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ABSTRACT

Rapidly evolving high throughput technologies provides biological data on a very large scale. In this article, 
we will review the recent development of liner time algorithms and tools for big data analysis produced 
by next generation sequencing and the comparison of commonly used tools with different algorithms 
for NGS big data analysis based on their performance, input format and output format etc. Due to the 
diversity of contexts in which biological data analysis is performed, several problems are commonly 
studied. This survey paves a way to find provably better algorithmic tool to the underlying optimization 
problem. NGS resultant data generates short reads that address various biological questions. The methods 
to analyze NGS big data includes various algorithms on various tools which differs by their performance, 
complexity, cost etc. We have accumulated extensive experience in sample handling, variant detection 
and bioinformatics analysis on mentioned tools.

Keywords: Big data; Next Generation Sequencing; High Throughput Sequencing; Alignment Sequencing; 
Variant Detection; Polymorphism Detection.

1. INTRODUCTION

High throughput data sequencing and analysis are the major research area for the past decade to increase 
the speed. In HTS various tools are used with different algorithms. The methods used for analysis has 
various architecture with different platform incorporated on it. This sequencing technologies have been 
used in biomedical applications to identify the patterns present in a DNA which indicates certain diseases 
with symptoms, age of the sample given and drug target identification for a new discovery etc. It also plays 
a major role in epigenome, interactome and cytogenome (Wang et al., 2013). High throughput sequencing in 
genome has been decreased due to its cost and so the genomics become feasible. Thus, the big data analysis 
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including different groups of research provided framework becomes success with reducing time and cost by 
a factor of 1 million on personalized genomics (Costa et al., 2014). In this area data has grown tremendously 
that it can’t be maintained by the usual software tools available for analysis, visualize etc. the large volume 
of biological data are resulted in HTS has become a challenge to analysis with information extraction and 
a transfer of useful information in an efficient manner with high security aspects. For example, Square 
Kilometer Array, which generates data exceptionally large 40 GB per second and another example, Flickr, 
which requires 3.6 TB storage for a single day (Wu et al., 2014). In the aspect of biomedical applications, 
to predict the disease in a patient’s DNA and make remedy in an fast manner is must but not an option. 
Thus, the process has to maintain constant observation on improving performance, reducing dependency 
on hard disk, greater memory system where all data are maintained (Zhang et al., 2015). In order to perform 
biological big data management efficiently focus has to be done on following operations, viz.

1.	 Indexes : To maintain efficiency by avoiding memory intensive scan.

2.	 Transaction management : Accordance to the semaphore maintains many core systems.

3.	 Data level parallelism : To speed up the processes by performing multiple operations on  
single cycle.

4.	 Query processing : It register temporal locality and performs efficiency in time.

5.	 Data layouts : For the purpose of cache consciousness and space efficiency.

6.	 Data overflow : Hybrid systems with non-volatile memories produce speed for accessing the 
data to control data exceedance.

2. BIG DATA CHALLENGES IN NGS ANALYSIS METHODS

The process takes place in NGS is to unravel the ordered sequence of nucleic acids that group together to 
make DNA of the given sample. The big data from NGS becomes so big and the challenge of maintaining 
and analyzing data also increased in recent years. The first human genome sequencing took nearly 10 years 
with amount in number of billion USD, whereas now it takes only one week with 2000 USD in a single 
machine due to the different software tools available for big data analytics in an efficient manner that 
speeds up the processes. The factors concentrated to face the challenges in NGS analysis are listed, viz.

1.	 Matching : Heuristic algorithms developed to overcome approximate matching in an accurate 
level.

2.	 Mapping : Read alignment to find the structure, function, relation between multiple sequences, 
highly conserved regions are achieved through a cloud.

3.	 Storing : To provide a space for data for example when it increases from 5 to 5000 human 
genome, approximately it occupies 15 terabytes and also bandwidth maintenance.

4.	 Questioning : Depends on changes in the question, the search process has to be done on 
different genomes of database rather than on single or few genomes.
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Figure 1: NGS data analysis methods

3. NGS DATA ANALYSIS

Next generation sequencing technologies has grown widely in the field of identifying patterns in  epigenetic, 
genomic and transcriptome levels to predict the factors such as disease, age etc. this section gives the 
detailed overview of open source software’s available for alignment programs, assembly and variant 
calling methodologies with the challenges to maintain these large giga base pairs big data Next generation 
sequencing data analysis methods involves four models incorporated in it as shown in Figure 1. NGS 
data has moved biology in a whole including molecular, micro, etc. into the big data era. For example, 
European Bioinformatics Institute doubles 2 petabyte of genomic data every 18 months out of total storage 
20 petabytes and doubles biological data every 9 months (Bao et al., 2009). As the NGS generates data 
of volume hundreds of terabytes to petabytes, it is very difficult to maintain this big data with no loss of 
quality and by maintaining storage capacity and capabilities. Hence, the bioinformatics tools are discovered 
and they are refined with new efficient algorithms and technologies to manage the big data. Few public 
organization EBI, NCBI, NIH etc. has the capacity to overcome the drawbacks in storing, managing and 
information extraction on big data ease. The better way to process these big biological data are in the 
cloud by making use of cloud providers such as amazon etc. NGS data analysis always prefers a linear time 
algorithms in their software tools. 

3.1.	 Big data problem in NGS

1.	 Gene regulatory network (GRN) : Gene regulatory network analysis in an expression is a 
complicated one by producing correlational possibilities and has a challenge to face an iterative 
problem. It requires a very large scale data analytics system for a regulatory identification in a 
affected or diseased network.
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2.	 Sequence and Protein protein interaction (PPI) : Since from 1980, high volumes of data are 
managed in a database and their updates with new inventions also increases the volume, velocity 
and varied data formats. The process sequence analysis includes searches in the database, which 
has various dimensions of big data incorporated in it are not quite ease rather than use of big 
data technologies. PPI results voluminous data with changes in their nature provides a challenge 
for efficient and scalable framework to act in a fast and accurate PPI pattern generation.

3.	 Microarray data : The cost reduction aspect leads the growth in use of microarray data 
tremendously. It requires big data technologies for the speed to construct coexpression and 
regulatory networks using voluminous microarray data.

3.2.	 Alignment

Aligning sequences to read the references and functions of a pattern in a big data are done based on the 
indexes framework. The different types of alignment software’s with various efficient algorithms are listed 
in table 1. Depending on index, there are three different categories for framing the algorithm routine  
(Li et al., 2010) viz.

1.	 Hash tables : The most suitable example for algorithm based on hash tables is BLAST algorithm, 
which was commonly in use for more than 2 decades with refinement by smith waterman 
algorithm.

2.	 Merge sorting : The maximum usage of information in manner of probability for read alignment 
based on algorithm merge sorting takes place in slider and sliderII software tool (Ivakhno  
et al., 2007).

3.	 Suffix trees : Suffix trees based algorithms work efficiently in matching patterns accurately and 
list the inexact matches that supports the alignment. Bowtie (Langmead et al., 2009) and Bowtie2 
(Langmead et al., 2012) software uses bowtie algorithm which works by suffix tree framework.

Table 1 
NGS Data Sequence Alignment Softwares

Name Input/Output Supported platforms Indexing Method/ Gapped Alignment

Barra CUDA FASTQ/SAM Illumina FM index (BWT)/yes

BFAST FASTQ/SAM Illumina, ABI Solid, 454 Multiple(hash, tree)/yes

Bowtie FASTQ, FASTA/SAM Illumina, ABI Solid FM index(BWT)/no

Bowtie2 FASTQ, FASTA, QSEQ/SAM Illumina, 454 FM index(BWT)/yes

BWA FASTQ, FASTA/SAM Illumina, ABI, Solid(1) FM index(BWT)/yes

BWA-SW FASTQ, FASTA/SAM 454 FM index(BWT)/yes

SliderII PRB files/CSV Illumina Merge sorting

MAQ FASTQ, FASTA/MAQ Illumina Hash based/yes

mrFAST FASTQ, FASTA, SAM, DIVET Illumina Hash based/yes
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Name Input/Output Supported platforms Indexing Method/ Gapped Alignment

mrsFAST FASTQ, FASTA/SAM, DIVET Illumina Hash based/no

SOAP2 FASTQ, FASTA/SOAP2 Illumina FM index(BWT)/yes

SOAP3 FASTQ, FASTA/SAM Illumina FM index(BWT)/no

SSAHA2 FASTA/SAM, GFF Illumina, ABI Solid, 454 Tree index/yes

Stampy FASTQ, FASTA/SAM Illumina, 454 FM index(BWT)

3.3.	 Assembly

This section gives the detailed description about the assembly software packages created since 2005 and 
revised specifically for the purpose of efficient assembly operations in next generation sequencing. Assembly 
operations follows a data structure of hierarchical type that points the data sequence to putative repetitive 
construction of the considered pattern target (Miller et al., 2010). The file format for assembly in common 
use is FASTA. The big data challenge in assembly is to elaborate the functions of short read lengths that are 
very much smaller compared to smallest genomes. Due to big data there will be a possibility of imperfect 
sequence alignments hence big data technologies are to be incorporated in software packages. The very 
first NGS assembly software packages used greedy algorithms i.e. an approximation result but it has been 
refined with greedy graph based algorithms. Solexa and Solid platforms uses de brujin graph approach to 
the short reads. The different types of NGS big data sequence assembly software’s with their respective 
supporting platform and their web address are described in table 2.

Table 2 
NGS Data Sequence Assembly Software’s

Name Input/output Supported platforms Indexing Method/ Gapped Alignment

ABySS Solexa, Solid 2008/2014 http://www.bcgsc.ca/ platform/bioinfo/ 
software/abyss

ALLPATHS- LG Solexa, Solid 2011 http: //www.broadinstitute. org/science/
programs/ genome-biology/crd

AMOS Sanger, 454 2002/2011 http://sourceforge.net/apps/mediawiki/
amos/index.phptitle=AMOS

Arapan-M All 2011/2012 http://sourceforge.net/ projects/
dnascissor/ files

Arapan-S All 2011/2012 http://sourceforge.net/ projects/
dnascissor/ files

CABOG Sanger, 454, Solexa 2004/2015 http://www.jcvi.org/cms/research/
projects/celera-assembler/overview/

CLC Assembly Cell Sanger, 454, Solexa, SOLiD 2008/2010/2014 http://www.clcbio.com/ products/

Cortex Solexa, Solid 2011 http://cortexassembler.  
sourceforge.net/
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Name Input/output Supported platforms Indexing Method/ Gapped Alignment

DNA   Baser 
Assembler

Sanger, 454 2015 www.DnaBaser.com

DNA Dragon Illumina, Solid, Complete 
Genomics, 454, Sanger

2011 https: //www.dna-dragon.com/

Edena Illumina 2008/2013 http://www.genomic.ch/ edena.php

Euler Sanger, 454 2001/2006 http: //nbcr.sdsc.edu/euler/

Euler-sr 454, Solexa 2008 http://euler-assembler. ucsd.edu/portal/

Fermi Illumina 2012 https://github.com/lh3/ fermi

Forge 454, Solexa, Solid, Sanger 2010 http: //combiol.org/forge/

Geneious Sanger, 454, Solexa, 
Ion Torrent, Complete 

Genomics, PacBio, Oxford 
Nanopore, Illumina

2009/2013 http://geneious.com/

IDBA Sanger, 454, Solexa 2010 http://www.cs.hku.hk/~alse/idba/

LIGR Assembler Sanger 2009/2012 http://sourceforge.net/ projects/ ligr-
assembler/

MaSuRCA Sanger, Illumina, 454 2012/2013 http://www.genome.umd. edu/masurca.
html

MIRA Sanger, 454, Solexa 1998/2014 http://sourceforge.net/ apps/mediawiki/ 
mira-assembler/

Nextgene 454, Solexa, Solid 2008 http://softgenetics.com/NextGENe.html

Newbler 454, Sanger 2009/2012 http://www.454.com/

PADENA 454, Sanger 2010 http: //bio.codeplex.com/

PASHA Illumina 2011 http://sites.google. com/site/ 
yongchaosoftware/pasha

Phrap Sanger, 454, Solexa 1994/2008 http://www.phrap.org/

Tigr Assembler Sanger 1995/2003 ftp://ftp.jcvi.org/pub/ software/
assembler/

Ray Illumina, mix of Illumina 
and 454, paired or not

2010 http://denovoassembler. sf.net/

SeqMan NGen Illumina, ABI, Solid, Roche 
454, Ion Torrent, Solexa, 

Sanger

2007/2014 http://www.dnastar.com/

SGA Illumina, Sanger 2011/2012 https: //github.com/jts/sga

Sharcgs Solexa 2007/2007 http://sharcgs.molgen. mpg.de/

SOPRA Illumina, Solid, 2010/2011 http: //www.physics.rutgers. 
edu/~anirvans/SOPRA/

Sparse Illumina, 454, 2012/2012 https: //sites.google.com/ site/
sparseassembler/

Assembler Ion torrent
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Name Input/output Supported platforms Indexing Method/ Gapped Alignment

SSAKE Solexa 2007/2014 http://www.bcgsc.ca/ platform/bioinfo/ 
software/ssake

SOAP denovo Solexa 2009/2013 http://soap.genomics. org.cn/
soapdenovo.html

SPAdes Illumina, Solexa, Sanger, 
454, Ion Torrent, PacBio, 

Oxford Nanopore

2012/2015 http://bioinf.spbau.ru/ en/spades

Staden  gap4 
package

Sanger 1991/2008 http://staden. sourceforge.net/

Taipan Illumina 2009/2009 http://sourceforge.net/ projects/taipan/

VCAKE Solexa 2007/2009 http://sourceforge.net/ projects/vcake

Phusion Sanger 2003/2006 http://www.sanger.ac. uk/Software/
production/ phusion/

QSRA Sanger, Solexa 2009/2009 http://qsra.cgrb. oregonstate.edu/

Velvet Sanger, 454, Solexa, Solid 2007/2011 http://www.ebi.ac.uk/~zerbino/velvet/

3.4.	 Variant analysis

3.4.1.	 CNV

	Copy number variant is a type of secondary data analysis, rearrangements in the data process are carried 
out with copy number variant callers. The CNV identification takes the preprocess steps, i.e. data matrix 
formation involves the process easier in the software packages. In this way, the mutations in a DNA can 
also be pointed for big data analytics. The table 3 gives clear description about the copy number variant 
identification tools with their supporting platform, I/O format and last updates. Copy number variant is 
a type of secondary data analysis, rearrangements in the data process are carried out with copy number 
variant callers.

Table 3 
CNV Identification Tools

Name Input Format Output Format
Platforms

Last Updated
Illumina Solid

CNAseg SAM/BAM CSV Yes Yes 2010-09-14
CNVer CSV, SAM/BAM CNV files Yes Yes 2011-07-11

CNVnator FASTA, SAM/BAM CSV Yes Yes 2012-02-07
CNV-seq SAM/BAM CNV files Yes Yes 2011-07-15
CONTRA 2 BAM files, BED, 

SAM/BAM
VCF, CSV Yes Yes 2012-07-24

Copy Seq SAM/BAM CSV Yes Yes 2011-04-06
RDX plorer FASTA, SAM/BAM CSV Yes Yes 2012-01-13
read Depth BED, R Segmented 

CNVs, CSV
Yes Yes 2011-04-15
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3.4.2.	 Structural variant

	Structural variants involves steps to sort the biological analysis of the known and novel variants by 
making use of the listed software packages. The table 4 gives detailed description about the structural 
variant identification tools with their supporting platform, I/O format and last updates. Structural variant 
identification in an genome sequencing plays a major role in identifying a specific disease that are associated 
with it. This process provides an relationship between the structural variant and the associated disease. 
polymorphism detection in the structural variant varies in their characteristics of mapping breakpoints by 
the assembly. The deletion and duplications identification in an structural variant can be done by using 
the read depth analysis. The gapped alignment in the visualization part shows the assembled sequence. 
Structural variant identification deals with the two read pairs viz.

1.	 Paired-end: The direction of sequencing is from backwards to the middle.

2.	 Mate-pair: The read pairs has the direction pointing outwards against the original fragments.

	There are different read pair algorithms to do the processes in an efficient manner on the SV clusters. 
Clusters are categorized into two divisons viz. Less number of pairs with same signature; Large value of 
mean and standard deviation.

Structural variants rearranges the genomes and produces more than 50 base pairs in 0.99 variations 
among the genomes. several databses are maintained for genomic variants providing structural variants 
identification such as Database of genomic variants, dbvar, etc. Identification of structural variants in an 
single base pair can be achieved by using split reads. The best approach for identifying structural variants 
in the clinical application is said to be amplicon sequencing data technique. this technique incorporates 
different methods for the goal such as ONCOCNV, Principal component analysis, Segmentation and 
clustering approach etc. 

Table 4 
Structural variant identification tools

Name Input Format Output Format
Platforms Last  

UpdatedIllumina Solid

Apolloh CSV CSV Yes Yes 2011-12-01

Break Dancer BAM BED Yes Yes 2011-02-21

Break pointer BAM GFF Yes Yes 2012-01-20

Breakway BAM CSV Yes Yes 2011-04-01

Clip Crop SAM, FASA BED Yes Yes 2012-01-27

Fusion Map FASTQ SAM Yes Yes 2012-04-17

GASV Pro SAM/BAM Clusters file Yes Yes 2012-06-14

PEMer Several input files Multiple output files Yes Yes 2009-02-02

Splitread FASTA, SAM BED Yes No 2011-10-13

SVDetect BAM/SAM or ELAND  
or Bioscope output

Txt, BED, Circos Yes Yes 2011-07-12
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3.4.3.	 Variant annotation

	This process gives the functional annotation of the classified variant data, through which the identification 
of highly associated variants in a DNA are done. Variant annotation helps to predict the risk alleles in a 
given sample. The various genome browsers with the variant annotation indicating their I/O format are 
described in table 5.

Table  5 
Genome browsers with variant annotations

Name Input/Output Formats Explanation

ABrowse GFF, WIG Shows tracks as large images  similar to google maps;

Argo / 
Combo 

FASTA, Genbank, GFF, BLAST, 
BED, Wiggle (WIG), Genscan files

Argo is a standalone genome viewer which integrates combo 
as a comparative genome browser.

Artemis BCF, FASTA Standalone tool where BAMView has been integrated;

Bambino FASTA, UCSC, 2bit, nib 

Consed Newbler, Cross_match, Phrap, 
MIRA, Velvet and PCAP

The standalone tool has been designed to display genome 
assemblies.

DiProGB GenBank, FASTA, GFF PTT Is able to display sequence graphs and a feature graphs;

EagleView ACE, READS, EGL, MAP A genome assembler viewer;

Ensembl BED, BedGraph, GFF, GTF, PSL, 
WIG, BigWig

Web-based tool with a variety of reference genome and 
integrated annotations;

Gaggle SQL, GFF For systems biology;

Gap5 ACE, BAF This standalone tool has been developed to facilitate the 
process of finishing assemblies.

GBrowse GFF This web-based tool is the precursor of JBrowse.

Geno 
Viewer

FASTA, GFF It is a standalone genome viewer that is not developed or 
supported anymore.

Hawkeye fastq, fastq A genome assembler viewer;

Integrated 
Genome 
Browser 
(IGB)

DAS, wig Standalone, Java tool with export feature into PDF, EPS, 
PNG, …;

Integrative 
Genomics 

Viewer 
(IGV)

(> 30 formats) TDF, CN, SNP, GCT, 
RES, GFF, GFF3, BED, GISTIC, 

LOH, MUT, GCT, SEG, CBS, IGV, 
TAB, WIG

Can be started locally or from websites; offers lots of 
customization features;

JalView DAS This tools is capable of performing multiple sequence 
alignment.

JBrowse FASTA, BED, GFF, GFF3, WIG It is a web based tool where tracks are rendered on the client 
side. Tracks need to be prepared by the user in advance.
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Name Input/Output Formats Explanation

LookSeq MAQ, CIGAR Web based alignment viewer;

Magic 
Viewer

ACE This tool is aimed at users who work with  
DNA methylation data.

MapView MVF

NGSView XML, BED, BLAST, Eland, mapview 
processed MAQ, Corona, GFF

Sequence alignment editor;

Savant FASTA, BED, GFF,  WIG, any tab-
delimited

Standalone, Java based genome viewer which allows users to 
create their own plug-ins;

UCSC 
Genome 
Browser

BED, bigBed, bedGraph, GFF, GTF, 
WIG, bigWig, MAF, BED, SNP,  

PSL

Web-based tool with a variety of public databases; It offers 
many customization features and allows the user to upload 

new tracks.

UTGB 
toolkit

FASTA, BED, WIG, DAS The tool is web-based and uses a dedicated database and web-
server. It offers flexible customization possibilities and tracks 

can hold private or public data.

VEGA BED, bedGraph, BigBed, BigWig, 
GBrowse, GFF, GTF, PSL, WIG.

This application contains manually annotated genomes from 
different species. Large parts of the human  

genome are annotated.

4. HIGH THROUGHPUT SEQUENCING WORKFLOW SYSTEMS

Use High throughput sequencing workflow systems provide easy and cost reduced perspective to genome 
sequencing with timely detection of functions, accurate and fast solutions for big data in bioinformatics. 
The table 6 shows the detailed view of the different workflow systems that can support high throughput 
sequencing technologies which includes a big data incorporated in it for analysis, visualization and further 
process to extract the information. High throughput sequencing based platforms can be classified into 
two parts viz.

1.	 Template

2.	 Sequencing chemistry

	Template HTS technologies includes major categories such as fragmentation, tagging and 
amplification process for the genomic sequencing to produce the result in an efficient manner and it 
reduces the costs of manpower and kit needed for the sequencing. Data tracking plas an activity to copy 
the data from local information technology infrastructure. These techniques are applicable for denovo 
assembly of a genome of unit strain, phlogenetic analysis etc. HTS technologies can be applied to 
metagenomic sequencing, new prospects for sequence profiling etc for proper sequencing methodology 
to produce major possibilities.
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Table 6 
NGS Workflow Systems

Name Requirement Explanation

Galaxy Linux, MAC 
OS X

It is a web based platform for aligning, sequencing and visualizing NGS data. It 
incorporates different NGS tools as a package. It also provides user to perform their 

operation in specific package and add it to galaxy for sharing and performing the 
process globally.

Gene 
Pattern

Linux, MAC OS 
X, Windows

Genomic analytic tool with user friendly interface helps to automate, split the tough 
steps in the genomic analysis and which includes more than 150 tools in built to it.

KNIME Linux, MAC OS 
X, Windows

Open platform for NGS data which provides fast, scalable and user-friendly 
software package with inclusion of analysis programs for the purpose of filtering 

aspects and exploit VCF files.

Taverna Linux, MAC OS 
X, Windows

Open platform with large number of NGS tools integrated with it highlighting on 
programming paradigm but without sequence analysis tools that already existing

5. CONCLUSION

	In this paper to explore the big data analysis technique in NGS biological research, we analyzed different 
software packages for computational modelling. This study also deals with the memory management to 
provide space for advances in bioinformatics to address big data problems. We have compared various 
software tools for the de novo NGS data analysis. Big genomes paves a way to give more complex repeated 
structures, which can be overcome by using best alignment and assembler software tools. This survey 
provides a technical review of NGS data analysis software tools, algorithms and workflow systems to date, 
which hopefully will be a useful resource for future next generation sequencing research aspects. 

6. APPENDIX

We provide the proofs for egg dataset 1GHL.pdb downloaded from NCBI database with the data size less 
than 20 GB with the simulation results on tools bowtie2, tophat, etc on the NGS galaxy workflow system 
are described on the following figures.

Figure 2: Galaxy – Quality Comparison
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Figure 3: Galaxy – Format Conversion

Figure 4: Galaxy – Data Pair Operations
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Figure 5: Galaxy – FASTQ Groomer Tool

Figure 6: Galaxy – Data Results
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