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Abstract: This paper presents a comparison of Single Term Haar Wavelet Series (STHWS) method and the classical 
fourth order Runge-Kutta (RK) method to solve the simplifi ed two channel model of a nuclear reactor core from fl uid 
dynamics. The results obtained using RK method and the STHWS methods are compared with the exact solutions 
of the problem. To illustrate the effectiveness of the STHW, four cases in non-linear singular systems from fl uid 
dynamics have been considered and compared with the classical fourth order Runge-Kutta, and are found to be very 
accurate. Solutions for the non-linear singular systems from fl uid dynamics are presented in the tables.
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1. INTRODUCTION
This chapter establishes a clear procedure for solving non-linear system in fl uid dynamics using classical fourth 
order RK and STHW along with the exact solutions. The approximate solutions obtained are compared with the 
exact solutions of the non-linear system in fl uid dynamics, and are found to be very accurate. 

Most of the realistic singular non-linear systems do not admit any analytical solution and hence a numerical 
procedure has to be used. In the last few years substantial progress has been made in fi nding the numerical 
solution of special classes of nonlinear singular systems of differential equations. A general numerical procedure 
for their solution has not previously existed. Hence it is important to understand the structure of such systems 
and develop effi cient methods for solving them. The conventional methods such as Euler, Runge-Kutta and 
Adams-Moulton are restricted to very small step size in order that the solution is stable.

Runge-Kutta methods have become very popular, both as computational techniques as well as subject 
for research, which were discussed by Butcher [2-4] and Shampine [21]. This method was derived by Runge 
about the year 1894 and extended by Kutta a few years later. They developed algorithms to solve differential 
equations effi ciently and yet are the equivalent of approximating the exact solutions by matching ‘n’ terms of 
the Taylor series expansion. The beauty of the RK pair is that it requires no extra function evaluations, which is 
the most time consuming aspect of all ODE solvers. This breakthrough initiated a search for RK algorithms of 
higher and higher order and better error estimates.
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Nandhakumar et al. [7] introduce Haar Wavelet Series to numerical investigation of an industrial robot 
arm control problem. Sekar et al. [8-9] introduced the STHW to study the nonlinear singular systems and 
second order mechanical vibratory systems. Murugesan et al. [6] discussed the nonlinear singular systems from 
fl uid dynamics using the RK-methods based on variety of means. In this paper, we consider the same non-linear 
singular systems from fl uid dynamics (discussed by Murugesan et al [6]) but presenting a different approach by 
the STHW with more accuracy.

2. SINGLE TERM HAAR WAVELET SERIES (STHWS) METHOD
The orthogonal set of Haar wavelets hi(t) is a group of square waves with magnitude of 1 in some intervals 
and zeros elsewhere [2]. In general, 

 hn(t) = h1 (2
j t – k),

 n = 2j + k, j  0, 0  k < 2 j, n, j, k  Z}
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Namely, each Haar wavelet contains one and just one square wave, and is zero elsewhere. Just these zeros 
make Haar wavelets to be local and very useful in solving stiff systems. Any function y(t), which is square 
integrable in the interval [0,1). Can be expanded in a Haar series with an infi nite number of terms
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Usually, the series expansion (1) contains an infi nite number of terms for a smooth y(t). If  y(t) is a 
piecewise constant or may be approximated as a piecewise constant, then the sum in (1) will be terminated after 
m terms, that is 

 y(t) ≈ ( ) ( ) ( ) [ ]
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 c(m)(t) = [c0c1...cm–1]
T, (2)

 h(m)(t) = [h0(t)]h1(t)...hm – 1(t)]
T,

where “T” indicates transposition, the subscript m in the parantheses denotes their dimensions. The integration 
of Haar wavelets can be expandable into Haar series with Haar coeffi cient matrix P[3]. 

 ( ) ( )mh dτ τ∫  = P(m × n)h(m)(t), t [0, 1]
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where the m-square matrix P is called the operational matrix of integration and single-term ( )1 1
1P =
2× . Let us 

defi ne [12] 
 h(m)(t)h

T
(m)(t) ≈ M(m × m)(t), (3)

and M(1 × 1)(t) = h0(t) (3) staisfi es
 M(m × m)(t)c(m) = C(m × m)h(m)(t),
where c(m)  is defi ned in (2) and  C(1 × 1) = c0

3. REPRESENTATION OF EQUATIONS OF FLOW AS A NON-LINEAR SYSTEM
The simplifi ed model consists of two connected sub channels fi lled with a steadily fl owing fl uid. Control 
volumes and fl ow variables for the system are shown in Figure 1. Here, mi, represents the axial mass fl ow rate 
in sub channel i and w represents the cross-fl ow rate per unit length, assumed positive if the fl ow is from sub 
channel 1 to sub channel 2.

An application of the principles of conservation of mass, momentum and energy to the control volumes 
yields the following set of equations for sub channel 1.

Continuity : idm
dx  = – w (4)

Axial momentum: 

 ( ) ( ) ( )1 1 1 2. H Hd m u w w u w u
dx

⎡ ⎤+ + −⎣ ⎦ = 1
1 1F A dp

dx
− −  (5)

Energy :  ( )1 1
d m h
dx

 = ( ) ( )1 1 2. H Hq w w h w h⎡ ⎤− + −⎣ ⎦  (6)

m x1( )
m x2( )

W( )ξ

x x+ Δ

Sub Channel 2Sub Channel 1

m x x1 ( + )Δ
m x x2 ( + )Δ

Figure 1: Flow variables

Analogous equations for sub channel 2 can be obtained from these by substituting –w for w and by 
interchanging subscripts 1 and 2. In this equation set, H is the Heavy side unit step function. F represents 
pressure loss per unit length due to friction, A is the cross-sectional area, q represents the heat energy added per 
unit length, and the variables, u, p and h stand for particle velocity, pressure and enthalpy respectively.

In analogy with the pressure drop due to friction in a long pipe, a lateral momentum balance may be taken 
as p1 – p2 = Cw|W|, where C is a cross-fl ow friction factor.
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To simplify the above equation, the following assumptions are made. Cross-sectional area is constant; the 
coolant is incompressible; there is no enthalpy change; and the frictional pressure loss function is of the form
F1 = m1u1F, where F is a constant.

With these assumptions, the equations may be combined and written in the following form:

 1dm
dx  = – w

 ( )d w w
dx

 = ( ) ( )( )1 1
1 1

1 2 2 1 H H 1
2

m w w m w m− −⎧ ⎡ ⎤∈ + − + − −⎨ ⎣ ⎦⎩
 (7)

To make the above system (3.4) into the symmetric form, take

 x = 1
1
2m −

 y = 2
w

and  t = x

Hence we get  dx
dt  = – 2y

 ( )d y y
dt

 = ( ) ( )14 2 2 .x y x y− ⎡ ⎤ε − + −⎣ ⎦

Replacing x by x1 and y by x2, we have ẋ1 = –2x2

 ( )2 2
d x x
dt

 = ( ) ( )1
1 2 1 24 2 2x x x x− ⎡ ⎤ε − + −⎣ ⎦  (8)

An analysis is carried out in four different ways depending upon the values of x2 and  as given below : 
1. x2 > 0 and  0
2. x2 < 0 and  0
3. x2 > 0 and  0
3. x2 < 0 and  0
In the fi rst two cases the parameter  has been varied from 100, 101, 102, ..., 107 and in the last two cases, 

 has been set to zero.
Case(i) : When x2 > 0 and  0
In this case Eq.(3.5) becomes ẋ1 = –2x2

 8x2 ẋ2 = –x1 + 2x2 – 4x1x2

The above two equations can be considered as a system of equations of the form

 
1
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1 0
0 8
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x x
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 (9)

This is of the form (Evans et al. [5])

 K(x(t))ẋ(t) = Ax(t) + f(x(t)) (10)

The fi rst order non-linear system (3.6), representing the highly simplifi ed two channel model of a nuclear 
reactor core from fl uid dynamics, when x2 > 0 and   0, can be converted into a second order equation in order 
to reduce the number of equations, as well as the number of unknowns, and is given as
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Hence Eq. (3.8) is of the form   ẍ2 = () f (t, x1, ẋ1),

where  () = 
1
2ε

Case(ii) : When x2 < 0 and  0
In this case Eq. (3.5) becomes ẋ1 = 2x2

 8x2ẋ2 = x1 + 2x2 + 4x1x2

i.e., 1
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This is also of the form (3.7). The fi rst order non-linear system (3.9), representing the highly simplifi ed 
two channel model of a nuclear reactor core from fl uid dynamics, when x2 < 0 and  0, can be converted into 
a second order equation in order to reduce the number of equations, as well as the number of unknowns, and is 
given as
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Hence Eq. (3.10) is of the form   ẍ1 = () f (t, x1, ẋ1),

where  () = 
1
2ε

Case(iii) : When x2 > 0 and  = 0
In this case Eq.(3.5) becomes ẋ1 = –2x2

 0 = –x1  + 2x2 – 4x1x2
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The system (11) is a singular non-linear system and it is of the form (3.7). This system can be written as
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The above equations has been converted into a second order equations as
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Hence Eq. (12) is of the form  ẍ1 = f (t, x1, ẋ1),
Case(iv) : When x2 < 0 and  = 0
In this case Eq. (3.5) becomes ẋ1 = 2x2

 0 = –x1 – 2x2 – 4x1x2

i.e.,  
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The system (3.13) is a singular non-linear system and it is of the form (3.7). This system can be written as

 ẋ1 = 1

11 2
x

x
−
+

and ẍ2 = 1

2
x

Further, the above equations has been converted into a second order equations as

 ẍ1 = ( )
1

2
1

,
2 1

x
x
−

−


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where   x2 = 1

2
x− 

Hence Eq. (3.14) is of the form  ẍ1 = f(t, x1, ẋ1),

4. RESULTS
The objective of this section is to fi nd discrete solutions to the simplifi ed two channel model of a nuclear reactor 
core from fl uid dynamics under all four cases discussed in the section 3. In the case of (i) and (ii), the system has 
been reduced to a singular system, which is further converted into a second order equation.

It is very diffi cult to obtain the exact solution of this non-linear equation. Hence it has been analysed by 
the following numerical methods by the way of determining the discrete solutions at different time intervals:

1. Classical fourth order Runge-Kutta method (RK(4)).

2. Single-Term Haar Wavelet Series (STHW).

1. Solution by Classical Fourth Order Runge-Kutta Method: The classical fourth order Runge-
Kutta method RK(4) is given by

 k1 = hf(xn , yn)

 k2 = 1
1,
2n nhf x y k⎛ ⎞+⎜ ⎟⎝ ⎠

 k3 = 2
1,
2n nhf x y k⎛ ⎞+⎜ ⎟⎝ ⎠

 k4 = hf(xn, yn)

  yn + 1 = ( )1 2 3 4
1 2 2
6ny k k k k+ + + +

 The above method has been applied to determine the approximate solutions for all four cases of the 
nuclear reactor core problem discussed in previous section.
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 The discrete solutions of a two channel model of a nuclear reactor core problem for the cases  (i) when 
x2 > 0 and  0 (ii) when x2 < 0 and  0 [i.e., Eq.(6) and Eq. (8)] have been determined using the method 
RK(4) by varying the parameter  from 100 to 107 with x1 (0) = ẋ1(0) =1 and the results are given in the Tables 
4.1, 4.2, 4.3 and 4.4 and the discrete solution for the cases (iii) when x2 > 0 and  = 0 (iv) when x2 < 0 and 
= 0, [i.e., singular systems] have been determined using RK(4) with  x1(0) = 1, ẋ1(0) = 1 and the 
results are given in the Tables 4.5 and 4.6.

2. Solution by STHWS Method: The STHWS has been applied to determine the approximate solutions 
for all four cases of the two channel model of a nuclear reactor core problem for the cases  (i) when x2 
> 0 and   0 (ii) when x2 < 0 and   0 [i.e., Eq.(3.6) and Eq. (3.8)] have been determined using the 
method STHW by varying the parameter  from 100 to 107 with   x1(0) = 1, ẋ1(0) = 1 and the results 
are given in the Tables 4.7, 4.8, 4.9 and 4.10 and the discrete solution for the cases (iii) when  x2 > 0 
and  = 0 (iv) when x2 < 0 and  = 0, [i.e., singular systems] have been determined using STHW with  
x1(0) = 1, ẋ1(0) = 1, and the results are given in the Tables 11 and  12.

Table 1
Solutions of equation (6) by RK for x1

S.
No. Time

Discrete solutions of x1 in case (i) using RK

 = 100  = 101  = 102  = 103  = 104  = 105  = 106  = 107

1. 0 1 1 1 1 1 1 1 1

2. 0.5 0.5 1.50105 1.5001 1.5 1.5 1.5 1.5 1.5

3. 1 2.103502 2.00852 2.00084 2.00008 2.00001 2 2 2

4. 1.5 2.907169 2.5293 2.50282 2.50028 2.50003 2.5 2.5 2.5

5. 2 4.13519 3.07107 3.00671 3.00067 3.00007 3 3 3

6. 2.5 6.119246 3.64267 3.51314 3.5013 3.50013 3.50001 3.5 3.5

7. 3 9.381907 4.25438 4.02279 4.00225 4.00022 4.00002 4 4

8. 3.5 14.767 4.91829 4.53632 4.53632 4.50036 4.50003 4.50001 4.50001

9. 4 23.65592 5.6486 5.05446 5.05446 5.00053 5.00004 5.00002 5.00002

10. 4.5 38.32171 6.46194 5.57791 5.57791 5.50076 5.50006 5.50003 5.50003

11. 5 62.5103 7.37769 6.10744 6.10744 6.00104 6.0001 6.00004 6.00004

Table 2
 Solutions of equation (6) by RK for x2

S.
No Time

Discrete solutions of x2 in case (i) using RK

 = 100  = 101  = 102  = 103  = 104  = 105  = 106  = 107

1. 0 1 1 1 1 1 1 1 1

2. 0.5 -0.535368 -0.50316 -0.50031 -0.500003 -0.50003 -0.5 -0.5 -0.5

3. 1 -0.670201 -0.51292 -0.50125 -0.500125 -0.50001 -0.5 -0.5 -0.5

4. 1.5 -0.972082 -0.52991 -0.50283 -0.500281 -0.50003 -0.5 -0.5 -0.5

5. 2 -1.538084 -0.5551 -0.50505 -0.500501 -0.50005 -0.50005 -0.5 -0.5
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S.
No Time

Discrete solutions of x2 in case (i) using RK

 = 100  = 101  = 102  = 103  = 104  = 105  = 106  = 107

6. 2.5 -2.515008 -0.5898 -0.50793 -0.500782 -0.50008 -0.50001 -0.5 -0.5

7. 3 -4.147465 -0.63563 -0.51148 -0.501127 -0.50011 -0.50001 -0.5 -0.5

8. 3.5 -6.847252 -0.69456 -0.51572 -0.501535 -0.50015 -0.50001 -0.5 -0.5

9. 4 -11.30009 -0.76884 -0.52067 -0.502007 -0.5002 -0.50002 -0.5 -0.5

10. 4.5 -18.64044 -0.86107 -0.52636 -0.502542 -0.50025 -0.50003 -0.5 -0.5

11. 5 -30.74066 -0.97417 -0.53282 -0.503141 -0.50031 -0.50003 -0.5 -0.5

Table 3 

Solutions of equation (9) by RK for x1 1x

S.
No. Time

Discrete solutions of  x1 in case (ii) using RK

 = 100  = 101  = 102  = 103  = 104  = 105  = 106  = 107

1. 0 1 1 1 1 1 1 1 1
2. 0.5 1.770253 1.527938 1.50281 1.500281 1.500028 1.500003 1.5 1.5
3. 1 3.227253 2.123737 2.012484 2.00125 2.000125 2.000012 2 2
4. 1.5 5.743905 2.806125 2.530888 2.503093 2.50031 2.500031 2.5 2.5
5. 2 9.967638 3.595289 3.059891 3.005599 3.0006 3.00006 3 3
6. 2.5 16.98114 4.51351 3.601371 3.510154 3.501016 3.500101 3.5 3.5
7. 3 28.578028 5.585829 4.15721 4.015746 4.001575 4.000157 4 4
8. 3.5 47.720726 6.840786 4.729303 4.522964 4.502297 4.500229 4.50001 4.50001
9. 4 79.296951 8.311201 5.319559 5.031993 5.0032 5.000318 5.00002 5.00002
10. 4.5 131.36757 10.035072 5.929907 5.543022 5.504303 5.5000427 5.50003 5.50003
11. 5 217.22435 12.056558 6.562268 6.056237 6.005626 6.000559 6.00004 6.00004

Table 4
Solutions of equation (9) by RK for x2

S.
No Time

Discrete solutions of x2 in case (ii) using RK

 = 100  = 101  = 102  = 103  = 104  = 105  = 106  = 107

1. 0 1 1 1 1 1 1 1 1
2. 0.5 1.069232 0.55884 0.505932 0.500594 0.500059 0.500006 0.5 0.5
3. 1 1.905654 0.6333587 0.513728 0.501375 0.500138 0.500014 0.5 0.5
4. 1.5 3.232944 0.732259 0.523392 0.502343 0.500234 0.5000234 0.5 0.5
5. 2 5.390528 0.849773 0.534929 0.503499 0.50035 0.500035 0.5 0.5
6. 2.5 8.928052 0.99083 0.548344 0.504843 0.500484 0.500049 0.5 0.5
7. 3 14.747292 1.158551 0.563649 0.506373 0.500637 0.500064 0.500002 0.5
8. 3.5 24.332659 1.356814 0.580855 0.508092 0.500809 0.500081 0.500005 0.5
9. 4 40.130196 1.590331 0.599979 0.509998 0.501 0.5001 0.500008 0.5
10. 4.5 66.171783 1.86475 0.621044 0.512091 0.501209 0.500121 0.500011 0.5
11. 5 109.10431 2.186782 0.644074 0.514372 0.501437 0.500144 0.500014 0.5
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Table 5
Solutions of equation (11) by RK

S. No Time
Discrete solutions of x1 and x2 in case (iii) using RK

x1 x2

1. 0 1 1

2. 0.5 1.428211 -0.38467

3. 1 1.791537 -0.34678

4. 1.5 2.127465 -0.32681

5. 2 2.447541 -0.31418

6. 2.5 2.757087 -0.30538

7. 3 3.059052 -0.29885

8. 3.5 3.355264 -0.29378

9. 4 3.646944 -0.2872

10. 4.5 3.934948 -0.28639

11. 5 4.219906 -0.2836

Table 6
Solutions of equation (3.13) by RK

S. No Time
Discrete solutions of  x1 and x2 in case (iv) using RK

x1 x2

1. 0 1 1

2. 0.5 1.488729 0.479521

3. 1 1.961758 0.467443

4. 1.5 2.424938 0.459403

5. 2 2.881311 0.453635

6. 2.5 3.332675 0.449281

7. 3 3.780187 0.445871

8. 3.5 4.224638 0.443124

9. 4 4.666598 0.44086

10. 4.5 5.106484 0.438962

11. 5 5.544618 0.437346



90International Journal of Control Theory and Applications

A. Mohamed Udhuman,  J. Suganthi  and M. Chandrasekharan

Table 7
Solutions of equation (6) by STHW for x1

S.
No. Time

Discrete solutions of  x1 in case (i) using STHW

 = 100  = 101  = 102  = 103  = 104  = 105  = 106  = 107

1. 0 1 1 1 1 1 1 1 1

2. 0.5 0.500001 1.50105 1.50019 1.50009 1.50009 1.5 1.5 1.5

3. 1 2.103502 2.00852 2.00084 2.00008 2.00001 2 2 2

4. 1.5 2.907169 2.52939 2.50282 2.50028 2.50003 2.5 2.5 2.5

5. 2 4.135199 3.07107 3.00671 3.00067 3.00007 3 3 3

6. 2.5 6.119246 3.64267 3.51314 3.5013 3.50013 3.50001 3.5 3.5

7. 3 9.381907 4.25438 4.02279 4.00225 4.00022 4.00002 4 4

8. 3.5 14.76799 4.91829 4.53632 4.53632 4.50036 4.50003 4.50001 4.50001

9. 4 23.65592 5.64869 5.05446 5.05446 5.00053 5.00004 5.00002 5.00002

10. 4.5 38.32171 6.46194 5.57791 5.57791 5.50076 5.50006 5.50003 5.50003

11. 5 62.51039 7.37769 6.10744 6.10744 6.00104 6.00019 6.00004 6.00004

Table 8
Solutions of equation (6) by STHW for x2

S.
No. Time

Discrete solutions of x2 in case (i) using STHW

 = 100  = 101  = 102  = 103  = 104  = 105  = 106  = 107

1. 0 1 1 1 1 1 1 1 1

2. 0.5 -0.535368 -0.50316 -0.50031 -0.500003 -0.50003 -0.5 -0.5 -0.5

3. 1 -0.670201 -0.51292 -0.50125 -0.500125 -0.50001 -0.5 -0.5 -0.5

4. 1.5 -0.972082 -0.52991 -0.50283 -0.500281 -0.50003 -0.5 -0.5 -0.5

5. 2 -1.538084 -0.55519 -0.50505 -0.500501 -0.50005 -0.50005 -0.5 -0.5

6. 2.5 -2.515008 -0.58989 -0.50793 -0.500782 -0.50008 -0.50001 -0.5 -0.5

7. 3 -4.147465 -0.63563 -0.51148 -0.501127 -0.50011 -0.50001 -0.5 -0.5

8. 3.5 -6.847252 -0.69456 -0.51572 -0.501535 -0.50015 -0.50001 -0.5 -0.5

9. 4 -11.30009 -0.76884 -0.52067 -0.502007 -0.50029 -0.50002 -0.5 -0.5

10. 4.5 -18.64044 -0.86107 -0.52636 -0.502542 -0.50025 -0.50003 -0.5 -0.5

11. 5 -30.74066 -0.97417 -0.53282 -0.503141 -0.50031 -0.50003 -0.5 -0.5
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Table 9
Solutions of equation (9) by STHW for x1 

S.
No Time

Discrete solutions of x1 in case (ii) using STHW

= 100 = 101 = 102 = 103 = 104 = 105 = 106 = 107

1. 0 1 1 1 1 1 1 1 1

2. 0.5 1.7702536 1.5279384 1.50281 1.500281 1.500028 1.5000035 1.5 1.5

3. 1 3.2272538 2.1237375 2.012484 2.001255 2.000125 2.0000122 2 2

4. 1.5 5.7439054 2.8061257 2.530888 2.503093 2.500319 2.5000317 2.5 2.5

5. 2 9.9676389 3.5952898 3.059891 3.005599 3.000699 3.0000649 3 3

6. 2.5 16.981142 4.5135187 3.601371 3.510154 3.501016 3.5001018 3.5 3.5

7. 3 28.578028 5.5858293 4.15721 4.015746 4.001575 4.0001572 4 4

8. 3.5 47.720726 6.8407866 4.729303 4.522964 4.502297 4.5002298 4.50001 4.50001

9. 4 79.296951 8.3112018 5.319559 5.031993 5.003299 5.0003189 5.00002 5.00002

10. 4.5 131.36757 10.035072 5.929907 5.543022 5.504303 5.5000427 5.50003 5.50003

11. 5 217.22435 12.056558 6.562268 6.056237 6.005626 6.0005599 6.00004 6.00004

Table  10
Solutions of equation (9) by STHW for x2

S.
No Time

Discrete solutions of x2 in case (ii) using STHW

 = 100  = 101  = 102  = 103  = 104  = 105  = 106  = 107

1. 0 1 1 1 1 1 1 1 1

2. 0.5 1.0692324 0.5588483 0.505932 0.5005946 0.500059 0.5000066 0.5 0.5

3. 1 1.9056584 0.6333587 0.513728 0.5013750 0.500138 0.5000141 0.5 0.5

4. 1.5 3.2329445 0.7322594 0.523392 0.5023438 0.500234 0.5000234 0.5 0.5

5. 2 5.3905289 0.8497732 0.534929 0.5034992 0.500356 0.5000355 0.5 0.5

6. 2.5 8.9280521 0.9908322 0.548344 0.5048437 0.500484 0.5000491 0.5 0.5

7. 3 14.747292 1.1585519 0.563649 0.5063731 0.500637 0.5000646 0.500002 0.5

8. 3.5 24.332659 1.3568148 0.580855 0.5080929 0.500809 0.5000811 0.500005 0.5

9. 4 40.130196 1.5903316 0.599979 0.5099982 0.501384 0.5001683 0.500008 0.5

10. 4.5 66.171783 1.8647593 0.621044 0.5120917 0.501209 0.5001218 0.500011 0.5

11. 5 109.10431 2.1867828 0.644074 0.5143724 0.501437 0.5001449 0.500014 0.5
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Table 11
Solutions of equation (11) by STHW

 S. No Time
Discrete solutions of x1 and x2 in case (iii) using STHW

x1 x2

1. 0 1 1

2. 0.5 1.428211 -0.38467 

3. 1  1.791537  -0.34678

4. 1.5  2.127465  -0.32681

5. 2  2.447541  -0.31418

6. 2.5  2.757087  -0.30538

7. 3  3.059052  -0.29885

8. 3.5  3.355264 -0.29378

9. 4  3.646944  -0.2872

10. 4.5  3.934948  -0.28639

11. 5  4.219906  -0.2836

Table  12
Solutions of equation (13) by STHW

S. No Time
Discrete solutions of x1 and x2 in case (iv) using STHW

x1 x2

1. 0 1 1

2. 0.5 1.488729 0.479521

3. 1 1.961758 0.467443

4. 1.5 2.424938 0.459403

5. 2 2.881311 0.453635

6. 2.5 3.332675 0.449281

7. 3 3.780187 0.445871

8. 3.5 4.224638 0.443124

9. 4 4.666598 0.44086

10. 4.5 5.106484 0.438962

11. 5 5.544618 0.437346
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5. CONCLUSIONS
The nuclear reactor core problem has been studied under four different cases by way of determining the discrete 
solutions for different time‘t’ using the classical fourth order Runge-Kutta method and STHW. In [1], for the 
same problem, the approximate solution was determined using STHW method and it was mentioned that the 
classical RK method failed to obtained approximate solutions when the parameter   103. But in this chapter, 
it has been established that the Runge-Kutta methods are adequate enough to determine approximate solutions 
for all values of  (i.e.,  = 0,100, 101, ..., 107). In cases (iii) and (iv), when  = 0, the system reduces to a singular 
system for both x2  > 0 and  x2  < 0. It is observed that, for a singular system, the discrete solutions obtained 
by the classical Runge-Kutta method and STHW are found to be similar (refer Tables 1-12). However, for the 
cases (i) when x2 > 0  and  0  (ii) when x2 < 0 and   0, it has been noted that the discrete solutions, obtained 
by employing the discussed the classical forth order Runge-Kutta and STHW, coincide with each other (refer 
Tables 1-12). When   106, the discrete solution obtained for the nuclear reactor core problem converges and 
remains stable. 

 The researcher has successfully introduced STHW which has been exclusively developed for solving 
non-linear system in fl uid dynamics. Finally, in this chapter, it is concluded that from the table and fi gures, 
which indicate the error to be almost, less with the stiff system of higher dimension using STHW. Hence, by 
comparing the results obtained for the nuclear reactor core problem discussed under four cases; the STHW is 
more suitable for studying the nuclear reactor core problem.
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