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A HIGHER-ORDER GRADIENT DIFFUSION THEORY
Z. H. Jin1 and J. S. Yang2

ABSTRACT

This paper presents a one-dimensional higher-order gradient (HOG) theory of atomic diffusion. It is assumed that
the diffusion flux is linearly related not only to the first but also to the higher order concentration gradients of
diffusing atoms. A length parameter is introduced in the HOG theory to account for the size effects when diffusion
occurs at different length scales. A simple example of one-dimensional, steady-state diffusion is given to examine
the effect of higher-order gradients on the concentration distribution of diffusing atoms.
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1. INTRODUCTION

Atomic diffusion is an important phenomenon that influences mechanical and thermal properties of materials.
Atomic diffusion and more general mass transport have been studied using Fick’s first and second laws [1, 2].
According to Fick’s first law, the flux of diffusing matter, or the flow of matter crossing a unit area per unit time J,
is linearly related to the concentration gradient as follows
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where C is the concentration of diffusing matter, D the diffusion coefficient and x the diffusion direction. When
applied to atomic diffusion, C represents the concentration of diffusing atoms. The time dependence of diffusion is
governed by Fick’s second law
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where t is time.

Fick’s laws constitute a phenomenological theory of mass transport. While Fick’s first law is applicable to mass
flow at small (e.g., atomic and microscopic) scales, it lacks a length parameter to explore influences of characteristic
lengths (for example, atomic spacing and grain size), or the size effects in diffusion processes. Moreover, a length
parameter is also needed to describe diffusion phenomena occurring at different length scales. The size effects may
be ignored when the characteristic lengths are much smaller than the diffusion distances. When diffusion distances
are comparable to a characteristic length, size effects may become significant and classical Fick’s laws may not be
able to accurately predict the diffusion profiles and fluxes. Examples include diffusion in nanomaterials,
microelectronic devices and thin films. Here we propose a one-dimensional higher-order gradient (HOG) theory for
atomic diffusion by including higher order gradients of concentration in Fick’s first law. A length parameter naturally
arises in the HOG theory thereby making it possible to explore size effects and to bridge the diffusion processes at
different length scales.



2. EFFECTS OF HIGHER ORDER GRADIENTS

To derive the governing equations in the HOG theory, or modified Fick’s laws, we first consider atomic diffusion
between two crystallographic planes as shown in Figure 1. It has been known that the flux of atoms, J, in a simple
cubic crystal is related to the concentration difference between the two atomic planes by [1, 2]
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where � is the jump frequency of atoms, a the lattice constant, and �C = C
x+�x

 – C
x
 the difference between

concentrations of the diffusing atoms at the two adjacent atomic planes. In the classical diffusion theory, �C is
approximated using the differential (�C / �x)�x. Here, we use the Taylor series truncated at the third term to obtain
an approximate expression for DC with the result
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We note that an expansion similar to (4) was given in [3] which was mainly on the finite difference equation
from an atomistic model of diffusion and a higher-order gradient theory was not pursued. In atomic diffusion, x may
be regarded as the lattice parameter a. Substituting the above equation into Eq. (3), we have
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where D is the diffusion coefficient given by
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Eq. (5) is a modified Fick’s first law for simple cubic materials. In this HOG theory, the diffusion flux is linearly
related to the first order concentration gradient �C / �x as well as the second and third order concentration gradients
of diffusing atoms.

In general, the relationship between the flux and concentration gradients of diffusing atoms may be expressed
as
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where l is a length parameter and � a dimensionless parameter. When applied to atomic diffusion, we may assume

l = a/2 and � = 2/3 for simple cubic crystals. For fcc and bcc materials, l = a/4 and 2/ 3� �  where a is the lattice

constant. The HOG theory reduces to Fick’s first law when l � 0.

Eq. (7) represents a kind of constitutive relation for solid state diffusion. The �2C / �x2 term in Eq. (7) is not
invariant under the x � –x transformation in the final equation for C and therefore will be dropped for materials that
possessing the invariance. The proposed modification on Fick’s first law thus becomes
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By using the modified Fick’s first law, Eq. (8), and conservation of matter, the basic governing equation in the
HOG theory of diffusion can be obtained as follows

2 4
2

2 4
 

C C C
D l

t x x

� �� � �
� � �� �� � �� �

(9)



Eqs. (8) and (9) are modified Fick’s first and second laws, respectively. Coleman and Mizel [4] proposed
similar but more general modifications of Fourier’s law and heat conduction equations which have the same
mathematical forms as Fick’s laws in the classical theories.

When using Eqs. (8) and (9) to study time-dependent concentration fields, appropriate initial and boundary
conditions are required. Eq. (9) is a fourth-order partial differential equation that requires two boundary conditions
at a boundary, which is opposed to the classical diffusion theory in which only one condition is needed at a boundary.
Here we attempt to gain an insight into mathematically and physically admissible boundary conditions for the HOG
theory using a weighted residual method. Consider diffusion in an interval 0 � x � L. The weighted residual equation
of the HOG theory is
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where W is a weight function. Using integration by parts yields
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Possible natural boundary conditions on a boundary may be formulated from the above weighted residual
equation as follows
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where H  and J  are prescribed values. Besides the above natural boundary conditions, the essential boundary
condition is

C C� (13)

where C  is the prescribed concentration on a boundary. Eqs. (12) and (13) indicate that the second-order derivative

of concentration may be prescribed on a boundary. This boundary condition is mathematically consistent with those
in the gradient theory of electric field [5]. We note that further efforts are needed to explore the physics of the
boundary condition (12). In general, the concentration C and the flux J may not be prescribed simultaneously on a
boundary.

3. AN EXAMPLE

Next, we consider a simple problem of one-dimensional steady-state diffusion in 0 � x � L. Under steady-state
conditions, the governing diffusion equation (9) reduces to
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The boundary condition of the problem may be formulated as follows
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where C0 and C
L
 are prescribed concentration at x = 0 and L, respectively, and H0 and H

L
 are prescribed, normalized

second order derivatives of concentration. The general solution of Eq. (14) is
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where b
i
 (i = 1, 2, 3, 4) are constants to be determined by the boundary conditions. Substituting Eq. (16) into the

boundary conditions (15) yields the following equations for b
i

1 4 0

1 2 3 4

2
1 0 0

2
1 2 0

,

,

 ( / ) ,

 ( / )

l l L

l l L

b b C

C b S b b b C

b l L C H

C b S b l L C H

� �

� �

� �
� � � �

� ��

� � ��

(17)

where

cos ,         sin
  

l l

L L
C S

l l
� �

� � � �� �� � � �� �� � � �
(18)

Solving Eq. (18) for b
i
, we have
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Substituting Eq. (19) into Eq. (16) yields the concentration field
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The above solution of the HOG theory reduces to the following classical solution
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when l goes to zero.

As a numerical example, we consider atomic diffusion in fcc materials, for example, diffusion of copper in nickel.
In all calculations, H0 and H

L
 are taken to be 1.0. Figure 2 shows the nondimensional concentration of diffusing atoms,

C/C0, versus x/L responses for various values of the dimensionless length parameter L/l. The concentration ratio C
L
/C0

is taken as zero. The classical solution is also included. It is seen from the figure that when L/l = 2.0, i.e., the diffusion
distance is comparable to the scale length in the HOG theory, the concentration distribution of the HOG theory deviates
significantly from that of the classical theory, especially in the middle part of the diffusion domain. When the diffusion
distance increases to 10 times the scale length l, the HOG solution reduces to the classical solution.

4. CONCLUSION

A higher-order diffusion theory is proposed. It generalizes Fick’s first law by including the effects of higher order
gradients of the concentration of the diffusing matter. Mathematically the proposed theory results in a fourth-order



Figure 1: Atomic Diffusion between Two Crystallographic Planes

Figure 2: Concentration Distributions for Various Values of L/l
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partial differential equation. It contains new material parameters and can describe size-dependent effects in diffusion.
Numerical results show that the concentration distribution of the HOG theory deviates from that in the classical
diffusion theory when the diffusion range is comparable to the scale length. The HOG theory solution reduces to the
classical solution when diffusion distances become at least one order of magnitude larger then the scale length. The
present work focuses on the one-dimensional theory. The three-dimensional theory will be pursued in the future
study.
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