
A STUDY IN LOCALLY COMPACT GROUPS

—CHABAUTY SPACE, SYLOW THEORY,

THE SCHUR-ZASSENHAUS FORMALISM,

THE PRIME GRAPH FOR NEAR ABELIAN GROUPS

WOLFGANG HERFORT, KARL H. HOFMANN, AND FRANCESCO G. RUSSO

Abstract. The class of locally compact near abelian groups is introduced
and investigated as a class of metabelian groups formalizing and applying
the concept of scalar multiplication. The structure of locally compact near
abelian groups and its close connections to prime number theory are discussed
and elucidated by graph theoretical tools. These investigations require a thor-
ough reviewing and extension to the present circumstances of various aspects
of the general theory of locally compact groups such as
–the Chabauty space of closed subgroups with its natural compact Hausdorff
topology,
–a very general Sylow subgroup theory for periodic groups including their
Hall systems,
–the scalar automorphisms of locally compact abelian groups,
–the theory of products of closed subgroups and their relation to semidirect

products, and
–inductively monothetic groups are introduced and classified.
As applications, firstly, a complete classification is given of locally compact
topologically quasihamiltonian groups, which has been initiated by F. Küm-
mich, and, secondly, Yu. Mukhin’s classification of locally compact topologi-
cally modular groups is retrieved and further illuminated.

1. Background

In this survey we describe what may be called a structure theory of locally
compact near abelian groups. This attempt becomes clearer after we describe the
historical development of researching locally compact groups in a broad sense.

Keys to our understanding will be the concept of an inductively monothetic
locally compact group, the Chabauty space associated canonically with a locally
compact group, and a Sylow theory for closed subgroups of periodic locally com-
pact groups reflecting typical features of the Sylow theory of finite groups. The
emergence of the role of the prime numbers attached to the building blocks of
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the groups we consider points into the direction of graph theory which we shall
employ rather extensively. However, as interesting as the structure theory of near
abelian groups itself is, we emphasise here, that the machinery for developing and
detailing it should share center stage.

1.1. Some history. The structure theory of locally compact groups has a long
history. One of its roots is David Hilbert’s question of 1900 whether a locally
euclidean topological group might possibly support the introduction of a differen-
tiable parametrisation such that the group operations are in fact differentiable.

A first affirmative answer was given for compact locally euclidean groups when
they were found to be real matrix groups as a consequence of the foundational work
by Hermann Weyl and his student Fritz Peter in 1927 on the representation
theory of compact groups. A second step was achieved when the answer was
found to be “yes” for commutative locally compact groups. This emerged out of
the fundamental duality theorems by Lev Semyonovich Pontryagin (1934)
and Egbert van Kampen (1937). This duality forever determined the structure
and harmonic analysis of locally compact abelian groups after it was widely read
in the book of 1940, 1953, 1965 and 1979 by André Weil on the integration in
locally compact groups [47].

A final positive answer to Hilbert’s Fifth Problem had to wait almost another
two decades when, 17 years after the Second World War, the contributions of
Andrew Mattei Gleason, Deane Montgomery, and Leo Zippin around
1952 provided the final affirmative answer to Hilbert’s problem. It led almost
at once to the fundamental insights of Hidehiko Yamabe 1953, completing the
pioneering work of Kenkichi Iwasawa (1949) providing the fundamental struc-
ture of all those locally compact groups G which had a compact space G/G0 of
connected components: Such groups were recognised as being approximated by
quotient groups G/N modulo arbitrarily small compact normal subgroups N in
such a fashion that each G/N is a Lie group, that is, one of those groups on which
Hilbert had focussed in the fifth of his 23 influential problems in 1900 and which
Sophus Marius Lie (1842-1899) had invented together with an ingenious alge-
braisation method, long known nowadays under the name of Lie algebra theory.
(S. [35], [29]) A special case arises when all G/N are discrete finite groups; in this
case G is called profinite.

The solution of Hilbert’s Fifth Problem in the middle of last century opened
up the access to the structure theory of locally compact groups to the extent they
could be approximated by Lie groups, due to the rich Lie theory meanwhile devel-
oped in algebra, geometry, and functional analysis. Recently, interest inHilbert’s

Fifth Problem was rekindled in the present century under the influence of Ter-

ence Tao [46]. There are nonstandard approaches to dealing with Hilbert’s Fifth
Problem by Joram Hirschfeld in [18] and recently by Lou van den Dries and
Isaac Goldbring in [6].

The quest for a solution to Hilbert’s Fifth problem, at any rate, led to one major
direction in the research of topological groups: in focus was the class of groups G
approximable by Lie group quotients G/N , and finally G itself needed no longer
to be locally compact. Such groups were called pro-Lie groups considered for the
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sake of their own. (See [21], [22].) Their theory reached as far as almost connected
locally compact groups go (that is, those for which G/G0 is compact), including
all compact and all connected locally compact groups. But not further.

Still, every locally compact group (and every pro-Lie group) G has canonically
and functorially attached to it a (frequently infinite dimensional) Lie algebra L(G)
and therefore a cardinal ≥ 0 attached to it, namely, its topological dimension
DIMG (cf. e,g, [20], 9.54, p. 498ff.). Indeed, we have the following information
right away:

Proposition 1.1. Let G be a topological group which is locally compact or a pro-
Lie group. Then the following statements are equivalent:

(1) Every connected component of G is singleton, that is, G is totally disconnected.
(2) DIMG = 0, that is, G is zero-dimensional.

If G is compact, then it is zero-dimensional if and only if it is profinite.
For this survey it is important to see that, in the 20th century, there was a

second trend on the study of locally compact groups that is equally significant even
though it is opposite to the concept of connectivity in topological groups. This
trend is represented by the class of compact or locally compact zero-dimensional
groups.

Such groups were encountered in field theory at an early stage. Indeed, in
Galois theory the consideration of the appropriate infinite ascending family of
finite Galois extensions and, finally, its union would, dually, lead to an inverse
family of finite Galois groups and, in the end, to their projective limit. Thus
was produced what became known as a profinite group. The Galois group of
the infinite field extension, equipped with the Krull topology, is thus a profinite
group. One recognised soon that profinite groups and compact totally disconnected
groups were one and the same mathematical object, expressed algebraically on
the one hand and topologically on the other. Comprehensive literature on this
class of groups appeared much later than text books on topological groups in
which connected components played a leading role. Just before the end of the
20th century totally disconnected compact groups were the protagonists of books
simultaneously entitled “Profinite Groups” by John Stuart Wilson and Luis

Ribes jointly with Pavel Zalesskii in 1998, while George Willis in 1994
laid the foundations of a general structure theory of totally disconnected locally
compact groups if no additional algebraic information about them is available.

On the other hand, in the realm of locally compact abelian groups, the com-
pletion of the field Q of rational numbers with respect to any nonarchimedian
valuation yields the locally compact p-adic fields Qp as a totally disconnected
counterpart of the connected field R of real numbers. The fields Qp and their in-
tegral subrings Zp were basic building blocks of ever so many totally disconnected
groups, in particular the linear groups over these field and indeed all p-adic Lie
groups which Nicolas Bourbaki judiciously included in his comprehensive trea-
tise on Lie groups. Bourbaki’s text on Lie groups formed the culmination and
certainly the endpoint of his encyclopaedic project extending over several decades.

The world of totally disconnected locally compact groups developed its own
existence, methods and philosophies, partly deriving from finite group theory via
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approximation through the formation of projective limits, partly through graph
theory where the appropriate automorphism theory provides the fitting represen-
tation theory, and partly also through the general impact of algebraic number
theory which in the text book literature is indicated by the books of Helmut

Hasse since the thirties (see e.g. [13, 12] and lastly, 1967, by the “Basic Number
Theory” of André Weil, see [48], whose book on the integration on locally com-
pact groups of 1940 (with later editions through four decades) had influenced the
progress of harmonic analysis of locally compact groups so much.

We pointed out that each locally compact groupG, irrespective of any structural
assumption has attached to it a (topological) Lie algebra L(G) (and therefore a
universal dimension). The more recent interest in zero-dimensional locally compact
groupsG has led to a new focus on another functorially attached invariant, namely,
a compact Hausdorff space SUB(G) consisting of all closed subgroups ofG endowed
with a suitable topology and now frequently called the Chabauty space of G. This
tool is not exactly new, but has been widely utilised in applications recently.
The Chabauty space is a special case of what has been called the hyperspace of
a compact (or locally compact) space first introduced by Vietoris (s. [7]) In
topological algebra hyperspaces were used and described e.g. in [2], [23], [24], and
in all recent publications where the name of Chabauty appears in the title (e.g.
[8], [10], [9], and [11]).

Notation. We shall make use of notation coherent with the book of Hofmann and
Morris, [20]. The cyclic group of order pn is denoted by Z(pn) and Z(p0) stands
for the trivial abelian group {0}.

2. Introductory Definitions and Results

We now return to the second thrust of the study of locally compact groups
which is concerned with the research of 0-dimensional groups.

Definition 2.1. A topological group G is called periodic if

(i) G is locally compact and totally disconnected, and

(ii) 〈g〉 is compact for all g ∈ G.

So a compact group is periodic if and only if it is profinite. A very significant
portion of the locally compact groups considered here will be periodic groups.
That is, we deal with totally disconnected locally compact groups in which every
element is contained in a profinite subgroup. We shall say that a topological group
G is compactly ruled if it is the directed union of its compact open subgroups. If
G is a a locally compact solvable group in which every element is contained in a
compact subgroup, then it is compactly ruled. The class of compactly ruled groups
comprises both, the class of profinite groups and the one of locally finite groups,
i.e. groups where every finite subset generates a finite subgroup only, see [30]. In
many cases we assume that the periodic groups we consider are compactly ruled.
These properties make them topologically special; just how close they make our
groups to profinite groups remains to be seen in the course of this survey. A second
significant property of the groups we study is an algebraic one: they are solvable,
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indeed metabelian. Again, it is another challenge to discern just how close this
makes them to abelian groups. The groups we study will be called near abelian.

In order to offer a precise definition of this class of locally compact groups we
need one preliminary definition, extending a very familiar concept:

Definition 2.2. A topological group G will be called monothetic if G = 〈g〉 for
some g ∈ G, and inductively monothetic if for every finite subset F ⊆ G there is

an element g ∈ G such that 〈F 〉 = 〈g〉.

We shall discuss and classify inductively monothetic locally compact groups
in greater detail later; but let us observe here right away a connected example
illustrating the two definitions: Indeed let T = R/Z denote the (additively written)
circle group. Then

the 2-torus is monothetic but is not inductively monothetic, since (12 ·Z/Z)
2 ⊆

T2 is finitely generated but is not monothetic.
Yet in the domain of totally disconnected locally compact groups
every 0-dimensional monothetic group is inductively monothetic.

In a periodic group, each monothetic subgroup 〈g〉 is compact, equivalently,
procyclic.

Now we are prepared for a definition of the class of locally compact groups
whose details we shall consider here:

Definition 2.3. A topological group G is near abelian provided it is locally com-
pact and contains a closed abelian subgroup A such that

(1) G/A is an abelian inductively monothetic group, and
(2) every closed subgroup of A is normal in G.

The subgroup A we shall call a base for G.
When we eventually collect applications for this class of locally compact groups,

then we shall see that for instance all locally compact groups in which two closed
subgroups commute setwise form a subclass of the class of near abelian groups and
that the class of all locally compact groups in which the lattice of closed subgroups
is modular is likewise a subclass of the class of near abelian groups.

2.1. Some history of near Abelian groups. In the world of discrete groups,
near abelian groups historically appeared in a natural way when K. Iwasawa

attempted the classification what is now known as quasihamiltonian and modular
groups as expounded in the monograph byR. Schmidt, [44]). It was F. Kümmich

(cf. [31]) who initiated in his dissertation written under the direction of Peter
Plaumann and in papers developed from his thesis the study of topologically
quasihamiltonian groups. These are topological groups such that XY = Y X is
valid for any closed subgroups X and Y of such a group. A bit later Yu. Mukhin

turned to investigating the class of locally compact topologically modular groups
(cf. e.g. [37, 39]).

The properties that there be a closed normal abelian subgroup A of G such
that G/A is inductively monothetic and such that every closed subgroup of A is
normal in G suggest themselves by the fact, proved by K. Iwasawa, that discrete
quasihamiltonian groups satisfy them. In a similar vein, Mukhin, during his work
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on classifying topologically modular groups, finds that these groups are all near
abelian in our sense (see e.g. [38]).

An earlier article by K. H. Hofmann and F. G. Russo, was devoted to clas-
sifying compact p-groups that are topologically quasihamiltonian (cf. [25]). The
major result states that such groups are at the same time topologically quasihamil-
tonian and near abelian with the exception of p = 2 in which case some sporadic
near abelian groups are topologically quasihamiltonian while the bulk of them
are not. This once again is evidence of the fact that is often quoted by number
theorists and group theorists alike that 2 is the oddest of all primes.

In linear algebra, a group G of (n+ 1)× (n+ 1)-matrices of the form
(
r·En v
0 1

)
, 0 < r ∈ R, v ∈ Rn

with the identity En of GL(n,R) is a metabelian Lie group that has been called
almost abelian (s. [17], p. 408, Example V.4.13). The subgroup A of all matrices
with r = 1 is isomorphic to Rn and every vector subspace of A is normal in G
and G/A ∼= R is a one-dimensional Lie group which is not inductively monothetic,
but we shall see that inductively monothetic groups are in some sense “rank one”
group analogs.

In both cases we have a representation ψ : G/A→ Aut(A) such that ψ(gA)(a) =
gag−1 as an essential element of structure. In the near abelian case we shall say
that G is A-nontrivial if the image of ψ has more than 2 elements. Whereas in the
Lie group case, the structure of an almost abelian Lie group G is comparatively
simple, in the case of a group G satisfying the conditions of Definition 2.3 it is
likely to be rather sophisticated as we illustrate by a result (s. [15], Theorem 7.4)
in which CG(A) = kerψ denotes the centraliser {g ∈ G : (∀a ∈ A) ag = ga} of A
in G:

Theorem 2.4. (Structure Theorem I on Near Abelian Groups) Let G be an A-
nontrivial near abelian group. Then

(1) A is periodic.
(2) G is totally disconnected.
(3) When ψ(G/A) is compact or A is an open subgroup, then G has arbitrarily

small compact open normal subgroups, that is, G is pro-discrete.
(4) G itself is periodic if and only if G/A is periodic if and only if G/A is not

isomorphic to a subgroup of the discrete group Q of rational numbers.
(5) CG(A) is an abelian normal subgroup containing A and is maximal for this

property.

This shows that for our topic, periodic locally compact groups play a significant
role.

3. Inductively Monothetic Groups

A good understanding of near abelian groups depends on a clear insight into
the concept of inductively monothetic groups. They were recently featured in [9].

We must recall the concept of a local product of a family of topological groups
which in the theory of locally compact groups mediates between the idea of a
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Tychonoff product of compact groups and the idea of a direct sum of a family of
discrete groups; the principal applications are in the domain of abelian groups,
but the concept as such has nothing to do with commutativity.

Definition 3.1. Let (Gj)j∈J be a family of locally compact groups and assume
that for each j the group Gj has a normal compact open subgroup Cj . Let P be
the subgroup of the cartesian product of the Gj containing exactly those J-tuples
(gj)j∈J of elements gj ∈ Gj for which the set {j ∈ J : gj /∈ Cj} is finite. Then
P contains the cartesian product C :=

∏
j∈J Cj which is a compact topological

group with respect to the Tychonoff topology. The group P has a unique group
topology with respect to which C is an open subgroup. Now the local product of
the family ((Gj , Cj))j∈J is the group P with this topology, and it is denoted by

P =

loc∏

j∈J

(Gj , Cj).

Let us note that the local product is a locally compact group with the compact
open subgroup

∏
i∈J Cp. While the full product

∏
j∈J Gj has its own product

topology we note that in general the local product topology on P in general is
properly finer than the subgroup topology. The concept of the local product was
introduced and its duality theory in the commutative situation was studied by
J. Braconnier in [3]. For us local products play a role most frequently with
J being the set π of all prime numbers. This is well illustrated by the following
key result on periodic locally compact abelian groups where we note, that for a
locally compact abelian group G and each prime p, we have a unique characteristic

subgroup Gp containing all elements g for which 〈g〉 is a profinite p-group; Gp is
called the p-primary component or the p-Sylow subgroup of G.

Theorem 3.2. (J. Braconnier) Let G be a periodic locally compact abelian group
and C any compact open subgroup of G. Then G is isomorphic to the local product

loc∏

p∈π

(Gp, Cp). (LP)

The following remark is useful for us as a consequence of the fact that any
compact p-group Cp is a Zp-module and any prime q 6= p is a unit in Zp, whence
Cp is divisible by n ∈ N with (n, p) = 1:

Remark 3.3. A periodic locally compact abelian group G is divisible iff all p-Sylow
subgroups Gp are divisible.

The structure of a locally compact monothetic group G is familiar to workers in
the area: It is either isomorphic to the discrete group Z of integers or is compact
(Weil’s Lemma, s. e.g. [20], Proposition 7.43, p.348.). A compact abelian group
is known if its discrete Pontryagin dual is known. A compact abelian group G is
monothetic if and only if there is a morphism f : Z → G of locally compact groups
with dense image, that is, iff there is an injection of the discrete group Ĝ into the

character group T, that is, Ĝ is isomorphic to a subgroup of Q(2ℵ0)⊕
⊕

p∈π Z(p
∞).

(Here Z(p∞), as usual, is the Prüfer group
⋃
n∈N

1
pn

Z/Z ⊆ T.) Whenever G is

zero-dimensional, things simplify dramatically:
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Proposition 3.4. A compact zero-dimensional abelian group G is monothetic
if it is isomorphic to

∏
p∈π Gp where the p-factor Gp is either Z(pm) for some

m ∈ N0 = {0, 1, 2, . . .} or Zp, the additive group of the ring of p-adic numbers.

Let us proceed to inductively monothetic locally compact groups. For periodic
inductively monothetic groups it is convenient to introduce some special terminol-
ogy. From Braconnier’s Theorem 3.2 we know that every periodic locally compact
abelian group G, for any given compact open subgroup C ⊆ G, is (isomorphic to)
the local product ∏

p∈π

(Gp, Cp) (∗)

of its p-Sylow subgroups.

Definition 3.5. A topological group G is called Π-procyclic, if it is a periodic
locally compact abelian group and each p-Sylow subgroup Gp is either a finite
cyclic p-group (possibly singleton) or Zp, that is, Gp is p-procyclic.

Now we can formulate the classification of inductively monothetic locally com-
pact groups.

Theorem 3.6. (Classification Theorem of Inductively Monothetic Groups) Let G
be an inductively monothetic locally compact group. Then G is either

(a) a 1-dimensional compact connected abelian group, or
(b) a subgroup of the discrete group Q, or
(c) a periodic locally compact abelian group such that Gp is isomorphic to Qp, or

Z(p∞), or Zp, or Z(pnp) for some np ∈ N0 = {0, 1, 2, . . .}.

All inductively monothetic groups are sigma-compact, i.e. are countable unions
of compact subsets.

The groups of connected type in Theorem 3.6 are monothetic; other types may
or may not be monothetic. The periodic inductively monothetic groups G of part
(b) require special attention. First we divide the set π of all prime numbers into
disjoint sets

• πA = {p ∈ π : Gp ∼= Qp},
• πB = {p ∈ π : Gp ∼= Z(p∞)},
• πC = {p ∈ π : Gp ∼= Zp},
• πD = {p ∈ π : (∃n ∈ N0) Gp ∼= Z(pn)}.

Now we fix a compact open subgroup C of G and identify G with the local product∏
p∈π(Gp, Cp), further we define two closed characteristic subgroups as

D :=
∏loc
p∈πA∪πB

(Gp, Cp),

P :=
∏loc
p∈πC∪πD

(Gp, Cp),

and notice that G = D ⊕ P . Both subgroups D and G are characteristic, and we
notice that in view of Remark 3.3 D is the unique largest divisible subgroup of G.

Theorem 3.7. (Classification of Inductively Monothetic Groups, continued) Let
G be a periodic inductively monothetic locally compact group. Then G is the direct
topological and algebraic sum D⊕P of two characteristic closed subgroups of which
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D is the largest divisible subgroup of G and P is the unique largest Π-procyclic
subgroup according to Definition 3.5.

We apply this information to the structure theory of a near abelian periodic
group G with base A. Then G/A = D⊕P as in Theorem 3.7; let GD, respectively
GP denote the full inverse images for the quotient morphism G→ G/A. Now GD
and GP are closed normal subgroups such that G = GDGP and GD ∩ GP = A,
and we have GD ⊆ CG(A) (see [15], Theorem 7.6).

Theorem 3.8. (Structure Theorem II on Near Abelian Groups) Let G be a peri-
odic near abelian locally compact group with a base A such that G is A-nontrivial.
Then A ⊆ GD ⊆ CG(A) where GD is a normal abelian subgroup such that
G/GD ∼= GP /A is Π-procyclic.

This portion of the basic structure theory of near abelian groups in the periodic
situation will allow us to concentrate largely on the case that the factor group
G/A is Π-procyclic.

4. Factorisation and Scaling

We begin with a definition elaborating the definition of near abelian groups.

Definition 4.1. Let G be a near abelian locally compact group with a base A. A
closed subgroup H is called a scaling subgroup for A if

(i) H is inductively monothetic, and
(ii) G = AH .

Example 4.2. There exists a (discrete) abelian group G with a subgroup A which
is not a direct summand and which has the following properties: A is the torsion
subgroup of G of the form A ∼=

⊕
n∈N

Z(p) and G/A ∼=
⋃
n∈N

1
2·3···pn

Z ⊆ Q.

Example 4.3. G ∼=
⊕

n∈N
Z(pn) and there is a subgroup A which is not a direct

summand such that G/A ∼= Z(p∞).

In Example 4.2, the group G is a subgroup of R/Z and is a construction due to
D. Maier [34]. Example 4.3 is inspired by Example ∇ in Theorem A1.32, p. 686
of [20].

These examples show that there are obstructions to a very general result as-
serting the existence of a scaling group for near abelian groups G with bases A.

A scaling group H , whenever it exists, is a supplement for A in G but not in
general a semidirect complement. How far a supplement is from being a comple-
ment can be clarified under fairly general circumstances; we illustrate that in the
following proposition.

Proposition 4.4. Let G be a locally compact group with a closed normal subgroup
A and a closed sigma-compact subgroup H containing a compact open subgroup and
satisfying G = AH. The inner automorphisms define a morphism α : H → Aut(A)
by α(h)(a) = hah−1. Then we have the following conclusions:
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(i) The semidirect product A ⋊α H is a locally compact group and the function
µ : A⋊αH → G, µ(a, h) = ah, is a quotient morphism with kernel {(h−1, h) :
h ∈ A ∩H} isomorphic to A ∩H, mapping both A and H faithfully.

(ii) The factor group G/(A∩H) is a semidirect product of A/(A∩H) and H/(A∩
H) and the composition

A⋊α H → G→ G/(A ∩H)

is equivalent to the natural quotient morphism

A⋊α H →
A

A ∩H
⋊

H

A ∩H

with kernel (A ∩H)× (A ∩H).

Notice that a scaling subgroup H of a near abelian group is sigma-compact and
has a compact open subgroup, so that the proposition applies in its entirety to
near abelian locally compact groups. The typical “sandwich situation”

A⋊H → AH →
A

A ∩H
⋊

H

A ∩H

is also observed in significant ways in the structure theory of compact groups (see
[20], e.g. Corollary 6.75 ff.).

So one of the most pressing questions of the structure theory of near abelian
locally compact groups is the following:

Problem 1. Under which conditions does a locally compact group G with a normal
subgroup A such that G/A is inductively monothetic contain a closed inductively
monothetic subgroup H such that G = AH?

If G/A is in fact monothetic, then the answer is affirmative and easy. In more
general circumstances we have the following theorems giving a partial answer to
Problem 1.

Theorem 4.5. Let G be a locally compact group with a compact normal subgroup
A such that G/A is Π-procyclic. Then G contain a Π-procyclic subgroup HΠ such
that G = AHΠ.

Theorem 4.6. Let G be a locally compact group with a compact open normal
subgroup A such that G/A is isomorphic to an infinite subgroup of the group Q.
Then G contains a discrete subgroup H ∼= G/A such that G is a semidirect product
AH ∼= A⋊ H.

It would be highly desirable to have such theorems without the hypothesis that
A be compact. The proofs of these theorems (see [15], Theorem 5.23ff.) make
essential use of the compact Hausdorff Vietoris-Chabauty space SUB(G) which is
attached to every locally compact group as a general invariant.

As long as this approach requires the compactness of A the following theorem
may be considered as fundamental for the structure theory of near abelian locally
compact groups:
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Theorem 4.7. Let G be a locally compact near abelian group with a base A such
that G is A-nontrivial and G/A is Π-procyclic. Then G contains a Π-procyclic
scaling subgroup HΠ for A with G = AHΠ.

For a proof see [15], Theorem 11.3. The proof requires a wide spectrum of parts
of our general structure theory of near abelian groups. In particular, at the root
of this existence theorem is the Chabauty space SUB(G) of the group G which
we mentioned earlier. This theorem and Proposition 3.8 now yield the following
theorem (see [15], Theorem 11.6).

Theorem 4.8. For every periodic locally compact near abelian group G with base
A there exists a Π-procyclic closed subgroup HΠ such that G = GDHΠ for the
abelian normal subgroup GD with A ⊆ GD ⊆ CG(A).

(See [15], Theorem 6.3(iv,v) and their proofs.)
In particular, Proposition 4.4 then shows us that we have

Corollary 4.9. Every periodic locally compact near abelian group G is a quotient
of GD ⋊ HΠ modulo a subgroup isomorphic to A ∩HΠ.

Recall that Z(G) denotes the center of a group G.

Corollary 4.10. For every periodic locally compact near abelian group G with base
A we have CG(A) = GDZ(GP ) and CG(A) ∩ HΠ ⊆ Z(GP ), that is GDZ(GP ) ∩
HΠ = Z(GP ) ∩HΠ.

(See [15], Theorem 6.3(iv,v) and its proof.)

The following theorem then is rather definitive on the factorisation of a periodic
near abelian locally compact group and may be considered as one of the main
theorems on their structure.

Theorem 4.11. (Structure Theorem III on Periodic Near Abelian Groups) For
every periodic locally compact near abelian group G with a base A such that G is
not A-trivial, we have

G = GDZ(GP )H

with a Π-procyclic scaling group H for A in GP , where GDZ(GP )∩H = Z(GP )∩
H.

For information as to which closed subgroups A∗ ⊆ AZ(G) containing A may
still be taken as base subgroups, see [15]. Theorem 10.32. The role of the center
Z(G) in CGP

(A) = AZ(GP )—a locally compact abelian group we know to be a
local product of its p-primary components ApZ(GP )p— is still a bit mysterious;
more information will be forthcoming in Theorem 7.2 below.

5. The Sylow Theory of Periodic Groups

Sylow theory, i.e., existence and conjugacy of maximal p-subgroups, and, more
generally, of maximal σ-subgroups where σ is a set of primes, is available for profi-
nite groups (see [51, 43]). Several attempts have been made in order to generalize
Sylow theory to noncompact and locally compact groups, see e.g. the survey from
1964 by Čarin, [4], or, more recently, Platonov in [41] and Reid in [42]. Here we
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shall focus on our class of compactly ruled groups. If the topology on a compactly
ruled group is discrete, the group is locally finite, i.e., every finite subset generates
a finite subgroup. Then our Sylow theory reduces to the one presented in the book
of Kegel and Wehrfritz, see [30].

In each locally compact periodic groupG the concept of a p-group can be defined
meaningfully. Indeed if g ∈ G, then M := 〈g〉 is a zero-dimensional monothetic
compact group, and thus

M ∼=
∏

p∈π

Mp,

where for each prime p the p-primary component Mp is either ∼= Zp or Z(pnp) for
some np = 0, 1, 2, . . . .

It is practical to generalize the concept of a p-element: For each subset σ ⊆ π,
an element g ∈ G is called a σ-element if 〈g〉 =

∏
p∈σMp; if σ = {p}, then g is

called a p-element. The group G is a σ-group, if all of its elements are σ-elements.
A subgroup S is called a σ-Sylow subgroup of G if it is a maximal element in
the set of σ-subgroups. A simple application of Zorn’s Lemma shows that every
σ-element is contained in a σ-Sylow subgroup. We record:

Lemma 5.1. (The Closure Lemma) Let G be any locally compact totally discon-
nected group. Then for any subset σ ⊆ π, then set Gσ of all σ-elements of G is
closed in G.

Let us look to some traditional splitting theorems that still work in the general
background of periodic locally compact groups.

5.1. The Schur–Zassenhaus splitting. The splitting of finite groups into pro-
ducts of subgroups of relatively prime orders can be generalized to the locally
compact setting up to a point, as we show in the following. For locally finite
groups the results to be discussed are well known, see e.g. [30]. They also relate
to work of the second author, see [19, 23].

Proposition 5.2. Let N be a closed subgroup of a locally compact periodic group
G and assume N ⊆ Gσ. Then the following conditions are equivalent:

(1) N is a normal Sylow subgroup.
(2) N = Gσ.
(3) N is normal and G/N contains no p-element with p ∈ σ.

Definition 5.3. Let G be a locally compact periodic group and N a closed sub-
group. We say that N satisfies the Schur-Zassenhaus Condition if and only if it
satisfies the equivalent conditions of Proposition 5.2 for σ = π(N).

Theorem 5.4. (Schur-Zassenhaus Theorem) Let G be a periodic group and N a
closed subgroup satisfying the following two conditions:

(1) N satisfies the Schur-Zassenhaus Condition.
(2) G/N is a directed countable union of compact subgroups.

Then the following conclusions hold:

(i) N possesses a complement H in G.
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(ii) Let K be a closed subgroup of G such that K ∩ N = {1} and assume that
G/N is compact. Then there is a g ∈ G such that gKg−1 = H.

It should be remarked, that for solvable groups (such as near abelian groups)
the periodic groups are always directed unions of their open compact subgroups.
In such a situation condition (2) simply means that G/N is sigma-compact.

The Schur-Zassenhaus configuration in the locally compact environment is del-
icate, since problems do arise with the product of a closed normal subgroup and
a closed subgroup; such a product need not be closed, in general.

Still we do have theorems like the following:

Theorem 5.5. Let N be a normal σ-Sylow subgroup of a locally compact periodic
group G. Then a (π \ σ)-Sylow subgroup H of G exists such that NH is an open
and hence closed subgroup. Moreover, if H is any (π\σ)-Sylow subgroup of G, then
NH is closed in G and H is a complement of N in NH, that is, NH = N ⋊H.

5.2. Sylow subgroups commuting pairwise. Let p ∈ π denote any prime and
p′ := π \ {p}.

Then we have the following result:

Lemma 5.6. For a compactly ruled group G and a prime number p, the following
conditions are equivalent:

(1) [Gp, Gp′ ] = {1}.
(2) Both Gp and Gp′ are subgroups, and G = Gp ×Gp′ .
(3) There is a unique projection prp : G→ Gp with kernel Gp′ .

Definition 5.7. For a periodic locally compact group G we write

ν(G) = {p ∈ π : [Gp, Gp′ ] = {1}}.

We have found the following structure theorem very useful in the context of
near abelian groups generalising the well-known fact that a pronilpotent group is
the cartesian product of its Sylow subgroups (cf. [43]):

Theorem 5.8. In a compactly ruled locally compact group G, the set Gν(G)′ of α-
elements with α∩ν(G) = ∅ is a closed normal subgroup, and all p-Sylow subgroups
for p ∈ ν(G) are normal subgroups. Moreover,

G ∼= Gν(G)′ ×
loc∏

p∈ν(G)

(Gp, Up)

for a suitable family of compact open subgroups Up ⊆ Gp as p ranges through ν(G).

5.3. The internal structure of Sylow subgroups of near Abelian groups.
For periodic near abelian groups, to which we can apply a Sylow theory meaning-
fully we assume that G is a periodic near abelian locally compact group such that
G is nontrivial for a base A.

Theorem 5.9. Let G be a periodic near abelian group and A a base for which G
is A-nontrivial and which satisfies A = CG(A). Then, for every set σ of prime
numbers there is a σ-Sylow subgroup Sσ. Fix a σ-Sylow subgroup Sσ of G. Then
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(i) Sσ ∩ A is the σ-primary component Aσ of A, equivalently, the σ-Sylow sub-
group of A. Moreover,

(ii) Sσ/Aσ ∼= SσA/A = (G/A)σ.
(iii) If (G/CG(A))σ ∼= H/(H ∩ CG(A)) is compact, then any two σ-Sylow sub-

groups of G are conjugate.
(iv) Sσ = CG(A)σHσ = AσZ(G)σHσ, where H is as in Theorem 4.8.

(See [15], Theorem 10.1.) The case that σ = {p} is an important special case.
Let us note that it may happen, Sp ⊆ A, in which case we have Hp = {1}.

6. Scalar Automorphisms

Among the methods we are using, the specification of scalar automorphisms
of a periodic locally compact abelian group is prominent. Every locally compact
abelian p-group A is a natural Zp-module, and in the case of a periodic locally
compact abelian group

A =

loc∏

p∈π

(Ap, Cp) (LQ)

it is a natural
Z̃ =

∏

p∈π

Zp

module by componentwise scalar multiplication

z·g = (zp)p∈π ·(gp)p∈π = (zp·gp)p∈π

The compact ring Z̃ is the profinite compactification of the ring Z of integers.

Lemma 6.1. (The Scalar Morphism Lemma) For a continuous automorphism α of
a periodic locally compact abelian group G the following conditions are equivalent:

(1) α(H) ⊆ H for all closed subgroups H of G.

(2) α(〈g〉) ⊆ 〈g〉 for all g ∈ G.

(3) α(g) ∈ 〈g〉 for all g ∈ G.

(4) There is an r ∈ Z̃ such that α(a) = r·a for all g ∈ G.

We note in passing that the first three conditions are equivalent in any locally
compact group.

Definition 6.2. An automorphism α ∈ Aut(A) of a periodic locally compact
abelian group A is called a scalar automorphism. The group of all scalar automor-
phisms is written SAut(A).

For r ∈ Z̃×, the group of invertible elements of Z̃, we denote the function
a 7→ r·a : A→ A by µr ∈ SAut(A).

Proposition 6.3. Let A be a periodic locally compact abelian group. Then

(i) r 7→ µr : Z̃× → SAut(A) is a quotient morphism of compact groups. In
particular, SAut(A) is a profinite group and thus does not contain any non-
degenerate divisible subgroups.

(ii) The following conditions are equivalent:
(a) SAut(A) = {idA,− idA},
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(b) The exponent of A is 2, 3, or 4.
In particular, A has exponent 2 if and only if − idA = idA.

In the process of these discussions, we recover in our framework the following
theorem of Mukhin [38]:

Theorem 6.4. Let A be a locally compact abelian group written additively.

(a) If A is not periodic, then SAut(A) = {id,− id}.
(b) If A is periodic, then SAut(A)=

∏
p SAut(Ap), where SAut(Ap) may be iden-

tified with the group of units of the ring of scalars of Ap:{
Zp, if the exponent of Ap is infinite,

Zp/p
mZp ∼= Z(pm), for suitable m otherwise.

(c) In particular, SAut(A) is a homomorphic image of Z̃×.

(d) An automorphism α is in SAut(A) iff there is a unit z ∈ Z̃× such that
(∀g ∈ G)α(g) = z·g =

∏
p zp·gp for z =

∏
p zp, g =

∏
p gp.

The significance of Mukhin’s Theorem for the structure theory of near abelian
groups is visible in the very Definition 2.3 via Theorem 4.11. Indeed if G is a near
abelian locally compact group with a base A, then the inner automorphisms of G
induce a faithful action of the Π-procyclic factor group G/CG(A) ∼= H/(H∩Z(G))
upon the base A. So SAut(A) is a quotient of H and therefore is Π-procyclic.

The structure of G is largely determined by the structure of SAut(A) and there-

fore by the group Z̃× of units of Z̃.

6.1. The group of units of the profinite compactification of the ring of

integers and its prime graph. The group Z̃× is more complex than it appears
at first. Its Sylow theory or primary decomposition is best understood in graph
theoretical terms. The same graph theory turns out to be almost indispensable
for dealing with the Sylow structure of near abelian groups in general. The graphs
that we use are all subgraphs of a “universal” graph (which we also call the “master

graph”) and which is used precisely to describe the Sylow theory of Z̃×. We discuss
it in the following.

A bipartite graph consists of two disjoint sets U and V and a binary relation
E ⊆ (U ∪ V )2 such that (u, v) ∈ E implies u ∈ U and v ∈ V . The elements
of U ∪ V are called vertices and the elements of E are called edges. Any triple
(U, V,E) of this type is called a bipartite graph.

In the following we construct a special bipartite graph

G = (U, V,E) with U, V ⊆ N× {0, 1} as follows:

Definition 6.5. Define U = N × {1}, V = N × {0}. Let n 7→ pn be the unique
order preserving bijection of N onto the set π of prime numbers. On π we consider
the binary relation

(1) T = {(p, q) ∈ π × π : q = p or p|(q − 1)}.

Let E ⊆ (N× {0, 1})2 be defined as follows

(2) E = {((m, 1), (n, 0)) : (pm, qn) ∈ T }.
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If e = ((m, 1), (n, 0)) ∈ E is an edge we shall use the following notation for the
prime numbers associated with e:

pe = pm qe = qn.

We shall call G = (U, V,E) the prime master-graph. In all bipartite graphs we
consider in this text, the two sets U and V of vertices remain constant, while the
set of edges will vary through subsets of E as defined in Definition 6.5.

6.2. Geometric properties of the master-graph. The prime master-graph
can be drawn and helps in forming a good intuition of the combinatorics involved.

• The set of vertices U ∪ V of the master-graph is naturally contained in
R2 = R× R, and so we can “draw” it quite naturally.

The elements in N×{1} are called the upper vertices, those in N×{0} the lower
vertices

• The edges e = ((n, 1), (n, 0)), n ∈ N are called vertical. All other edges
e = ((m, 1), (n, 0)) are called sloping. Because of pm|(qn − 1) they are sloping
“from left-above to right-below”. There are only vertical and sloping edges. We
call vertices u = (m, 1) and v = (n, 0) connected iff e = (v, u) ∈ E, i.e., if v is the
upper vertex (end-point) of the edge e and v is the lower vertex (end-point) of e.

2 3 5 7 · · ·

2 3 5 7 · · ·

2

❃❃
❃❃

❃❃
❃❃

◆◆◆
◆◆◆
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❚❚ 3

◆◆◆
◆◆◆

◆◆◆
◆◆◆

◆◆ 5 7 · · ·

2 3 5 7 · · ·

vertical edges sloping edges

• Each lower vertex (n, 0) is the endpoint of one vertical and finitely many
sloping edges. It is connected to an upper vertex (m, 1) iff pm|(qn − 1).

2

❨❨❨❨❨
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❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨
❨❨❨❨❨

❨❨❨❨❨ 3

❲❲❲❲
❲❲❲❲

❲❲❲❲
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❲❲❲❲
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❲❲❲❲ 5

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯
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◗◗◗

◗◗◗
◗◗◗

◗◗◗ · · · 211

2 3 5 7 · · · 211

Edges in U connected to the lower edge with label 211 in V .

• Each upper vertex (m, 1) is connected to infinitely many lower vertices (n, 0),
namely, all those for which pm|(qn−1), that is, for which there is a natural number
k for which qn = kpm+1. Indeed, Dirichlet’s Prime Number Theorem says: Every
arithmetic progression of the form {ka+ b : k ∈ N} with a and b relatively prime,
contains infinitely many primes.

Definition 6.6. Let p and q be any primes, say, p = pm and q = qn. Then

Ep = {e : e = ((m, 1), (n, 0)) ∈ E such that p|(qn − 1)},
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2 3 5 7 11 13

2 3 5 7 11 13

Figure 1. The initial part of the master graph.

the set of all edges emanating downwards from the vertex (m, 1) ∈ U will be called
the cone peaking at p. This cone contains infinitely many edges while

Fq = {e : e = ((m, 1), (n, 0)) ∈ E such that pm|(q − 1)},

the set of edges ending below in the vertex (n, 0) ∈ V , called the funnel pointing
to q, contains only finitely many edges.

All applications of prime graphs which we use in the structure theory of near
abelian groups are subgraphs of this master graph.

Since for any periodic locally compact abelian group A we have a canonical

surjective morphism µ : Z̃× → SAut(A) we need explicit information on the pri-

mary structure – or p-Sylow structure – of Z̃×. We are now going to describe this
structure in additive notation in terms of the prime master-graph G = (U, V,E).

Let e = ((m, 1), (n, 0)) ∈ E be an edge in the master-graph.
Case 1. m = n. Then we set Se = Zpm .

Case 2. m < n. Then pm|(qn − 1). Assume that the qn − 1 = p
k(e)
m s(e) with

s(e) relatively prime to pe := pm. Then we set Se = Z(p
k(e)
m )

For the following proposition we recall

Z̃× =
∏

q∈π

Z×
q .

Since Z×
q is not a q-Sylow subgroup, this is not the q-primary decomposition of

Z̃×. That decomposition we describe now:

Proposition 6.7. (The Sylow Structure of Z̃×) Let p, q ∈ π be primes. Then

(i) The structure of Z×
q (in additive notation) is
∏

e∈Fq

Se = Zq ×
∏

e∈Fq, sloping

Z(pk(e)e ).
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(ii) The p-primary component or p-Sylow subgroup of Z̃×

(Z̃×)p =
∏

e∈Ep

(Z×
qe
)pe

is (in additive notation)

(Z̃×)p =
∏

e∈Ep

Se = Zp ×
∏

e∈Ep, sloping

Z(pk(e)).

6.3. The structure of the invertible scalar multiplications of an Abelian
group and their prime graph. Now let A be a periodic locally compact abel-
ian group; the Sylow structure of SAut(A) is now easily discussed: The quotient

morphism µ : Z̃× → SAut(A), preserving the Sylow structures, and the structure
of SAut(A) described so far in Theorem 6.4 allow a precise description of the Sylow
structure of SAut(A).

We associate with A the bipartite graph G(A) = (U, V,E(A)) with U and V as
in the master-graph and with

E(A) = {e ∈ E : e = ((m, 1), (n, 0)) such that SAut(Aqn) 6= {idA}},

and we define
Ep = {e ∈ E(A) : e = ((m, 1), (n, 0)) ∈ e(A) such that p|(qn − 1)}, the set of all

edges in G(A) ending at the vertex (n, 0) ∈ V such that SAut(Aqn) is nontrivial,
and

Fq = {e ∈ E(A) : e = ((m, 1), (n, 0)) ∈ E(A) such that pm|(q − 1)}, the set of
all edges in G(A) ending at the vertex (n, 0) ∈ V with qn = q such that SAut(Aq)
is nontrivial.

We recall that for each q-primary component Aq, the ring of scalars SAut(Aq)
is either cyclic of order qr, the exponent of Aq, if it is finite, and is ∼= Zq otherwise.
Thus its q-primary component is

∼=

{
Z(qr−1) if the exponent of Aq is finite

Zq otherwise.

Accordingly we define, for each edge e = ((m, 1), (n, 0)) ∈ E(A) in the graph
G(A)

Se(A) =





Z(qr−1
m ) if m = n, and Aq has finite exponent qr

Zqm if m = n, and Aq has infinite exponent,

Z(p
k(e)
m ) if m < n.

Then we have, analogously to Proposition 6.7, the following theorem, complement-
ing Proposition 6.7 and Theorem 6.4:

Theorem 6.8. (The Sylow Structure of SAut(A)) Let A be a periodic locally com-
pact abelian group and SAut(A) =

∏
p∈π SAut(A)p the p-primary decomposition

of the profinite group SAut(A). Then
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(i) The p-primary decomposition of SAut(Aq) is (additive notation assumed)
∏

e∈Fq

SAut(Aqe)pe
∼=

∏

e∈Fq

Se(A) = Zq ×
∏

e∈Fq, sloping

Z(pk(e)e ).

(ii) The structure of the p-primary component SAut(A)p of SAut(A) (in additive
notation) is

∏

e∈Ep

(SAut(Aqe )pe =
∏

e∈Ep

Se(A) = Zp ×
∏

e∈Ep, sloping

Z(pk(e)e ).

This theorem illustrates the usefulness of the prime graph G(A) which elucidates
the fine structure of SAut(A). In many instances, the prime graph is equally helpful
in the discussion of the Sylow structure of any periodic near abelian locally com-
pact group G (see [15], Section 10).

7. The Prime Graph of a Near Abelian Group

Staying with a periodic near abelian group G which is A-nontrivial for a base
group A, we investigate the interaction of the different Sylow subgroups in terms
of the prime graph defined as a subgraph of the master-graph G = (U, V,E) of
Definition 6.5 as follows:

Definition 7.1. Let G be a periodic near abelian A-nontrivial locally compact
group with a base group A and write G = AZ(G)H .

A subgraph GG = (UG, VG, EG) of the master-graph G
is called the prime graph of G provided the following conditions are satisfied:

(i) We call (m, 1) the upper p-vertex iff p = pm and (n, 0) the lower q-vertex iff
q = qn.

(ii) An edge e = ((m, 1), (n, 0)) of the mastergraph is an edge in EG if and only
if [Hpm , Aqm ] 6= {1}. With p = pm and q = qn this edge is written epq and
called an edge leading from p to q.

(iii) (m, 1) is an upper vertex in UG iff (G/CG(A))p 6= {1}.
(iv) (n, 0) is a lower vertex in VG iff Ap 6= {1}.

We have a much sharper conclusion:

Theorem 7.2. (Structure Theorem IV on Periodic Near Abelian Groups) Let G
be a periodic A-nontrivial near abelian group. Let epq be an edge in GG.

Then we have the following conclusions (see [15], Theorem 10.13):

(1) If p 6= q, that is, epq is sloping, then p 6= 2 and p|(q − 1), but above all
(C1) for x ∈ Gp \ CG(Aq) the function a 7→ [x, a] : Aq → Aq is an automor-

phism of Aq. In particular, [x,Aq] = Aq.
(C2) Aq ∩ Z(G) = {1}.

(2) If p = q, that is, epq is vertical, then there is a unit s ∈ Z×
q and a natural

number m ∈ N such that [x, a] = aq
ms for all a ∈ Aq, that is, [x,Aq ] = Aq

m

q ,
and Ap ∩ Z(G) has an exponent dividing qm.

The theorem gives an impression of the circumstances in which the intersection
Aq ∩ Z(G)q can be nontrivial: The lower q-vertex has to be isolated in the prime
graph in such a case.
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8. Application 1: The Classification of
Topologically Quasihamiltonian Groups

The following definition is due to F. Kümmich [31]:

Definition 8.1. A topological group G is called topologically quasihamiltonian if
XY = Y X holds for any pair of closed subgroups X and Y of G.

This is equivalent to saying that XY is a closed subgroup whenever X and Y
are subgroups of G.

With the framework provided by near abelian locally compact groups, it is
possible to classify completely the class of topologically quasihamiltonian locally
compact groups. The classification proceeds in two steps: In a first step we classify
all locally compact topologically quasihamiltonian groups, and in a second step
we classify all locally compact topologically quasihamiltonian groups in one fell
swoop.

For step 1 we need a definition:

Definition 8.2. The groups Mn defined by generators and relations for n =
2, 3, . . . according to

Mn := 〈a, b | b2
n

= 1, b2
n−1

= a2, bab−1 = a−1〉

are called generalised quaternion groups.

These groups also satisfy the relations

a4 = 1 and [a, b] = a2

and are fully characterised by the following explicit construction:

Mn
∼=

Z(4)⋊ Z(2n)

∆
,

where Z(2n) acts on Z(4) by scalar multiplication with ±1 and where ∆ is gener-
ated by (s, t), s = 2 + 4Z and t = 2n−1 + 2nZ. (Cf. [25], Definition 5.8.) We note
that M2 is (isomorphic to) the usual group of quaternions Q8 = {±1,±i,±j,±k}
of eight elements.

Here is step 1:

Theorem 8.3. A locally compact p-group G is topologically quasihamiltonian if
and only if G is near abelian with a base group A and an inductively monothetic
p-group G/A and at least one of the following statements holds:

(a) G is abelian.

(b) There is a p-procyclic scaling group H = 〈b〉 such that G = AH and there is
a natural number s ≥ 1, respectively, s ≥ 2, if p = 2, such that ab = a1+p

s

for
all a in A. The group G is A-nontrivial.

(c) p = 2 and G ∼= A2 ×Mn, where A2 is an exponent 2 locally compact abelian
group and Mn is the generalised quaternion group of order 2n+1. In this case,

A = A2 × 〈a〉 ∼= Z(2)(I1) × Z(2)I2 × Z(4)

with a as in Definition 8.2 for suitable sets I1 and I2. The group G is A-trivial.

Next step 2 (see [15], Theorem 13.9):
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Theorem 8.4. Let G be a locally compact periodic topologically quasihamiltonian
group. Then, for each p ∈ π(G), the set of p-elements Gp is a topologically qua-
sihamiltonian p-group, and there is a compact open subgroup Up in Gp such that
G = Gν(G) is (up to isomorphism) the local product of topologically quasihamilton-
ian p-groups

G ∼=

loc∏

p∈π(G)

(Gp, Up).

Conversely, every group isomorphic to such a local product is a topologically qua-
sihamiltonian group.

This theorem is proved with the aid of our Theorem 5.8: For nonperiodic abelian
groups we give an algorithmic description of topologically quasihamiltonian loc-
ally compact groups in [15], Theorem 13.14. Except for p = 2 it turns out that
topologically quasihamiltonian groups in the general locally compact domain are
the same thing as near abelian groups. For the exceptional compact 2-groups that
are near abelian but fail to be topologically quasihamiltonian see [25].

Theorem 8.4 can be visualised in terms of its prime graph, that all connected
components are either vertical edges and its end points or are isolated vertices.
If we allow ourselves the identification of the connected components of the prime
graph with the subgroups they represent, we could reformulate Theorem 8.4 as
follows:

Theorem 8.5. Let G be a locally compact periodic topologically quasihamilton-
ian group. Then each connected component of the prime graph of G represents a
normal p-Sylow subgroup and G is a local direct product of these subgroups.

9. Application 2: The Classification of
Topologically Modular Groups

Recall that the closed subgroups of a topological group form a lattice w.r.t.
inclusion “⊆” as partial order.

Definition 9.1. A topological group G is called topologically modular if the lattice
of closed subgroups is modular, that is, satisfies the law X∨(Y ∩Z) = (X∨Y )∩Z
whenever X is a closed subgroup of Z.

This is equivalent to saying that the lattice of closed subgroups does not contain
a sublattice isomorphic to

•
②②②

✷✷
✷✷
✷✷

•

•

☞☞
☞☞
☞☞

•
❊❊❊

•

(See [44], Theorem 2.1.2.)
It is instructive to spend some time on an example due to Mukhin which shows

that topologically modular groups can be tricky.
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Example 9.2. Let p be any prime and I any infinite set (e.g. I = N), set
E := Z(p), and define define Gj = E2, Cj = {0} × E for all j ∈ I, and set

G := E(I) × EI ∼=

loc∏

j∈I

(Gj , Cj),

where we took the discrete topology on the direct sum E(I) and the product topol-

ogy on EI . We shall identify G with
∏loc
j∈I(Gi, Ci) and E

I × EI with (E2)I . The

natural injection ι : G→ (E2)I = EI ×EI is continuous but is not an embedding,
since it is not open onto its image.

Let D := {(x, x) : x ∈ E} ⊆ E2, and

∆ = DI = {(xj , xj)j∈I : xj ∈ E} ⊆ (E2)I ∼= EI × EI

denote the respective diagonals. Then ∆ is a closed subgroup of (E2)I and so
ι−1(∆) = D(I) is a closed subgroup of G. We shall denote it by Y . This is a
noteworthy and perhaps slightly unexpected fact in view of the density of E(I) in
EI . We verify as an exercise that the subgroup Y is not only closed, but even
discrete, since ι(Y ) meets trivially every open subgroup {0} × EK for a cofinite
subset K ⊆ I.

Now the product EI is the projective limit of its finite partial products EF as
F ranges through the directed set F of finite subsets F of I. Accordingly,

G ∼= E(I) × lim
F∈F

EF ∼= lim
F∈F

(E(I) × EF ).

Let D2 = {(xj)j∈I ∈ EI : (∃c ∈ E)(∀j ∈ I)xj = c}. Now we consider the
following subgroups of G:

X := E(I) × {0},
Z := E(I) × D2

whence X ⊆ Z. Then X ∨ Y = E(I) × EI = G and so (X ∨ Y ) ∩ Z = Z on
the one side, while Y ∧ Z = Y and so X ∨ (Y ∧ Z) = X ∨ Y = G. Hence
X ∨ (Y ∧Z) 6= (X ∨Y )∧Z. Therefore G is a locally compact abelian nonmodular
group.

The example shows that the limit of a projective system of locally compact to-
pologically modular group with proper bonding maps need not be a topologically
modular group and that a local product of a collection of finite abelian modular
groups may fail likewise to be a topologically modular group.

Locally compact abelian topologically modular groups were classified by Muk-

hin in [37]. We now discuss the nonabelian situation.
A first step in the classification is the case of p-groups:

Proposition 9.3. Let G be a compactly ruled p-group. Then the following state-
ments are equivalent:

(1) G is a topologically modular group.
(2) G is a topologically quasihamiltonian group with a base group A that is a

topologically modular locally compact abelian group.
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In contrast, however, with topologically quasihamiltonian groups, the normal p-
Sylow subgroups are not the only building blocks of topologically modular groups.
There is one additional category of building blocks which in the discrete situation
were known since the pioneering work of Iwasawa in the forties of the last century,
see e.g. [29].

9.1. Iwasawa (p,q)-factors.

Example 9.4. For a prime q let A be an additively written locally compact ab-
elian group of exponent q and be either compact or discrete. Thus, algebraically,
A is a vector space over the field GF(q).

Now let p be a prime such that p|(q − 1). Then the multiplicative group of

GF(q) contains a cyclic subgroup Z of order p. Let C = 〈t〉 be any p-procyclic
group (that is, C ∼= Z(pk) for some k ∈ N or C ∼= Zp), and let ψ : C → Z be an
epimorphism. Then C acts on A via r∗a = ψ(r)·a. Since Z is of order p, the
kernel of ψ is an open subgroup of C of index p.

Set G = A ⋊ψ C, the semidirect product for the action of C on A. Then
A := A×{1} is a base subgroup of the near abelian locally compact group G, and

H = 〈(0, t)〉 = {0} × C is a procyclic scaling p-subgroup.

There are many maximal p-subgroups of G, namely, each 〈(a, t)〉 for any a ∈ A,
and there is one unique maximal q-subgroup which is normal, namely, A.

The simplest case arises when we take for C the unique cyclic group Sp(Z) of
Z of order p, in which case we have G ∼= A⋊Z(p) and the set of elements of order
p is A× (Z(p) \ {0}) and the set of q-elements is A× {0}.

The class of locally compact near abelian topologically quasihamiltonian groups
described in Example 9.4 is relevant enough in our classification to deserve a name:

Definition 9.5. A locally compact group G which is isomorphic to a semidirect
productA⋊ψC as described in Example 9.4 will be called an Iwasawa (p, q)-factor.
The primes p and q are called the primes of the factor G.

The prime graph G of an Iwasawa (p, q)-factor is one sloping edge epq with its
endpoints.

We would like to see an abstract characterisation of a (p, q)-factor. For the
purpose of presenting one let us formulate some terminology for an automorphic
action (h, a) 7→ h·a : H×A→ A inducing a morphism α : H → Aut(A), α(h)(a) =
h·a. If H/ kerα is an abelian group of order p for a prime number q, we shall say
that

the action of H on A is of order p.
If H is a subgroup of a group G and A is a normal subgroup of G, then H acts

on A via h·a = hah−1. If this action is of order p, we say that
H induces an action of order p on A.

Proposition 9.6. Let p and q be primes satisfying p|(q−1). A near abelian group
G is an Iwasawa (p, q)-factor if and only if it satisfies the following conditions:

(a) A = G′ is an abelian group of exponent q; it is either compact or discrete
subgroup of G;
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(b) There is a scaling group H which is a procyclic p-group; it induces an action
of order p on A.

If these conditions are satisfied, then G = A ⋊ H is a semidirect product and
Z(G) = {hp : h ∈ H}.

The significance of the (p, q)-factors for our classification is due to the following
fact which requires a technical proof that is not exactly short:

Proposition 9.7. Let G = AH be an Iwasawa (p, q)-factor and A a topologically
modular abelian group. Then G is a topologically modular group.

Since a nondegenerate (p, q)-factor does not meet the criteria of a topologically
quasihamiltonian locally compact group in Theorem 8.4, this allows us to remark
a significant difference between topologically quasihamiltonian and topologically
modular groups:

Corollary 9.8. Any nondegenerate Iwasawa (p, q)-factor provides a topologically
modular group which is not topologically quasihamiltonian.

After a thorough discussion of compactly ruled topologically modular groups,
using much of the information accumulated on near abelian groups we arrive at the
following classification of periodic locally compact topologically modular groups:

Theorem 9.9 (The Main Theorem on Topologically Modular Groups). Let G be a
compactly ruled topologically modular group. Then π is a disjoint union of a set J
of sets σ of prime numbers which are either empty, or singleton sets σ = {p} such
that Gσ is a normal p-Sylow subgroup and an Iwasawa p-factor, or two element
sets {p, q} such that for p < q the set Gσ is a normal σ-Sylow subgroup and an
Iwasawa (p, q)-Factor, such that

G =
loc∏

σ∈J

(Gσ, Cσ)

for a family of compact open subgroups Cσ ⊆ Gσ. In particular, G is a periodic
near abelian locally compact group.

Conversely, every near abelian locally compact G of this form is a topologically
modular locally compact group.

We notice that, in the prime graph of G, the Sylow p-subgroups Gp constitute
the connected components of either isolated vertices or vertical edges with its end-
points, while the Sylow subgroups G{p,q} which are Iwasawa (p, q)-components are
connected components consisting of sloping edges with their endpoints. Moreover,
every prime graph having such connected components can be realised as the prime
graph of a periodic locally compact topologically modular group.
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2. Bourbaki, N.: Intégration, Chap. 7 et 8, Hermann, Paris, 1963.
3. Braconnier, J.: Sur les groupes topologiques localement compacts, J. Math. Pures Appl. (9)

27 (1948), 1–85 [French].
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