SOME PROPERTIES OF $(1,2)S_P$ G-CLOSED SETS IN BITOPOLOGICAL SPACES

S. Dhanalakshmi¹ M. Maheswari², N. Durga Devi³

Research Scholar¹, Research Scholar², Assistant Professor³

Register Number: 19121202092016, Department of Mathematics, Sri Parasakthi College for Women, Courtallam.

(Affiliated to Manonmaniam Sundaranar University) Tirunelveli, Tamilnadu.

Abstract:

In this paper, a new kind of generalized closed sets called $(1,2)S_pg$ -closed sets in bitopological spaces are introduced and studied some of their properties.

Key words:

(1,2)semi-open sets, (1,2)pre-open sets, (1,2)S $_p$ -open sets, (1,2)S $_p$ -closed sets, (1,2)S $_p$ g-open sets, (1,2)S $_p$ g-closed sets.

AMS Classifications: 54A10

1.INTRODUCTION

A topological space occurs for every metric space but the bitopological spaces occurs for quasi-metric spaces. A space X equipped with two arbitrary topologies τ_1 and τ_2 is defined as the bitopological space by Kelly [3] in the year 1963 denoted it by a triplet (X, τ_1, τ_2) . Every bitopological space (X, τ_1, τ_2) can be regarded as a topological space (X, τ) if $\tau_1 = \tau_2 = \tau$.

The generalized closed sets, simply g-closed sets in a topological space were introduced and studied by Levine [6] in the year 1970. In bitopological spaces, Fukutake [1] introduced and investigated the concept of g-closed in the year 1985. There were many different kinds of generalized closed sets on bitopological spaces introduced by different authors.

In this paper, a new kind of generalized closed sets in bitopological spaces are introduced and compare with some of the corresponding generalized closed sets and studied their properties.

2. PRELIMINARIES

Throughout this paper X and Y will be denote the topological spaces. If A is a subset of X, then the closure and interior of A in X are denoted by cl(A) and int(A) respectively.

Definition 2.1 [4] A subset A of a bitopological space X is called a

(i) (1,2)semi-open if $A \subseteq \tau_1 \tau_2 \text{Cl}(\tau_1 \text{Int}(A))$.

- (ii) (1,2)pre-open if $A \subseteq \tau_1 \operatorname{Int}(\tau_1 \tau_2 \operatorname{Cl}(A))$.
- (iii) (1,2)regular-open if $A = \tau_1 Int(\tau_1 \tau_2 Cl(A))$.

The collection of all (1,2)semi-open, (1,2)pre-open and (1,2)regular-open sets are denoted by (1,2)SO(X), (1,2)PO(X) and (1,2)RO(X) respectively.

Definition 2.2. [4] A subset A of a bitopological space X is called a

- (i) $(1,2)\alpha$ -closed if $\tau_1 \text{Cl}(\tau_1 \tau_2 \text{Int}(\tau_1 \text{Cl}(A))) \subseteq A$.
- (ii) (1,2)semi-closed if $\tau_1 \tau_2 \operatorname{Int}(\tau_1 \operatorname{Cl}(A)) \subseteq A$.
- (iii) (1,2)pre-closed if $\tau_1 \text{Cl}(\tau_1 \tau_2 \text{Int}(A)) \subseteq A$.
- (iv) (1,2)regular-closed if $A = \tau_1 \text{Cl}(\tau_1 \tau_2 \text{Int}(A))$.

The set of all $(1,2)\alpha$ -closed, (1,2)semi-closed, (1,2)pre-closed and (1,2)regular-closed sets are denoted as $(1,2)\alpha$ CL(X), (1,2)SCL(X), (1,2)PCL(X) and (1,2)RCL(X) respectively.

Also, for any subset A of X, the $(1,2)\alpha$ -closure, (1,2)semi-closure, (1,2)pre-closure and (1,2)regular-closure of A is denoted as $(1,2)\alpha Cl(A)$, (1,2)SCl(A), (1,2)PCl(A) and (1,2)RCl(A) respectively.

Definition 2.3. [2] A (1,2)semi-open set A of a bitopological space X is called (1,2) S_p -open set if for each $x \in A$, there exists a (1,2)pre-closed set F such that $x \in F \subseteq A$.

Remark 2.4. [2] Any intersection of $(1,2)S_p$ -closed sets of a bitopological space X is $(1,2)S_p$ -closed.

Definition 2.5. [5] A subset A of a space (X, τ) is called

(i) generalized-closed (briefly g-closed) [2], if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) and the complement of a g-closed set is called g-open.

3. $(1,2)S_p$ G-CLOSED SET

Definition 3.1. A subset A of bitopological space X is called a $(1,2)S_p$ -generalized-closed (briefly $(1,2)S_pg$ -closed) set if $(1,2)S_pCl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in (1,2)S_pO(X)$.

The family of all $(1,2)S_pg$ -closed sets is denoted by $(1,2)S_pGCL(X)$.

Remark 3.2. Every $(1,2)S_p$ -closed set is a $(1,2)S_pg$ -closed set but the converse need not always be true and is shown in the following example.

Example 3.3. Let $X = \{a, b, c, d\}$ with two topologies $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\}$ and $\tau_2 = \{\phi, X, \{a, b, d\}\}$. Then $(1,2)S_pO(X) = \{\phi, X, \{a, c, d\}, \{b, c, d\}\}\}$ and $(1,2)S_pCL(X) = \{X, \phi, \{b\}, \{a\}\}\}$. Also, $(1,2)S_pGCL(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Here, $\{a, b\}, \{a, b, c\}, \{a, b, d\}$ are in $(1,2)S_pg$ -closed sets but not $(1,2)S_p$ -closed set.

Theorem 3.4. In a bitopological space X, a subset A of X is called a $(1,2)S_pg$ -closed set iff $[(1,2)S_pCl(A)-A]$ contains no non-empty $(1,2)S_p$ -closed set.

Proof. Let A be a $(1,2)S_p$ g-closed set. Then there exists a $(1,2)S_p$ -open set U such that $A \subseteq U$ and $(1,2)S_p\mathrm{Cl}(A) \subseteq U$. Let F be a non-empty $(1,2)S_p$ -closed set such that $F \subseteq [(1,2)S_p\mathrm{Cl}(A) - A]$. Then $F^c \supseteq [(1,2)S_p\mathrm{Cl}(A) - A]^c$, which implies $A \subseteq F^c$. Hence $(1,2)S_p\mathrm{Cl}(A) \subseteq F^c$ which implies $A \subseteq [(1,2)S_p\mathrm{Cl}(A)]^c$. Therefor, $A \subseteq (1,2)S_p\mathrm{Cl}(A) \cap [(1,2)S_p\mathrm{Cl}(A)]^c$. Thus $F = \emptyset$. Hence $[(1,2)S_p\mathrm{Cl}(A) - A]$ contains no non-empty $(1,2)S_p$ -closed set.

Also, Let $A \subseteq U$ and $U \in (1,2)S_pO(X)$ such that A is not a $(1,2)S_pg$ -closed set. Then $(1,2)S_pCl(A)$ is not a subset of U, which implies that $(1,2)S_pCl(A) \subseteq U^c$. Then $(1,2)S_pCl(A) \cap U^c$ is a non-empty $(1,2)S_p$ -closed subset of $[(1,2)S_pCl(A) - A]$, which is a contradiction. Hence A is $(1,2)S_pg$ -closed set.

Theorem 3.5. A $(1,2)S_pg$ -closed set is $(1,2)S_p$ -closed iff $[(1,2)S_pCl(A) - A]$ is $(1,2)S_p$ -closed.

Proof. If A is $(1,2)S_p$ -closed, then $[(1,2)S_pCl(A) - A] = \phi$. By Theorem 3.4, $[(1,2)S_pCl(A) - A]$ is $(1,2)S_p$ -closed. Also $[(1,2)S_pCl(A) - A]$ itself is a subset of it. By Theorem 3.4, $[(1,2)S_pCl(A) - A] = \phi$. Hence A is $(1,2)S_p$ -closed.

Remark 3.6. The intersection of two $(1,2)S_pg$ -closed sets need not always be a $(1,2)S_pg$ -closed set and is shown in the following example.

Example 3.7 Let $X = \{a, b, c, d\}$ with two topologies $\tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, d\}, \{a, c, d\}\}$ and $\tau_2 = \{\phi, X\}$. Then $(1,2)S_pO(X) = \{\phi, X, \{b, c\}, \{a, b, d\}\}$ and $(1,2)S_pCL(X) = \{X, \phi, \{a, d\}, \{c\}\}$. Also, $(1,2)S_pGCL(X) = \{X, \phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$. Here $\{a, b, c\}$ and $\{b, c, d\} \in (1,2)S_pGCL(X)$ but $\{a, b, c\} \cap \{b, c, d\} = \{b, c\} \notin (1,2)S_pGCL(X)$.

Definition 3.8. If $(1,2)S_p$ -open sets are closed with respect to finite intersection then X is called the $(1,2)S_p$ -topology.

Theorem 3.9. If A and B are $(1,2)S_pg$ -closed sets, then $A \cup B$ is also $(1,2)S_pg$ -closed set only if the space is $(1,2)S_p$ -topology.

Proof. Let A and B are $(1,2)S_pg$ -closed sets. Also, let $A \cup B \subseteq U$, where $U \in (1,2)S_pO(X)$. Since X is an $(1,2)S_p$ -topological space, $(1,2)S_pCl(A \cup B) = (1,2)S_pCl(A) \cup (1,2)S_pCl(B)$. As A and B are $(1,2)S_pg$ -closed sets, implies $(1,2)S_pCl(A) \subseteq U$ and $(1,2)S_pCl(B) \subseteq U$. Thus $(1,2)S_pCl(A \cup B) \subseteq U$. Hence, $A \cup B$ is also $(1,2)S_pg$ -closed only if the space is $(1,2)S_p$ -topology.

Remark 3.10. The condition " $(1,2)S_p$ -topology" cannot be removed in Theorem 3.9 and is justified by the following example.

Example 3.11. Let $X = \{a, b, c, d\}$ with two topologies $\tau_1 = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $\tau_2 = \{\phi, X\}$. Then $(1,2)S_pO(X) = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $(1,2)S_pCL(X) = \{X, \phi, \{a, b, d\}, \{c, d\}, \{d\}, \{c\}\}$. Also, $(1,2)S_pGCL(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. Here $\{a\}, \{c\} \in (1,2)S_pGCL(X)$. But $\{a\} \cup \{c\} = \{a, c\} \notin (1,2)S_pGCL(X)$.

Lemma 3.12. For a bitopological space X, either every singleton set $\{x\}$ is $(1,2)S_p$ -closed or its complement $\{x\}^c$ is $(1,2)S_p$ g-closed.

Proof. If $\{x\}$ is not $(1,2)S_p$ -closed, then the only $(1,2)S_p$ -open set containing $X - \{x\}$ is X. Hence, $\{x\}^c$ is $(1,2)S_p$ -closed.

Definition 3.13. A subset of A of a bitopological space X is called a $(1,2)S_p$ -generalized-open (briefly $(1,2)S_pg$ -open) set if A^c is $(1,2)S_pg$ -closed. Then, the family of all $(1,2)S_pg$ -open sets is denoted by $(1,2)S_pGO(X)$.

Lemma 3.14. For any subset A of a bitopologic space X, $(1,2)S_p Int[(1,2)S_p Cl(A) - A] = \phi$.

Theorem 3.15. For a subset *A* of X, $(1,2)S_pCl(A^c) = [(1,2)S_pInt(A)]^c$.

Proof. Let A be a subset of X. Then $A^c = X - A$. Also, let E be a $(1,2)S_p$ -open set such that $E \subset A$. By definition $(1,2)S_p \operatorname{Int}(A) = \bigcup \{E \mid E \subset A \text{ and } E \in (1,2)S_p \operatorname{O}(X)\}$. That is, $(1,2)S_p \operatorname{Int}(A) = \bigcup \{X - F \mid X - A \subset F \text{ and } F = X - E\}$. Hence, $(1,2)S_p \operatorname{Int}(A) = X - \bigcap \{F \mid F \text{ is } (1,2)S_p \operatorname{-closed} \text{ and } X - A \subset F\}$. Therefore, $(1,2)S_p \operatorname{Int}(A) = X - (1,2)S_p \operatorname{Cl}(X - A)$. That is, $(1,2)S_p \operatorname{Int}(A) = X - (1,2)S_p \operatorname{Cl}(A^c)$ which implies $(1,2)S_p \operatorname{Cl}(A^c) = X - (1,2)S_p \operatorname{Int}(A)$. Hence $(1,2)S_p \operatorname{Cl}(A^c) = [(1,2)S_p \operatorname{Int}(A)]^c$.

Theorem 3.16. A subset A of a bitopological space X is $(1,2)S_pg$ -open iff $F \subseteq (1,2)S_p \operatorname{Int}(A)$ whenever F is $(1,2)S_pg$ -closed and $F \subseteq A$.

Proof. Let A be $(1,2)S_pg$ -open. Then A^c is $(1,2)S_pg$ -closed implies $(1,2)S_pCl(A^c) \subseteq F^c$. By Theorem 3.15, $(1,2)S_pCl(A^c) = [(1,2)S_pInt(A)]^c$ implies $[(1,2)S_pInt(A)]^c \subseteq F^c$. Hence, $F \subseteq (1,2)S_pInt(A)$ whenever F is $(1,2)S_pg$ -closed and $F \subseteq A$.

Also, Let $F \subseteq (1,2)S_p \operatorname{Int}(A)$, where F is $(1,2)S_p \operatorname{g-closed}$ and $F \subseteq A$. Let G = X - F be a $(1,2)S_p g$ -open such that $A^c \subseteq G$. Then by assumption, $G^c \subseteq (1,2)S_p \operatorname{Int}(A)$ which implies that $[(1,2)S_p \operatorname{Int}(A)]^c \subseteq G$ implies $(1,2)S_p \operatorname{Cl}(A^c) \subseteq G$. Therefore A^c is $(1,2)S_p g$ -closed. Hence, A is $(1,2)S_p g$ -open.

Theorem 3.17. A subset *A* of a bitopological space *X* is $(1,2)S_pg$ -closed, if $[(1,2)S_pCl(A) - A]$ is $(1,2)S_pg$ -open.

Proof. Let $A \subseteq U$ and $U \in (1,2)S_p\mathrm{O}(X)$. Now $(1,2)S_p\mathrm{Cl}(A) \cap (X-U) \subseteq (1,2)S_p\mathrm{Cl}(A) \cap (X-U) \subseteq (1,2)S_p\mathrm{Cl}(A) \cap (X-U) = (1,2)S_p\mathrm{Cl}(A) \cap (X-U)$ is $(1,2)S_p\mathrm{Cl}(A) \cap (X-U)$ is $(1,2)S_p\mathrm{Cl}(A) \cap (X-U)$ is $(1,2)S_p\mathrm{Cl}(A) \cap (X-U) = (1,2)S_p\mathrm{Int}(A)[(1,2)S_p\mathrm{Cl}(A) \cap A] = \emptyset$ which implies $(1,2)S_p\mathrm{Cl}(A) \cap (X-U) = \emptyset$ Then, $(1,2)S_p\mathrm{Cl}(A) \subseteq U$. Hence A is $(1,2)S_pg$ -closed.

Theorem 3.18. If a subset A of X is $(1,2)S_pg$ -open, then G = X, whenever G is $(1,2)S_p$ -open and $(1,2)S_p \operatorname{Int}(A) \cup A^c \subseteq G$.

Proof. Let G is $(1,2)S_p$ -open and $(1,2)S_p \operatorname{Int}(A) \cup A^c \subseteq G$. Then $G^c \subseteq [(1,2)S_p \operatorname{Cl}(A^c) - A^c]$. Now G is $(1,2)S_p$ -open implies G^c is $(1,2)S_p$ -closed and A is $(1,2)S_pg$ -open implies A^c is $(1,2)S_pg$ -closed. Hence by Theorem 3.4, $G^c = \emptyset$, which implies G = X.

REFERENCES

- 1. Fukutake. T: On generalized closed sets in bitopological spaces, Bull. Fukuka Univ Ed. Part (iii), 35 (1986), 19-28.
- 2. Hardi Ali Shareef, Durga Devi Natarajan, Raja Rajeswari Ramajeyam and Thangavelu Periannan: $(1,2)S_p$ -open sets in Bitopological spaces, Journal of Zankoisulaimani Sulaiani 19-2(Part-A), (2017), 195-201.
- 3. Kelly. JC: Bitopological spaces, Proc. London Math Soc. 13, (1963), 71-89.
- 4. Lellis Thivagar. M, Meera Devi. B and Navalagi. G: (1,2) Extremally disconnectedness via Bitopological open sets, International Journal of General Topology, Vol. 4, Nos. 1-2, (2011), 915

SOME PROPERTIES OF (1,2) S_p g-closed sets in bitopological spaces

5. Levine. N: Generalized closed sets in bitopological spaces, Rend. Circ. Math. Palermo, 19 (1970), 89-96.