., —PE%) 4o Analogous] ing the bet
where } =6 Vi, 1+exp (B,xi)an p e (- o, + ©). Analogously, assuming the beta

distribution in Equation (1), the GDVLmodel leads to the following probabilistic
specification for the j-th groups of observations? (see Romero, 2010),
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The likelihood functions in (2) and (3) are maximized using Matlab’s
nonlinearconstrainedminimization routine, allowing theestimates of the true
underlying parameters 3, ¢_, and 6 to be retrieved®.

3. SIMULATION STRATEGY

Instead of simulating from Equation (1), we follow a probabilistic approach and
simulate a logit specification directly fromconditional and marginal distributions. We
then use the resulting simulated data to compute the needed averages for the
dependent variable while keeping the individual information for the independent
variables. This approach serves two purposes. For one, it allows for the direct
comparison of the performance of the competing models without directly or indirectly
giving a computational advantage to either; and two, it addresses the issue put forward
by some researchers that simulating from and estimating (1) only attests to the ability of
the model to estimate itself. Under the probabilistic simulation, we do not specify a
priori the values of the parameters in (1) but rather we know the parameters of related
specific distributions, from where the parameters in (1) are derived (see below).

The simulation strategy is described usingthe following methodology
(see Bergtold, Spanos, Onukwugha, 2010 or Romero, 2012 for a more detailed
derivation). Let {Yi,i =1,...,N} be a random variable distributed Bernoulli, with
E(Y,) = p and Var (Y) = p(1-p); For the moment, let {X = (Xl,i""’XK,i)’ i=1,...,N} be a
vector of K random variables of unspecified distribution but with a proper joint
density function (X, '¥,). The related stochastic vector {Y, X, i=1,...,N}, whose joint
density (probability) function takes the form AY,,...Y X, ... X o} can be
decomposed, following Bergtold et al. (2010), into

fXNY =Tn) f(G=Tip) _ fO=1]X;0,) @
f(Xi|Yi:0;n1)f(Yi:0/'p) f(Yi=0|X,~ﬂl>1)f(X,»;%)
Since (Y| X;; ,) is Bernoulli distributed (see Chen and Liu, 1997; Spanos, 1999) with

density function AY,|X; 1,) = ¢ (X; ¥,)" [1- g (X; 1,)]"""}, substituting this into
equation (2) yields,

fX Y =Lm) m _ gXiil) 5)
fX 1Y, =0;m,) 1_8(Xw‘w1)’

where .=p/ (1-p)'7 for j = 0,1. Thus (see Kay and Little, 1987),

- fX | Y =1mn,) _ exp {h(xn‘m)} ©6)
T fX 1Y, =0m) + 1 f(X | Y, =Lmy) 1+6Xp{h(xi;nl)}’

g(xi;wl):

where h(Xi;nl):lnM+ k,and k=Inn, —In &,.
XY =0m,)
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Hence, a proper statistical model in which the dependent variable is binary and
the conditional relationship is Bernoulli naturally establishes the logistic cumulative
density function as the transformation function and requires the use of logit
specifications to model the statistical dependency of Y, on X.. This result is tailored-
made for our simulation analysis, for it implies that under perfect information, the
researcher would conduct a thoroughlogistic analysis of the ungrouped data. Of
course, this does not preclude us from adopting alternative simulation models, like
the probit, it simply provides a window of direct comparison between the normal and
the beta distribution models.

Given that the functional form of the index function h(.) depends entirely on the
conditional distribution of X, given the two outcomes of Y; and to keep the analysis
relatively simple, we simulated the data assuming conditional normal distributions
for two uncorrelated* independent variables X = and X, . Specifying the conditional
distributions of X and X given the two states of Y’ yields,

[Xl j (pry_j ] Gil,y:i O
~N , )
X, yai Mo y-j 0 S

Thus, the previous probabilistic assumptions will give birth to the following
unrestricted logit specification:

Y = exp(By +Byxy; +B1xy ‘o 7)
1+exp By +Byxy; +Bixy;

where the coefficients are directly related to the distributional assumptions about
Y. and X, (see Appendix).

As mentioned above, a significant benefit of using the previous approach for
developing the unconstrained logit specification is that it provides a mechanism for
randomly generating the vector stochastic process, {(Y,X,), i=1,...N} using the
relationship given by equation (6) for simulations involving binary choice models.
The complete data simulation and estimation processescomprise performing the
following steps:

Step 1: Assign p and generate a realization of the stochastic process {Y,i=1,..., N}
using a binomial random number generator.

Step 2: Using the regression function associated with f (X.| Y, = j; 11,), generate a
realization of the vector stochastic process, {X, i=1,...,N} using
appropriate random number generators for specified values of n,.

)y

G, “icGj

Step 3: Calculate p” = Y, for each of the ] groups of size N¢i.
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Step 4: Estimate models (2) and (3).
Step 5: Repeat R times.

The simulation and estimation strategy focuses on the competing models” ability
to accurately estimate the unknown parameters when the group sizes vary, when the
average response within groups vary, and the when the researcher has a fixed
numberof members in each group. Since a researcher’s ability to obtain data in a
geographic region may be limited, we will make the assumption that the investigator
has access to state information and that she can examine three grouping sizes for any
state (J=15, 50, 100), which can be interpreted as the number of counties surveyed;
and three different sets of individual agents surveyed in each country, (N%= 2, 5, 10).
Additionally, we allow for three different sample average response probabilities
(p = 15%, 30%, 50%). These assumptions are done simply to put the simulation
analysis in an applied econometrics context. The narrative can equally apply to other
domains.

4. SIMULATION RESULTS

Table 1-3 compare the performance of the models at estimating the true underlying
parameters®. They include the true parameters, the sample mean of the estimated
parameters, and the sample standard errors. We simulated and estimated three
specifications, an unrestricted logit, a normal-logit, and a beta-logit for a total of
R=1,000 times. To further contrast their accuracy, the tables also show the relative
difference between the true parameter values and the parameter estimates as a

A

, where is the true underlying parameter

B
and Bis the estimated coefficient. Since the lower the ARP the higher the variance of a
Bernoullidistributed variable, we expect the results to increase in accuracy when the
ARP approaches 50%, when the group size increases, and when the number of groups
increases.

Table 1 shows the results for J=15; with group sizes 2, 5, and 10; and ARP of 15%,
30%, and 50%. Although both models do a relatively poor job at estimating the true
values at this scale, the beta model seems to almost always outperform the normal
distribution in this scenario when using the RD as the measure of reliability.
Nevertheless, it seems that the relatively lower amount of information in this scenario
would make either estimates too volatile to be reliably estimated. The only model
which accuracy consistently increases with the group size and the ARP is the
unrestricted logit, but these results should not be surprising.

percentage, calculated as RD = 100 x

In Table 2, we increased the number of groups to 50, significantly increasing the
amount of statistical information for the models to estimate the true parameters. Once
again, when the variance of the dependent variable is highest (ARP = 15%), the beta
model appears to outperform the normal model when using the RD as the accuracy
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Table 1
Parameter Estimates and Relative Difference from True Parameters as a Percentage when
J=15 (Standard Errors in Parentheses)
NGi=2 NC=5 NC=10
ARP  True Values  Logit  Normal  Beta Logit  Normal  Beta Logit  Normal Beta
015 B,= -11.24 -49.962 -2254 -4.8629 -14.212 -269.37 -8.4205 -12.383 -225.68 -94.989
(154.19) (525.63) (1.68) (8.39) (542.71) (7.55) (3.13) (504.52) (280.25)
RD 365.17 19385 56.715 38.179 23184 39.315 19.592 1932.1 782.04
B= 1.00 4.2973 23.36 0.36221 1.2508 22.381 0.76713  1.096 18.823 13.202
(15.62) (90.60) (0.41) (1.01) (68.52) (1.64) (0.46) (52.83) (55.08)
RD 407.93 2808.7 67.526 59.042 2683.8 66.041 33.835 1974.8  1466.6
B,= 4.00 19.964 74128 1.5876 5.1268 101.52 2.873  4.4239 85.594 24.372
(65.19) (150.31) (0.83) (2.94) (214.25) (2.66) (1.16) (194.39) (98.69)
RD 42237 18922 60.375 42.105 2465 42.006 21.568 2069.6 752.81
0.3 B,= -10.34 -21.515 -238.65 -6.1041 -12.757 -207.15 -37.031 -11.053 -152.23 -265.81
(6347) (434.76) (2.17) (1497) (412.19) (131.28) (2.18) (353.57) (419.08)
RD 121.5 22247 42573 35.089 1928.3 295.26 15.94 1396.8 2487.9
B,= 1.00 2.0664 24.075 0.58953 1.2199 19.659 3.8732 1.0682 16.116 32.784
(6.76)  (59.68) (0.52)  (1.96) (51.91) (22.87) (0.34) (45.72) (71.79)
RD 153.26  2592.3 54.149 52104 2128.1 43538 26.761 1641.8 3467.4
B,= 4.00 8.7708 92.056 2.3284 4.9915 82.704 14.172 4.2696  56.78 89.366
(29.57) (171.89) (1.02) (5.19) (167.00) (64.04) (0.87) (133.22) (166.47)
RD 135.9 2231.1 4423 37.009 19959 351.75 16.65 1348.8 2396.9
0.5 B,= -9.50 -14.22  -203.23 -6.3652 -11.087 -162.78 -64.679 -10.09 -137.69 -161.43
(13.49) (349.74) (3.05) (4.54) (330.52) (188.54) (1.94) (301.33) (313.54)
RD 65.812 2061 39.686 28.873 16403 610.56 15.663 1374.2 1622.1
B= 1.00 14731 22.792 0.66432 1.1535 17.505 7.613 1.064 15.315 16.603
(1.65) (56.54) (0.61)  (0.64) (43.86) (28.71) (0.31) (41.12) (43.62)
RD 91.78 2551.5 54.599 43253 1804.6 766.65 24.618 1571.6 1828.9
B,= 4.00 6.0334 82293 2.6958 4.7032 67.796 25.771 4.2392 55912 68.582
(5.84) (139.37) (1.32) (1.94) (137.92) (81.72) (0.80) (123.01) (136.09)
RD 66.17 1985.1 39.796 29.449 16225 614.64 15.645 1324.3 1665.4

metric. The sample statistics of each of the estimators is also closer in absolute value
when using the beta model than when using the normal model. The accuracy of the
parameters estimated with the beta model consistently increases when the ARP
approaches 50%. Specifically, then the group size if 5 and ARP = 30%, the beta
distribution seems spot on when estimating the true parameters. When the amount
for information keeps increasing (N9 = 10) the performance of the beta
model decreases while the accuracy of the normal model appears to increase at every
ARP level.
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Parameter Estimates and Relative Difference from True Parameters as a Percentage when
J=50 (Standard Errors in Parentheses)

N=2 N¢=5 N%=10

ARP  True Values  Logit Normal  Beta Logit  Normal  Beta Logit  Normal Beta
015 B,= -11.24 -1341 -209.48 -4.8277 -11.824 -48.453 -7.7714 -11.469 -21.122 -10.8
(5.28) (481.72) (0.84) (2.00) (221.45) (1.31) (1.21) (86.71) (7.67)

RD 29.493 17763 57.029 13.537 34658 31.026 8.4434 10349  20.223

B= 1.00 1.2108 19.642 0.38136 1.0449 4.4107 0.65554 1.0229 1.8983 1.168
(0.71)  (53.34) (0.19)  (0.31) (22.14) (0.28)  (0.21)  (8.39) (6.32)

RD 48.072 1952.8 61913 24.299 37358 38.228 16455 118.66  57.295

B,= 4.00 47782 73.465 1504  4.2283 17.227 2.6208 4.0815 7.6427  3.0873

(1.97) (168.18) (0.39)  (0.78) (77.91) (0.58)  (0.48) (33.15) (18.44)

RD 31.758 1751.1 62401 14.739 348.08 34.864 9.3641 109.39  34.415

03 B,= -10.34 -11.389 -87.746 -5.5426 -10.754 -24.449 -9.8549 -10.516 -23.33 -151.99
(2.92) (275.12) (1.06)  (1.56) (105.02) (2.30)  (0.98) (97.06) (309.67)

RD 21.324 761.75 46.435 11.516 15198 17.417 7.4122 14197 13812

B= 1.00 1.1037 8.4473 0.51994 1.0354 24471 0.94316 1.0148 21956  18.077
(0.47)  (31.01) (0.23)  (0.26) (11.36) (0.44) (0.17) (9.54) (46.51)

RD 35.102 799.91 48.602 19.728 17428 33294 13.32 14948  1780.2

B,= 4.00 43931 3391 2103 41635 9.3624 3.7609 4.0688 9.2889  53.209

(1.20) (106.26) (0.48)  (0.60) (39.86) (1.03)  (0.41) (39.64) (116.94)

RD 22.738 763.03 47476 11.734 15095 19.891 7.9468 150.38  1286.2

05 B,= -950 -10.445 -56.307 -5.8253 -9.8299 -20.621 -15.237 -9.6483 -17.533 -28.957
(2.68) (189.92) (1.19) (1.39) (82.03) (48.38) (0.88) (67.51) (108.35)

RD 20.907 508.53 38.877 11.281 134.61 10.905 7.396 10323  222.98

B= 1.00 1.1038 5.9452 0.61226 1.0342 22163 15443 1.0154 1.8774  3.1228
(0.44) (22.45) (0.26)  (0.25) (10.54) (4.15) (0.15) (7.84) (13.33)

RD 32.828 535.31 40.492 18927 150.86 133.89 12.104 117.24  241.23

B,= 4.00 43725 23.689 2448 41368 8.647 6.5277 4.0595 7.2957  12.026
(1.11)  (79.15)  (0.50)  (0.56) (34.05) (22.90) (0.40) (27.79) (45.87)

RD 20.499 508.36 38.987 10.905 84.649 78.176 7.8586 101.92  220.14

Table 3 shows the simulation scenario that contains the largest amount of
information. This is achieved when the number of groups equals 100. The
same regularity found in Tables 1 and 2 is found, namely, when the size of the
group is relative small, the beta model outperforms the normal model, when
using RD for comparison. Also, the advantage of the beta model dwindles
when the size of the group increases or when the variance of the dependent variable
decreases.
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Table 3
Parameter Estimates and Relative Difference from True Parameters as a Percentage
when J=100 (Standard Errors in Parentheses)
NGi=2 NG=5 N¢=10
ARP  True Values  Logit  Normal  Beta Logit  Normal  Beta Logit  Normal Beta

015 B,= -11.24 -12139 -58.679 -4.6361 -11.469 -13914 -7.7517 -11.399 -12.216 -10.841
(2.44) (23829) (0.58) (1.21) (39.71) (0.92) (0.90) (6.28)  (1.62)

RD 16289 433.09 58733 84434 35992 31.002 6331 20.604  11.83

B,= 1.00 10813 50732 036074 1.0229 13164 0.64872 1.0199 1.1067 0.96846
(0.37) (22.23) (0.12) (0.21) (5.74) (0.21)  (0.14)  (0.59)  (0.30)

RD 28362 4373 63926 16455 56292 36.114 1147 31385  23.863

B,= 4.00 43366 21.68 14347 40815 4.8582 2591  4.0489 43334  3.7921

(0.97) (89.51) (0.27)  (0.48) (10.99) (0.38) (0.36)  (2.68)  (0.67)

RD 18.192 45486 64.133 93641 35544 35242 7.019 22673  13.83

03  B,= -10.34 -11.046 -24251 -5.4404 -10516 -11.663 -10.027 -10.474 -12.34 -41.197
(1.83) (106.42) (0.70) (0.98) (5.12)  (1.60) (0.72) (30.33) (147.13)

RD 14019 1452 47422 74122 25417 1255 55958 31.35  305.22

B= 1.00 10786 23824 052282 1.0148 1.1185 095747 10177 119 4794
(0.30) (11.18) (0.16) (0.17) (0.54) (0.31) (0.12) (2.10)  (20.23)

RD 23144 15875 47.759  13.32 34059 24.304 9.6662 37.693  395.08

B,= 4.00 4254 94627 20407 4.0688 45456 3.8054 4.0348 4.7937  14.684
(0.75) (42.18) (0.30) (0.41) (2.22) (0.70)  (0.29) (13.78) (53.98)

RD 14.655 148.57 48.983 7.9468 27355 14.374 57831 33.612  276.08

05 B,= -9.50 -9.8733 -17.128 -5.6741 -9.6483 -9.0398 -11.402 -9.5912 -12.134 -16.342
(1.55)  (69.01) (0.76)  (0.88) (33.51) (2.98) (0.64) (41.91) (59.71)

RD 12916 92565 40273 7.396 55307 27.306 5.4057 54.635  84.348

B,= 1.00 1.045 19234 059734 1.0154 039564 1.1994 1.014 094716 1.7027
(027) (8.68) (0.18) (0.15) (12.50) (0.47) (0.12) (8.34)  (6.59)

RD 20929 115.03 40594 12.104 1633 37.828 9.2806 98.703  89.716

B,= 4.00 4145 69649 23894 4.0595 64095 47979 4.0268 5.8853  6.9337
(0.66) (26.52) (0.33)  (0.40) (22.03) (1.30) (0.27) (21.17) (25.88)

RD 12.858 86.687 40267 7.8586 86.685 27.669 53683 66.032  86.083

5. CONCLUSION

In applied work, the need for combining data from different sources is often times
unavoidable, either for availability, practicality, or legality reasons. This is
particularly true in agricultural and/or environmental research, where the
information is often available on a national or regional basis. One of these situations
arises when the researcher has only access to aggregated information about the
dependent variable (where the choices of n-individuals are averaged across groups)
but possess individual information for the independent variables. These models are
known in the literature as Grouped Dependent Logit Models, first introduced by
Kurkalova and Rabotyagov (2005) as an alternative to averaging out the independent
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variables when the dependent variable is grouped or to disaggregating the dependent
variable when information on individuals is available for the independent variables.

In this paper, we assessed the performance of two competing specifications for
estimating this kind of models, a beta-logit model and a normal-logit model. We did
so by using a sample average logit-link function to associate the averaged dependent
variable to the individual independent variables but assuming two different
distributions for the error term. We also proposed a methodology for simulating the
data that does not use the proposed specification as the data generating mechanism
but instead the data is generated using conditional and marginal distributions from
which the true specifications are derived. This method of simulation allows for the
direct comparison of the models without giving a computational advantage to either
one of them.

The results of the simulations fall in line with standard statistical theory. The
accuracy and reliability of the estimation increases with the amount of information
but decreases with the dispersion of the dependent variable. Using three different
grouping sizes (2,5,10) and three different number of groups (15,50,100), we propose
the use of the beta distribution when estimating this kind of models given that the
accuracy of the estimators is no worse that the estimation provided by the model
using the normal distribution.

NOTES

1. This error term can be further decomposed as w=€+ . In this case, ejand o refer to
the errors related to the experts’ opinion and model misspecification, respectively
(see Kurkalova and Wade, 2010).

2. The use of the beta distribution seems tailor-made for our purposes, for it deals primarily
with data with lower and upper bounds, such as rates and proportions.

3. In situations where the dependent variable takes the values 0 or 1, we rescaled the data
following the procedure described in Smithson and Verkuilen, 2006.

4. The use of uncorrelated uniformly distributed regressors is standard in parameter
simulation and estimation. In this situation, adding correlated regressors did not changes
the resultsqualitatively.

5. The derivation of the true underlying parameters is described in the Appendix.
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APPENDIX

A.1. Derivation of the True Parameters in Equation (7)

Let {Y, i=1,...,N} be a random variable distributed Bernoulli, with E(Y )=p and Var(Y )=p (1-p).
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-

Mo, 0 G,
2 2 2 2
Oy 0 I M M K,
By=In—F—4In 00 yqn 0y P P | Pee | o
1- P G"l A ze,l 26"1,0 26«(1,1 26«*2,0 26"2,1

b otos Fou
17 2 2

le,l X1,0
L
5 =

62 2

X1 X2,0





