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Abstract 

The present study discusses the two dimensional flow of electrically 

conducting Powell-Erying fluid over a stretching surface in the presence of 

variable suction/injection. The local similarity solution is used to 

transform the system of partial differential equations, describing the 

problem in to a system of highly coupled nonlinear ordinary differential 

equations. The transformed equations are then solved by the shooting 

technique combined with the Runge-Kutta-Fehlberg method. The solution is 

found to be dependent on five governing parameters including the magnetic 

field parameter, the power-law fluid index, the sheet velocity exponent, the 

suction/blowing parameter, and the generalized Prandtl number. A 

systematical study is carried out to illustrate the effects of these major 

parameters on the sheet surface temperature, fluid temperature distributions 

in the boundary layer, the skin friction coefficient and the local Nusselt 

number. 

Keywords: stretching sheet, MHD, Powell-Erying fluid, variable suction or 

injection. 
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Nomenclature: 

k- Thermal conductivity (W/m K) 

cp – Specific heat at constant pressure (J/kg K) 

f- Dimensionless stream function 

u-Velocity component in x-direction- (m/s) 

v- Velocity component in y-direction-(m/s) 

x-Cartesian coordinate in horizontal direction-(m) 

T- Temperature of the fluid-(oC) 

Tw – Temperature at the stretching surface 

T∞ - Ambient fluid temperature 

uw(x) –Stretching velocity 

𝜆 & 𝛿 Material fluid parameters 

M-Magnetic parameter 

Sc-Schmidt number 

Rex- Local Reynolds number Greek symbols 

α – Thermal diffusivity -(m2/s) 

µ - Dynamic viscosity (N s/m) 

 - Fluid density (kg/m3) 

Tw- Wall shear stress 

 - Similarity variable 

 =



- Kinematic viscosity of the fluid 

 Time dependent material constant 

 - Non-dimensional temperature subscript 

w-Condition at the surface 

∞-Condition at infinity super script 

' -Differentiation with respect to   

1. INTRODUCTION 

The applications of Non-Newtonian fluids are very wide and they are mostly useful 

in processing of food, heat exchangers, reactor cooling, biomedical processes, 

Nuclear fuel slurries, liquid metals ,alloys, plasma, mercury, heavy oil and greases 

lubrications, paper coatings, extracting of polymers and many more. The bio fluids, 
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such as, saliva, blood samples and DNA are generally analysed by BIOMEMS 

devices, but these fluids cannot be treated as Newtonian fluids. The behaviour of 

these fluids can be described by adopting Cauchy momentum equation with a 

proper constitutive law as Navier-stokes equation fails in this aspect ,Non-

Newtonian fluids mathematical formulation is very complex. The second grade, 

Maxwell, oldroyd-B and power law models are the frequently considered Non-

Newtonian models. Fluids steady and unsteady flow contexts and their behavior 

together with mathematical models can be found in Ref [1-7]. The Powell-Eyring 

model certainly has considerable edge over there Non-Newtonian fluid models it 

is designed from kinetic theory of liquids rather than empirical relation and reduces 

to Newtonian behavior for low and high shear rates. 

First, it is derived from kinetic theory of fluids and can be correctly reduced 

Newtonian behavior for low and high shear rates. The flow of Powell-Eyring 

model numerically through asymptotic boundary conditions was examined by 

Patel and Timol [8] Hayat et al [9] studied the steady flow of a Powell-Eyring fluid 

over a moving surface with convective boundary conditions. Rosca and Pop[10] 

presented flow and heat transfer of Powell-Eyring fluid over shrinking surface in 

a parallel free stream. 

The flow of a fluid over a stretching surface has significant polymer-industry 

applications such as, glass blowing, casting and spinning of fibres incessantly 

which involve the flow owing to stretching surface. Classical solution for the 

boundary layer flow of viscous fluid over a sheet moving with varying velocity 

linearly with distance from a fixed point was provided by Crane [11]. This work 

has been adopted for stretching flows in distinct configurations Mukhopadhay [12] 

analyzed the slipping effects on MHD Boundary layer flow by stretching a sheet 

exponentially with blowing or suction and thermal radiation. Bhikshu et.al [13] 

investigated the effects of Magnetohydrodynamics on the Peristaltic flow of fourth 

grade fluid in an inclined channel with permeable walls. Bhattacharya et al [14] 

have investigated thermal radiation effects on micropolar fluid flow and heat 

transfer over a porous stretching sheet. Turky ilmazoglu [15] investigated exact 

solutions for 2-Dimensional laminar flow over a continuously stretching or 

shrinking sheet in an electrically conducting quiescent couple stress fluid. Turky 

ilmazoglu [16] studied A note has been presented on micro polar fluid and that 

transfer over a porous shrinking sheet, Sheikholeslami et al [17] investigated the 

effect of heat transfer in flow of Nano fluids over a permeable stretching wall in a 

porous medium nano fluid in a rotating system was analyzed by Sheikholeslami 

and Ganji [18]. 

Bhikshu et al [19] studied the peristaltic flow of a conducting Williamson 

fluid in a vertical asymmetric channel with heat transfer through porous medium. 

The heat effects generation / absorption on stagnation point flow of nano fluid over 

a surface with convective boundary was discussed by Alsaedi et al [18]. The MHD 

stagnation point flow of nano fluid towards a stretching sheet was a analyzed by 
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Ibrahim et al [20]. Malvandi et al [21] analyzed the effect of slip on unsteady 

stagnation point flow of nano fluid over a stretching sheet. 

Most of the chemically reacting systems include both homogenous and 

heterogeneous reactions, found in combustion, catalysis and biochemical systems. 

Chaudhary and Merkin [22] have considered a simple model for homogeneous-

heterogeneous reactions in boundary layer flow in which the bulk homogeneous 

reaction is assumed to be given by isothermal cubic autocatalator kinetics and the 

heterogeneous surface reaction by first order kinetics. Bachok et al [23] 

investigated stagnation point flow over a stretching sheet with homogenous and 

heterogeneous reactions. Homogenous and heterogeneous reactions in a nanofluid 

flow due to a porous stretching sheet have been investigated by Kameswaran et al 

[24]. 

The present study analyses the homogeneous-heterogeneous reactions in a 

flow of powell-eyring fluid over a stretching sheet. This problem is modeled first 

and then solved by homotopy analysis method [25−32]. The distinct parameters 

behavior has been analyzed graphically. 

2. MATHEMATICAL FORMULATION: 

We consider a steady two-dimensional incompressible flow of Powell-Eyring 

fluid. We have considered a simple model for both homogeneous and 

heterogeneous reactions, involving two chemical species A and B in boundary 

layer flow. For the homogeneous reaction we took isothermal cubic autocatalytic 

reaction, given schematically by [23] 

 𝐴 + 2𝐵 → 3𝐵, 𝑟𝑎𝑡𝑒 = 𝑘1𝑎𝑏2 (1) 

While on the catalyst surface we have the single isothermal first order 

reaction: 

 𝐴 → 𝐵, 𝑟𝑎𝑡𝑒 = 𝑘𝑠𝑎 (2) 

Where a and b are concentrations of chemical species A and B, respectively; 

and k1 and ks are the constants. The stress tensor in an Powell-Eyring model is 

 𝑇𝑖𝑗 = 𝜇
𝜕𝑢𝑖

𝜕𝑥𝑗
+

1

𝛽
𝑠𝑖𝑛ℎ−1 (

1

𝑐

𝜕𝑢𝑖

𝜕𝑥𝑗
) (3) 

Where μ is the dynamic viscosity; β and c are the material fluid parameters. 

Considering 

 𝑠𝑖𝑛ℎ−1 (
1

𝑐

𝜕𝑢𝑖

𝜕𝑥𝑗
) ≅

1

𝑐

𝜕𝑢𝑖

𝜕𝑥𝑗
−

1

6
(

1

𝑐

𝜕𝑢𝑖

𝜕𝑥𝑗
)

3

, |
1

𝑐

𝜕𝑢𝑖

𝜕𝑥𝑗
| ≤ 1 (4) 

A Uniform magnetic field is applied normal to the sheet the magnetic 

Raynolds number is assumed to be small so that the induced magnetic field can be 

neglected. 
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The governing boundary layer equations are 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (5) 

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (𝑣 +

1

𝜌𝛽𝑐
)

𝜕2𝑢

𝜕𝑦2 −
1

2𝜌𝛽𝑐3 (
𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦2 − 𝛿
𝛽0

2

𝜌
𝑢  (6) 

 𝑢
𝜕𝑎

𝜕𝑥
+ 𝑣

𝜕𝑎

𝜕𝑦
= 𝐷𝐴

𝜕2𝑎

𝜕𝑦2 − 𝑘1𝑎𝑏2 (7) 

 𝑢
𝜕𝑏

𝜕𝑥
+ 𝑣

𝜕𝑏

𝜕𝑦
= 𝐷𝐵

𝜕2𝑏

𝜕𝑦2 + 𝑘1𝑎𝑏2 (8) 

Where u and v are the velocity components along the x-and y-direction, 

respectively; v = μ/ρ is the kinematic viscosity and ρ is the fluid density. DA and 

DB are the respective diffusion coefficients. The boundary conditions set for Eqs. 

(5)−(8) are: 

 𝑢 = 𝑈𝑤𝑥, 𝑣 = 𝑉𝑤 ,  𝐷𝐴
𝜕𝑎

𝜕𝑦
= 𝑘𝑠𝑎 , 𝐷𝐵

𝜕𝑏

𝜕𝑦
= −𝑘𝑠𝑎 at y = 0 

 𝑢 → 0 , 𝑎 → 𝑎0, 𝑏 → 0 as 𝑦 → ∞ (9) 

Where Uw and a0 are the constants, Vw is the suction/injection coefficient 

We define the following transformations: 

 𝜓 = (𝑈𝑤𝑣)
1

2𝑥𝑓(𝜂) , 𝑔(𝜂) =
𝑎

𝑎0
 , ℎ(𝜂) =  

𝑏

𝑎0
 , 𝜂 = (

𝑈𝑤

𝑣
)

1

2
𝑦(10) 

Where ψ is the stream function defined by u = ∂ψ/∂y and v = −∂ψ/∂x. 

Substituting Eq. (10) into Eqs. (5)−(9), we obtain the following ordinary 

differential equations: 

 (1 + 𝜆)𝑓′′′ − 𝑓′2
+ 𝑓𝑓′′ − 𝜆𝛿 𝑓′′2

𝑓′′′ − 𝜇𝑓′ = 0 (11) 

 
1

𝑆𝑐
𝑔′′ + 𝑓𝑔′ − 𝐾𝑔ℎ2 = 0 (12) 

 
𝜆

𝑆𝑐
ℎ′′ + 𝑓ℎ′ + 𝐾𝑔ℎ2 = 0 (13) 

where primes denote differentiation with respect to η, λ and δ are the material fluid 

parameters, 𝑆𝑐 is the Schmidt number, K is the measure of the strength of the 

homogeneous reaction, λ is the ratio of the diffusion coefficients. 

The suction or injection Parameter 

𝑓𝑤 = −
𝑉𝑤

𝑈𝑤𝑣
 

The Magnetic Parameter 

𝜇 =
𝜎 𝛽0

2

𝜌𝑉𝑤
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These quantities have following definitions 

 𝜆 =
1

𝜇𝛽𝑐
, 𝛿 =

𝑈𝑤
3 𝑥2

2𝑐2𝑣
 , 𝑆𝑐 =

𝑣

𝐷𝐴
 , 𝐾 =

𝑘1𝑎0
2

𝑈𝑤
 , 𝛽 =

𝐷𝐵

𝐷𝐴
 (14) 

The boundary conditions in eqn (9) become 

 {

𝑓(0) = 𝑓𝑤 , 𝑓′(0) = 1 , 𝑓′(𝜂) → 0 𝑎𝑠 𝜂 → ∞

𝑔′(0) = 𝐾 , 𝑔(0)𝛽ℎ′(0) = −𝐾𝑠ℎ(0), 𝑔(𝜂) → 1

ℎ(𝜂) → 0 as η → ∞

 (15) 

where KS measures the strength of the heterogeneous reaction. 

Take β=1, we have 

 g( ) + h( ) =1 (16) 

And eqs (12) and (13) give 

 
1

𝑆𝑐
𝑔′′ + 𝑓𝑔′ − 𝐾𝑔(1 − 𝑔)2 = 0 (17) 

The subjected boundary conditions set are 

 𝑔′(0) = 𝐾𝑠𝑔(0), 𝑔(𝜂) → 1 as 𝜂 → ∞(18) 

Therefore, we have to solve eqs (11) and (17) along with the boundary 

conditions (15) and (18) 

3. SOLUTION OF THE PROBLEM 

The above Eqs. (6) and (7) along with the boundary conditions are solved by 

converting them to an initial value problem. We set 

Magnetic field strongly influenced the velocity boundary layer and opposite 

for concentration boundary layer 

 𝑓′ = 𝑧 , 𝑧′ = 𝑝 

𝑝′ =
1

1 + 𝜆 − 𝜆𝛿𝑝2
(𝑧2 − 𝑓𝑝 + 𝜇𝑧) 

 𝑔′ = 𝑞 

with the boundary conditions 

Velocity and concentration boundary layer are decreased suction. 

 𝑞′ = 𝑆𝑐(𝑆𝑔(−𝑔)2 − 𝑓𝑞) 

 𝑓(0) = 𝑓𝑤 ,𝑧(0) = 1 , 𝑞(0) = 𝐾𝑠𝑔(0) 

Magnetic parameter M or material fluid parameter λ, Schmidt number Sc, 

measure of the strength of the homogenous reaction parameter Ks. 
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In order to integrate (10) and (11) as an initial value problem, one requires a 

value for p(0), that is 𝑓′′(0) and 𝑞(0), that is, 𝑔′(0) no such values are given at the 

boundary. The suitable guess values for 𝑓′′(0) and ℎ′(0) are chosen and then 

integration is carried out. Comparing the calculated values for 𝑓′ and g at 𝜂 = 10 

(say) with the given boundary conditions 𝑓′(10) = 1 and g(10)=0 and adjusting 

the estimated values 𝑓′′
(0) and 𝑔′(0) we apply the fourth order classical Runge-

Kutta method with step-size h=0.01. The above procedure is repeated until we get 

the converged results within a tolerance limit of 10-5. 

4. RESULTS AND DISCUSSION 

In order to analyze the results, numerical computation has been carried out using 

the method described in the previous section for various values of magnetic 

parameter M material fluid parameter λ, Schmidt number Sc measure of strength 

of the homogeneous reaction parameters K (Ks) For illustration of the results, 

numerical values are plotted in Figs 1 to 12. 

 

Figure 1: Velocity profile ¢( )hf  for different values of M  

 

Figure 2: Concentration profile ( )hg  for different values of M  
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Figure 3: Velocity profile ¢( )hf for different values of l  

 

Figure 4: Concentration profile ( )hg  for different values of l  

 

Figure 5: Velocity profile ¢( )hf for different values of wf  
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Figure 6: Concentration profile ( )hg  for different values of wf  

 

Figure 7: Concentration profile ( )hg  for different values of K  

 

Figure 8: Concentration profile ( )hg  for different values of Sc  
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Figure 9: Concentration profile ( )hg  for different values of sK  

 

Figure 10: Skin-friction coefficient - ''(0)f for different values of & wM f  

 

Figure 11: Sherwood number - '(0)g  for different values of & wM f  
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Figure 12: Sherwood number - '(0)g  for different values of &sK K
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5. CONCLUSIONS 

1. The present study discusses the two dimensional flow of electrically 

conducting Powell-Eyring fluid over a stretching surface in the presence of 

variable suction/injection. The local similarity solution is used to transform 

the system of partial differential equation describing the problem into a 

system of highly coupled non-linear ordinary differential equations. The 

transformed equations are then solved by shooting technique combined with 

Runge-kutta fourth order method. 

2. For different values of magnetic parameters M, it is clearly observed that 

velocity profile decreases with an increasing values of M due to increment 

in magnetic field strength 

3. It is noticed that temperature profile increases with increase in M. 

4. Velocity profile and concentration profile increases with in λ. 

Table 1: Comparison of Skin-friction coefficient - ''(0)f  with the available results in 

literature for different values of M when = = = 0l sK K . 

M 
(0)f- ¢¢  

Present study Chen Andersson et al. [14] 

0.0 

0.5 

1.0 

1.5 

2.0 

1.000000 

1.224745 

1.414214 

1.581139 

1.732051 

1.00000 

1.22475 

1.41421 

1.58114 

1.73205 

1.000 

1.225 

1.414 

1.581 

1.732 
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