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Abstract. In this study, we extend the optimal execution problem with con-
vex market impact function studied in Kato [14] to the case where the market

impact function is S-shaped, that is, concave on [0, x̄0] and convex on [x̄0,∞)
for some x̄0 ≥ 0. We study the corresponding Hamilton–Jacobi–Bellman
equation and show that the optimal execution speed under the S-shaped

market impact is equal to zero or larger than x̄0. Moreover, we provide some
examples of the Black–Scholes model. We show that the optimal strategy
for a risk-neutral trader with small shares is the time-weighted average price
strategy whenever the market impact function is S-shaped.

1. Introduction

Optimal execution problems have been widely investigated in mathematical
finance as a type of stochastic control problem. There are various studies of
optimal execution, such as [1, 2, 4, 7, 23] and references therein, and Gatheral
and Schied [8] survey several dynamic models of optimal execution. To study this
type of problem, we cannot ignore market impact (MI), which is a market liquidity
problem. Here, we consider a situation where a single trader has many shares of
a security and tries to sell (liquidate) it until a time horizon. A large selling order
induces a gap between supply and demand, causing a decrease in the security
price. This effect is called the MI, and the trader should reduce the liquidation
speed to avoid the MI cost. However, reducing the liquidation speed also increases
the timing cost, which is caused by the random fluctuation of the security price
over time. The trader should optimize the execution strategy by considering the
MI cost and the timing cost. Therefore, the MI function, g(x), plays an important
role in studying optimal execution problems. Here, g(x) implies the decrease of
the security price by selling x shares (or selling rate).

The simplest setting for g is a linear function. For instance, in [2, 4, 23], optimal
execution problems are treated mainly with linear MI functions and derive optimal
execution strategies. However, there are studies on optimization problems with
non-linear g [1, 10, 11, 12, 14, 15]. In particular, we derive a mathematically
adequate continuous-time model of an optimal execution problem as a limit of
discrete-time optimization problems in [14] when g is strictly convex.
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It is still unclear what form of g is natural. Recently, it has been proposed
that an S-shaped function is suitable for g. That is, g(x) should be concave on
[0, x̄0] and convex on [x̄0,∞) for some x̄0 ≥ 0. Many traders intuitively expect
that MI functions are S-shaped [15]. Moreover, in [24], we find an empirical
prediction for a hump-shaped limit order book, which corresponds to the S-shaped
MI function. Therefore, our previous study [14] should be extended to include the
S-shaped MI function, g. We have tackled this problem partially in [15], but there
are still many mathematical and financial questions at this stage. For instance,
when we consider the optimal execution problem with S-shaped g, it is intuitive
that the optimal execution speed should not reach the range (0, x̄0]. However,
we have not proved this finding mathematically. Moreover, we have not discussed
the Hamilton–Jacobi–Bellman (HJB) equations corresponding to our optimization
problem sufficiently.

In this paper, we resolve these questions as a continuation of our previous study
[15]. We completely generalize our previous results [14] to the case of S-shaped
g and study the above questions. Moreover, we find that the optimal execution
strategy of a risk-neutral trader in the Black–Scholes market model is the time-
weighted average price (TWAP) strategy, that is, to sell at a constant speed.
This is the same result as Theorem 5.4(ii) in [14] when g is a quadratic function;
however, it is not necessary to assume an explicit form of g. We show that this
result is true whenever g is S-shaped. This result generalizes Theorem 5.4(ii) in
[14] and provides an analytical solution to the optimal execution problem with an
uncertain MI given in Section 5.2 of [12].

The rest of this paper is as follows. In Section 2, we introduce a mathematical
model of an optimization problem based on our previous work [15] and review the
previous results. In Section 3, we characterize our value function as a viscosity
solution to the corresponding HJB equation. We show the uniqueness of the vis-
cosity solutions to the HJB equation under adequate conditions. To investigate
the properties of optimal strategies, we introduce a verification theorem and show
that the optimal execution strategy does not take the value in (0, x̄0] in Section
4. In Section 5, we present some examples. In particular, we demonstrate the ro-
bustness of the TWAP strategy as an optimal strategy in the Black–Scholes model
with general shaped MI functions. We summarize our argument and introduce fu-
ture tasks in Section 6. Section A gives supplemental arguments to guarantee
consistency between our present model and our previous model [15]. All proofs
are in Section B.

2. Model Settings

Let (Ω,F , (Ft)0≤t≤T , P ) be a stochastic basis and let (Bt)0≤t≤T be a one-
dimensional Brownian motion (T > 0). Set D = R × [0,∞)2 and denote by C
the set of non-decreasing, non-negative, and continuous functions with polynomial
growth defined on D. For u ∈ C, we define a function, J(· ;u) : [0, T ]×D −→ R,
as

J(t, c, x, s;u) = sup
(xr)r∈At(x)

E[u(Ct, Xt, St)], (2.1)
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where (Cr)r, (Xr)r, and (Sr)r are stochastic processes given by

dCr = xrSrdr,

dXr = −xrdr,

dSr = b̂(Sr)dr + σ̂(Sr)dBr − Srg(xr)dr, (2.2)

and (C0, X0, S0) = (c, x, s), andAt(x) is the set of non-negative (Fr)r-progressively

measurable process, (xr)0≤r≤t, satisfying
∫ t

0
xrdr ≤ x a.s. We call an element of

At(x) an admissible strategy. Here, b̂ and σ̂ are defined as

b̂(s) =

(
b(log s) +

1

2
σ(log s)2

)
s, σ̂(s) = σ(log s)s, s > 0

and b̂(0) = σ̂(0) = 0, where b, σ : R −→ R are bounded and Lipschitz continuous
functions. g ∈ C([0,∞)) ∩ C1((0,∞)) is a non-negative function with g(0) = 0.

Function J implies the value function of an optimal execution problem with MI
function g and is derived as a limit of discrete-time value functions in [14] when
g is convex, and in [15] when g is S-shaped, that is, when h := g′ satisfies the
following conditions.

[A1] h(x) ≥ 0, x > 0.
[A2] limx→0 xh(x) = 0.
[A3] There is an x̄0 ≥ 0 such that h is strictly decreasing on (0, x̄0] and strictly

increasing on [x̄0,∞).
[A4] h(∞) = limx→∞ h(x) = ∞.

Condition [A3] implies that g is concave on [0, x̄0] and convex on [x̄0,∞). In this
paper, we always assume [A1]–[A4].

We briefly introduce the financial implications of our model (see [11, 12, 14]
for more details). We assume that there is a single trader who has many shares
x0 of a security whose price is s0 at the initial time. The trader tries to sell the
security in the market until time horizon T , but the selling behavior affects the
security price via the effect of MI (denoted as the term −g(xr)dr in (2.3)). Sr is
the security price at time r, and Cr (respectively, Xr) describes the cash amount
( respectively, shares of the security) held at time r. The trader’s purpose is to
maximize the terminal expected utility, J(T, c0, x0, s0;u) = E[u(CT , XT , ST )], by
controlling an execution strategy, (xr)r ∈ AT (x). Here, xr implies the liquidation
speed at time r; in other words, the trader sells xrdr amount in the infinitesimal
time interval [r, r + dr]. To solve this problem, we introduce the value function
J(t, c, x, s;u) for each t, c, x, and s to apply the dynamic programming method.

Remark 2.1.

(i) The log-price process Yr = logSr satisfies the stochastic differential equa-
tion (SDE),

dYr = b(Yr)dr + σ(Yr)dBr − g(xr)dr, (2.3)

whenever Sr > 0, r ≥ 0.
(ii) In stochastic control theory, (xr)r ∈ At(x) is called a control process

and (Cr, Xr, Sr)r defined in (2.2) is its controlled process. However, the
existence and uniqueness of (Cr, Xr, Sr)r for each (xr)r is not obvious in
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our case, because (Yr)r may diverge due to the term −g(xr)dr. We can
overcome this difficulty by regarding Sr = 0 after Yr diverges to −∞ (see
Section A for details).

(iii) In [11, 14, 15], we require an additional assumption such that each admis-
sible strategy is essentially bounded; that is, we consider the optimization
problem

J∞(t, c, x, s;u) = sup
(xr)r∈A∞

t (x)
E[u(Ct, Xt, St)] (2.4)

instead of (2.1), where

A∞
t (x) =

{
(xr)r ∈ At(x) ; esssup

r,ω
xr(ω) < ∞

}
.

This condition arises in the process of taking the limit from the discrete-
time model to the continuous-time model; however, it is a mathematical
technical condition and is unnatural in relation to finance. We can show
that J coincides with J∞, and thus we are not overly concerned about
this problem (also see Section A).

In [15], we show that J(· ;u) is continuous on [0, T ]×D and J(r, · ;u) ∈ C for
each r ≥ 0 and u ∈ C. Moreover, J satisfies the dynamic programming principle,

J(t+ r, c, x, s;u) = J(t, c, x, s; J(r, ·;u)),

for each (c, x, s) ∈ D, u ∈ C and t, r ≥ 0 with t+ r ≤ T .
By using these results, we characterize J as a viscosity solution of the corre-

sponding HJB equation in the next section. From now on, we fix u ∈ C and denote
J(t, c, x, s;u) = J(t, c, x, s) for brevity.

3. Main Results I: Viscosity Properties

Our first main result is as follows.

Theorem 3.1.

(i) We assume that

lim inf
ε→0

1

ε
(J(t, c, x, s+ ε)− J(t, c, x, s)) > 0, (t, c, x, s) ∈ (0, T ]× D̃, (3.1)

where D̃ = intD = R × (0,∞)2. Then J is a viscosity solution of the

following HJB equation on (0, T ]× D̃:

∂

∂t
J − sup

y≥0
L yJ = 0, (3.2)

where

L y = (b̂(s)− sg(y))
∂

∂s
+

1

2
σ̂(s)2

∂2

∂s2
+ y

(
s
∂

∂c
− ∂

∂x

)
.

(ii) We assume that equation (3.1) holds, b̂ and σ̂ are Lipschitz continuous, and
lim infx→∞ h(x)/x > 0. Then we see the uniqueness of a viscosity solution
of (3.2) in the following sense. If a continuous function v : [0, T ]×D −→ R
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with polynomial growth is a viscosity solution of (3.2) and satisfies the
boundary conditions,

v(0, c, x, s) = u(c, x, s), (3.3)

v(t, c, 0, s) = E[u(c, 0, Zt(s))], (3.4)

v(t, c, x, 0) = u(c, x, 0), (3.5)

then it holds that J = v, where (Zr(s))r is a unique solution to the SDE:

dZr(s) = b̂(Zr(s))dr + σ̂(Zr(s))dBr, Z0(s) = s. (3.6)

Remark 3.2.

(i) The assertions of Theorem 3.1 are the same as those of Theorems 3.3 and
3.6 in [14]. Thus, Theorem 3.1 was already obtained when g is convex,
namely, when x̄0 = 0. As mentioned in Remark 3.7 of [14], our HJB
equation (3.2) does not satisfy standard assumptions to apply a standard
argument to viscosity characterization discussed in, for instance, [5, 6, 18,
21]. We demonstrate Theorem 3.1(i) through a refinement of the proof of
Theorem 3.3 in [14]. In the proof of Theorem 3.6 in [14], we do not use
the convexity of g mainly, so Theorem 3.1(ii) is obtained in a similar way
to the proof of Propositions B.21–B.23 in [14].

(ii) The following condition is a standard natural condition for a utility func-
tion in mathematical finance:
[B] u(c, x, s) = U(c) for some concave function U ∈ C1(R).
Under [B], the boundary conditions (3.3)–(3.5) are simplified as

v(0, c, x, s) = v(t, c, 0, s) = v(t, c, x, 0) = U(c).

(iii) It is not easy to check (3.1) in general. When g is convex, the natural and
simple sufficient conditions of (3.1) are introduced in [14] as
[C1] u satisfies [B]. Moreover, it holds that U ′(c) ≥ δ, c ∈ R, for some

δ > 0.
[C2] b and σ are differentiable and their derivatives are Lipschitz continu-

ous and uniformly bounded.
In our case, by the same proof as for Proposition 3.5 in [14], we also verify
that (3.1) holds under [C1]–[C2].

4. Main Results II: Verification Arguments

Theorem 7.4 in [15] gives us a typical example where an optimal execution
strategy takes the value zero or larger than x̄0. This result is consistent with
financial intuition, such as selling with the speed in the range of the concave
part of g (i.e., (0, x̄0]) induces superfluous transaction cost. In this section, we
present a verification theorem to demonstrate that the optimal execution speed is
in {0} ∪ (x̄0,∞) in general.

First, we introduce notation to state our second main result. Conditions [A3]
and [A4] show that there is an inverse function, h−1 : [h(x̄0),∞) −→ [x̄0,∞), of
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h. Then we define

H(s, p) =
spc − px

sps
1{sps>0}, (4.1)

Ξ(s, p) = h−1(H(s, p))1Λ(s, p) (4.2)

for s ≥ 0 and p = (pc, px, ps)
′ ∈ R3, where

Λ =
{
(s, p) ∈ (0,∞)× R3 ; ps > 0,H(s, p) > h(x̄0),

g(h−1(H(s, p))) < H(s, p)h−1(H(s, p))
}
,

and A′ denotes the transpose of A. Moreover, for each continuously differentiable
function, v : [0, T ]×D −→ R, we define

b̄v(t, c, x, s) =

 sΞ(s,Dv(T − t, c, x, s))
−Ξ(s,Dv(T − t, c, x, s))

b̂(s)− sg(Ξ(s,Dv(T − t, c, x, s)))

 ,

where D =
(

∂
∂c ,

∂
∂x ,

∂
∂s

)′
.

Now, we present our second main result.

Theorem 4.1. We assume (3.1) and [B], that J ∈ C1,1,1,2((0, T ]×D), and that for

given (c0, x0, s0) ∈ D̃, there is a continuous process, (Ct, Xt, St)t, which satisfies

d

 Ct

Xt

St

 = b̄J(t, Ct, Xt, St)dt+

 0
0

σ̂(St)

 dBt, t ∈ [0, τ̄ ] (4.3)

and (C0, X0, S0) = (c0, x0, s0), where

τ̄ = inf{t ≥ 0 ; (Ct, Xt, St) ∈ ∂D} ∧ T.

Then there is an optimizer, (x̂t)t to J(T, c0, x0, s0), such that x̂t ∈ {0} ∪ (x̄0,∞),
t ∈ [0, T ] a.s.

When executing a large amount of the security, it is important to decrease the
execution speed to reduce the execution cost. However, Theorem 4.1 tells us that
when the MI function is S-shaped (especially, concave on [0, x̄0]), it is undesirable
to decrease the execution speed beyond the threshold, x̄0. An optimal execution
strategy in this case is to sell with the execution speed greater than x̄0 or to stop
selling.

We can apply Theorem 4.1 if we verify the smoothness of the value function
J . Even if we find a classical (sub)solution of (3.2), which does not necessarily
satisfy the boundary conditions (3.3)–(3.5), we can construct an optimal strategy
to J(T, c0, x0, s0). We introduce the following verification theorem.

Theorem 4.2. Let (c0, x0, s0) ∈ D̃ and let v ∈ C([0, T ]×D)∩C1,1,1,2((0, T ]× D̃)
be a function that satisfies the following conditions.

(i) There are K,m > 0 such that

|v(t, c, x, s)| ≤ K(1 + cm + xm + sm), t ∈ [0, T ], (c, x, s) ∈ D.

(ii) v(0, c, x, s) ≥ u(c, x, s) holds for each (c, x, s) ∈ D.

(iii) ∂
∂tv − supy≥0 L yv ≥ 0 on (0, T ]× D̃.
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(iv) There is an (x̂t)t ∈ AT (x0) such that E[u(ĈT , X̂T , ŜT )] ≥ v(T, c0, x0, s0),

where (Ĉt, X̂t, Ŝt)t is given by (2.2) with (Ĉ0, X̂0, Ŝ0) = (c0, x0, s0).

Then we have J(T, c0, x0, s0) = E[u(ĈT , X̂T , ŜT )] = v(T, c0, x0, s0) and (x̂t)t is its
optimizer.

In the next section, we introduce some examples in which we derive optimal
execution strategies by using Theorem 4.2.

5. Examples

Similar to Section 5 in [14], we introduce some examples where the security
price process is given as the Black–Scholes model. We assume that b(·) ≡ µ and
σ(·) ≡ σ are constants and the utility function is set as uRN(c, x, s) = c; that is,
the trader is risk-neutral.

By using the same argument as the proof of Proposition 5.2 in [14], we have
the following theorem.

Theorem 5.1. We have J(t, c, x, s) = c+ sW (t, x), where

W (t, x) = sup
(xr)r∈Astat

t (x)

∫ t

0

exp

(
−µ̃r −

∫ r

0

g(xv)dv

)
xrdr,

Astat
t (x) = {(xr)r ∈ At(x) ; (xr)r is deterministic},

µ̃ = −µ− 1

2
σ2.

Theorems 3.1 and 5.1 lead us to

Theorem 5.2. W is a viscosity solution to the partial differential equation

∂

∂t
W + µ̃W + inf

y≥0

{
Wg(y)−

(
1− ∂

∂x
W

)
y

}
= 0 (5.1)

with the boundary condition

W (t, 0) = W (0, x) = 0. (5.2)

Moreover, if lim infx→∞ h(x)/x > 0, then a viscosity solution to (5.1)–(5.2) is
unique in the following sense. If a continuous function w with polynomial growth
is a viscosity solution to (5.1)–(5.2), then W = w.

Until the end of this section, we assume µ̃ > 0 to focus on the case where the
expected security price decreases over time.

5.1. Mixed Power MI Function. Here, we consider the case where g is given
by

g(x) = βxπ̃ (0 ≤ x ≤ x̄0), αxπ + γ (x > x̄0) (5.3)

for some x̄0 ≥ 0, α > 0 and 0 < π̃ < 1 < π. Because g is continuously differen-
tiable, β and γ must satisfy

β =
π

π̃
αx̄π−π̃

0 , γ =
(π
π̃
− 1
)
αx̄π

0 .

Figure 1 shows the form of g when π̃ = 0.5 and π = 2.
The next result is a pure extension of Theorem 5.4 in [14].
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Figure 1. Form of the MI function g(x) defined as (5.3) with
π̃ = 0.5 and π = 2. The horizontal axis corresponds to x. The
vertical axis corresponds to g(x).

Theorem 5.3. Set

x∗,1 =
1

δπ
B
(
1− exp

(
− π

π − 1
(µ̃+ γ)T

)
;
1

π
+ 1, 2

)
,

x∗,2 = νπT,

where

δπ = α1/ππ

(
µ̃+ γ

π − 1

)π−1
π

, νπ =

(
µ̃+ γ

(π − 1)α

)1/π

and

B(z; a, b) =
∫ z

0

dx

xa−1(1− x)b−1

is the incomplete Beta function.

(i) If x0 ≥ x∗,1, then we have

J(T, c0, x0, s0) = c0 +
s0
δπ

(
1− exp

(
− π

π − 1
(µ̃+ γ)T

))π−1
π

,

and its optimizer is given by

x̂t = νπ

(
1− exp

(
− π

π − 1
(µ̃+ γ)(T − t)

))−1/π

.
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(ii) If x0 ≤ x∗,2, then we have

J(T, c0, x0, s0) = c0 + s0 ·
1− e−δπx0

δπ
,

and its optimizer is given by

x̂t = νπ1[0,x0/νπ ](t).

Similarly to Theorem 5.4 in [14], the form of the optimal strategy changes
drastically according to the initial shares x0, and we do not have an analytical
solution when x∗,2 < x0 < x∗,1. Moreover, when x0 ≤ x∗,2, the optimal strategy
is the TWAP strategy, that is to sell with constant speed νπ. The TWAP strategy
is the optimal strategy for the Almgren–Chriss model, which is a standard model
of optimal execution, for the risk-neutral trader [2, 7, 16, 17]. Theorem 5.3(ii) is
also obtained as a corollary of the result of the next subsection. In addition,

νπ >

(
γ

(π − 1)α

)1/π

=

(
π − π̃

π̃(π − 1)

)1/π

x̄0 > x̄0;

hence we can verify that x̂t ∈ {0} ∪ (x̄0,∞) in both cases of Theorem 5.3(i)(ii).
This is consistent with Theorem 4.1.

5.2. TWAP Strategies for Small Amount Execution. Next, we consider
the case where the amount x0 of initial shares is small. Here, we do not restrict
the form of g without [A1]–[A4].

Before stating the result, we prepare the following proposition.

Proposition 5.4. Set Gh(x) = xh(x)−g(x). Then there is a unique νh ∈ (x̄0,∞)
such that Gh(νh) = µ̃.

Theorem 5.5. If x0 ≤ νhT , then we have

J(T, c0, x0, s0) = c0 + s0 ·
1− e−h(νh)x0

h(νh)
, (5.4)

and its optimizer is given by

x̂t = νh1[0,x0/νh](t). (5.5)

This theorem implies the robustness of the optimality of the TWAP strategy
for general shaped MI functions. When x0 is small, the optimal execution strategy
is to sell the security at speed νh(> x̄0) until the time when the remaining shares
become zero.

Remark 5.6.

(i) As mentioned in Theorems 4.2 and 5.1 in [14], when g(x) = αx (α > 0) is
given as a linear function, we have

J(T, c0, x0, s0) = c0 + s0 ·
1− e−αx0

α
, (5.6)

and the corresponding nearly optimal execution strategy is a quasi-block
liquidation with the initial time; that is, x̂δ

t = (x0/δ)1[0,δ](t) with δ → 0.
This strategy formally corresponds to (5.5) taking the limit νh → ∞. Note
that h(x) ≡ α; hence (5.4) coincides with (5.6).
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(ii) Let us consider an extreme case where

g(x) = ĝ(x− x̄0)1[x̄0,∞)(x) (5.7)

for some increasing convex function ĝ ∈ C1([0,∞); [0,∞)) with ĝ(0) =
ĝ′(0) = 0 and ĝ′(∞) = ∞. The form of g(x) is shown in Figure 2 for ĝ(x)
set as x3. In this case, we can completely avoid the MI cost by selling at a
speed lower than or equal to x̄0. Therefore, the optimal execution strategy
seems to be x̃t = x̄01[0,x0/x̄0](t) at a glance. Following the strategy, (x̃t)t,
we get the expected proceeds

C̃ := s0

∫ x0/x̄0

0

e−µ̃tx̄0dt = s0ι(µ̃/x̄0;x0),

where ι(y;x) = (1 − e−xy)/y. However, Theorem 5.5 implies that this
strategy is not optimal; the optimal execution speed, νh, is strictly greater
than x̄0. We compare the expected proceeds

Ĉ := J(T, 0, x0, s0) = s0ι(h(νh);x0)

obtained by the optimal strategy, (x̂t)t, with C̃ obtained by (x̃t)t. Let us

denote Ĝ(x) = xĝ′(x) − ĝ(x). Then we see that Ĝ(νh − x̄0) > Ĝ(0) = 0,
and thus

µ̃ = Gh(νh) = Ĝ(νh − x̄0) + x̄0h(νh) > x̄0h(νh).

This implies that h(νh) < µ̃/x̄0. Because ι(· ;x0) is decreasing, we have

Ĉ > C̃. This is because selling at a lower speed increases the execution
time and the timing cost. The trader should sell with the optimal speed,
νh, and accept the MI cost.

5.3. Generalization of a Previous Result in Ishitani and Kato [12]. As
an application of Theorem 5.5, we provide an analytical solution to an optimal
execution problem with uncertain MI studied in Section 5.2 of [12]. We consider
the optimization problem

sup
(xt)t∈AT (x0)

E

[∫ T

0

Stxtdt

]
, (5.8)

where (St)t is given by the SDE:

dSt = St(−µ̃dt+ σdBt − g(xt)dLt), S0 = s0.

Here, (Lt)t is the Lévy process, which is independent of (Bt)t and whose distribu-
tion is given by the Gamma distribution

P (Lt − γt ∈ dz) =
1

Γ(α1t)β
α1t
1

zα1t−1e−z/β11(0,∞)(z)dz,

where α1, β1, γ > 0 satisfy α1β1 ≤ 8γ and Γ(z) =
∫∞
0

tz−1e−tdt is the Gamma

function. Moreover, we assume that g(x) = α0x
2 is given as a quadratic function

with α0 ≥ 0.
In Section 5.2 of [12], we do not find the explicit form of the optimal strategy

to (5.8), even when x0 is small. However, numerical experiments suggest that the
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Figure 2. Form of the MI function, g(x), defined as (5.7) with
ĝ(x) = x3. The horizontal axis corresponds to x. The vertical
axis corresponds to g(x).

optimal strategy with small x0 is the TWAP strategy. Here, we prove mathemat-
ically that this conjecture is true.

Theorem 5.7. Let ν̂ be the solution to

γα0ν̂
2 + α1

{
2

(
1− 1

1 + α0β1ν̂2

)
− log(α0β1ν̂

2 + 1)

}
= µ̃.

If x0 ≤ ν̂T , then the optimal strategy for (5.8) is given by the TWAP strategy

x̂t = ν̂1[0,x0/ν̂](t). (5.9)

6. Concluding Remarks

In this paper, we studied the optimal execution problem with S-shaped MI func-
tions as a continuation of [15]. We showed that our value function is characterized
as a viscosity solution of the corresponding HJB equation. This is an extended
result of that in [14]. Moreover, we provided the verification theorem to show
that the optimal execution speed is not in the range (0, x̄0]. This implies that the
trader should not blindly decrease the execution speed to reduce the MI cost.

In the Black–Scholes market model, we found that an optimal execution strategy
is the TWAP strategy when the number of shares of the security held is small. A
concrete form is not required for the MI function, g, so this result is robust and
suggests the optimality of TWAP strategy in practice.
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The volume-weighted average price (VWAP) strategy is widely used in trading
practice rather than the TWAP strategy [19]. Gatheral and Schied [8] pointed out
that we should regard the time parameter, t, not as physical time but as volume
time. Volume time implies a stochastic clock, which is measured by a market
trading volume process [3, 9, 20, 25]. If we consider the model on a volume time
line, we may find the optimality of the VWAP strategy in a similar way to Theorem
5.5. However, we should not ignore the randomness of the market trading volume.
One of our future tasks is to construct a model of optimal execution with S-shaped
MI functions on a volume time line.

Furthermore, to apply Theorem 4.1, we require the value function, J , to be
smooth, whereas it is difficult to show smoothness in general. Moreover, the
solvability of SDE (4.3) is not clear. Further study is needed.

Appendix A. Supplemental Arguments

We present the following propositions, which link the results in our previous
study [15] with the present model.

Proposition A.1. Let t > 0 and let (c, x, s) ∈ D. For each (xr)r≤t ∈ At(x), there
is a unique process, (Cr, Xr, Sr)r≤t, that satisfies (2.2) and (C0, X0, S0) = (c, x, s).

The comparison theorem for solutions of SDEs (see Proposition 5.2.18 in [13]
for instance) tells us that

0 ≤ Sr ≤ Zr(s) a.s., (A.1)

where (Zr(s))r is defined in (3.6). Moreover, Lemma B.1 in [14] tells us that

E[ sup
0≤r≤t

Zr(s)
m] < ∞ (A.2)

for each t, s and m > 0. Based on (A.1)–(A.2), we see that our value function,
J(t, c, x, s), is well-defined and finite.

Proposition A.2. J(t, c, x, s) = J∞(t, c, x, s).

In [15], we show some properties of J∞(t, c, x, s). Proposition A.2 implies that
these results also hold for J(t, c, x, s).

Appendix B. Proofs

Proof of Proposition 5.4. First, [A3] implies that

Gh(x̄0) = x̄0h(x̄0)−
∫ x̄0

0

h(x)dx ≤ x̄0h(x̄0)− x̄0h(x̄0) = 0. (B.1)

[A3] also tells us that

Gh(x)−Gh(y) ≥ (h(x)− h(y))y > 0 (B.2)

for each x > y > x̄0. Hence, Gh is strictly increasing on (x̄0,∞). Moreover, letting
x → ∞ in (B.2), we see that

lim
x→∞

Gh(x) = ∞, (B.3)

owing to condition [A4]. Because Gh is continuous on [x̄0,∞) and µ̃ is positive,
(B.1)–(B.3) immediately give the assertion. □
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To show Proposition A.1, we prepare a lemma.

Lemma B.1. Let (φt)t be an (Ft)t-progressively measurable process such that
|φt| ≤ K for some positive constant K. Then there is a CK,T > 0 that depends
only on K and T , such that

E

[
sup

0≤t≤T
exp

(∫ t

0

φrdBr

)]
≤ CK,T .

Proof. Put

Nt = exp

(∫ t

0

φrdBr −
1

2

∫ t

0

φ2
rdr

)
− 1.

Ito’s formula immediately implies that (Nt)t is a continuous local martingale start-
ing at 0 and d⟨N⟩t = (Nt + 1)2φ2

tdt.
Take any R > 0 and define τR = inf{t ≥ 0 ; ⟨N⟩t ≥ R} ∧ T and mR

t =

E[⟨N⟩t∧τR ](≤ R < ∞). Then we observe

0 ≤ mR
t ≤ 2K2

E

[∫ t∧τR

0

(N2
r + 1)dr

]
≤ 2K2T + 2K2

∫ t

0

mR
r dr.

We apply the Gronwall inequality to obtain

mR
t ≤ 2K2T + 4K2T 2e2K

2T =: C ′
K,T .

The Chebyshev inequality implies that τR ↗ T , R → ∞ a.s., and hence E[⟨N⟩T ] =
limR→∞ mR

t ≤ C ′
K,T by the monotone convergence theorem. Now we arrive at

E

[
sup

0≤t≤T
exp

(∫ t

0

φrdBr

)]
≤ eK

2T/2(2E[⟨N⟩T ]1/2 + 1)

≤ eK
2T/2

(
2
√

C ′
K,T + 1

)
.

□
Proof of Proposition A.1. It suffices to show the existence and uniqueness of pro-
cess (Sr)r≤t for each given (xr)r ∈ At(x) and s > 0.

Step 1. For each n ∈ N, define

τn = inf

{
r ≥ 0 ;

∫ r

0

g(xv)dv ≥ n

}
∧ t

and put xn
r = xr1[0,τn](r). Then we can show that there is a unique solution (Y n

r )r
to the following SDE by the standard argument:

dY n
r = b(Y n

r )dr + σ(Y n
r )dBr − g(xn

r )dr, Y n
0 = log s.

Ito’s formula implies that the process Sn
r := exp(Y n

r ) satisfies

dSn
r = b̂(Sn

r )dr + σ̂(Sn
r )dBr − Sn

r g(x
n
r )dr, Sn

0 = s.

We see that τn ≤ τm and Sn
r = Sm

r , r ∈ [0, τn] a.s. for each n < m. Therefore, we
can define S∞

r = limn→∞ Sn
r for each r ∈ [0, τ) ∩ [0, t] a.s., where τ = limn→∞ τn.

Next, we show that limr→τ S
∞
r = 0 a.s. on {τ ≤ t}. For each δ > 0, we see that

0 ≤ S∞
τ−δ = lim

n→∞
Sn
τ−δ ≤ sDtGδ on {τ ≤ t},
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where

Dt = lim inf
n→∞

sup
0≤r≤t

exp

(∫ r

0

b(Y n
v )dv +

∫ r

0

σ(Y n
v )dBv

)
,

Gδ = exp

(
−
∫ τ−δ

0

g(xr)dr

)
.

Because b and σ are bounded, Lemma B.1 implies that E[Dt] < ∞, hence Dt < ∞
a.s. Moreover, based on the definition of τ , it holds that Gδ1{τ≤t} −→ 0, δ → 0
a.s. Thus, we have limδ→0 S

∞
τ−δ = 0 a.s. on {τ ≤ t}.

Therefore, we can define Sr := S∞
r∧τ as a continuous process on [0, t], and it

holds that

s+

∫ r

0

σ̂(Sv)dBv +

∫ r

0

(b̂(Sv)− Svg(xv))dv

= s+

∫ r∧τ

0

σ̂(S∞
v )dBv +

∫ r∧τ

0

(b̂(S∞
v )− S∞

v g(xv))dv

= lim
n→∞

Sn
r∧τn = Sr, r ≤ t.

Thus, (Sr)r satisfies (2.2).

Step 2. Next, we show the uniqueness of the solution to (2.2). Assume that (S̃r)r
satisfies (2.2) and S̃0 = s. We see that Yr∧τn = logSr∧τn and Ỹr∧τn = log S̃r∧τn

satisfy (2.3). Because b and σ are Lipschitz continuous, we have E[sup0≤r≤t |Yr∧τn

− Ỹr∧τn |2] = 0. This implies that Sr∧τn = S̃r∧τn , r ≤ t a.s. Then we have

Sr∧τn = S̃r∧τn , r ≤ t, a.s. Letting n → ∞, we arrive at Sr∧τ = S̃r∧τ , r ≤ t

a.s. Based on (2.2), Sr = S̃r = 0 for each r larger than τ a.s. on {τ ≤ t}, so we

conclude that (Sr)r is equal to (S̃r)r a.s. □

Proof of Proposition A.2. Because J(t, c, x, s) ≥ J∞(t, c, x, s) is clear, we may
prove the opposite inequality.

Fix any (xr)r ∈ At(x) and denote by (Cr, Xr, Sr)r≤t its controlled process.
Take any K > 0 and set xK

r = xr ∧ K. Then (xK
r )r ∈ A∞

t (x) holds. Let
(CK

r , XK
r , SK

r ) be the controlled process of (xK
r )r. Then we have XK

t ≥ Xt.
Moreover, Proposition 5.2.18 in [13] implies that SK

r ≥ Sr, r ≤ t a.s. Therefore,
it holds that

CK
t = c+

∫ t

0

xK
r SK

r dr ≥ c+

∫ t

0

xK
r Srdr a.s.,

and the monotone convergence theorem tells us that lim infK→∞ CK
t ≥ Ct a.s.

Because u ∈ C, we have u(Ct, Xt, St) ≤ lim infK→∞ u(CK
t , XK

t , SK
t ). Then we

apply Fatou’s lemma to see that

E[u(Ct, Xt, St)] ≤ lim inf
K→∞

E[u(C
K
t , XK

t , SK
t )] ≤ J∞(t, c, x, s).

Because (xr)r ∈ At(x) is arbitrary, we complete the proof. □
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To prove Theorem 3.1, we define F : D × R3 × S −→ R ∪ {−∞} by

F (z, p,Σ) = −1

2
σ̂(s)2Σss − b̂(s)ps +H(s, p),

H(s, p) = inf
y≥0

f(y; s, p),

f(y; s, p) = spsg(y)− (spc − px)y,

where S ⊂ R3 ⊗ R3 is the set of three-dimensional real symmetric matrices, and
we denote

z =

 c
x
s

 , p =

 pc
px
ps

 , Σ =

 Σcc Σcx Σcs

Σxc Σxx Σxs

Σsc Σsx Σss

 .

Note that (3.2) is equivalent to

∂

∂t
J + F (z,DJ,D2J) = 0. (B.4)

Moreover, put

U =
{
(z, p,Σ) ∈ D̃ × R3 × S ; F (z, p,Σ) > −∞

}
,

R = D̃ × (R2 × (0,∞))× S .

Note that ps ≥ 0 holds for each (z, p,Σ) ∈ U . Moreover, we have R ⊂ U .

Lemma B.2. For each (z, p,Σ) ∈ R, we have

H(s, p) = f(h−1(H(s, p) ∨ h(x0)); s, p) ∧ 0 = f(Ξ(s, p); s, p), (B.5)

where H(s, p) and Ξ(s, p) are given by (4.1)–(4.2). In particular, F is continuous
on R.

Proof. First, we note that H(s, p) = spsH̄(H(s, p)), where

H̄(ȳ) = inf
y≥0

f̄(y; ȳ), f̄(y; ȳ) = g(y)− ȳy.

We see that

H̄(ȳ) = f̄(h−1(ȳ ∨ h(x̄0)); ȳ) ∧ 0. (B.6)

Indeed, if ȳ ≤ h(x̄0), we observe

∂

∂y
f̄(y; ȳ) = h(y)− ȳ ≥ h(y)− h(x̄0) ≥ 0, y ≥ 0

by [A3]. Thus we get H̄(ȳ) = f̄(0; ȳ) = 0. Moreover, [A3] also implies

f̄(h−1(h(x̄0)); ȳ) = f̄(x̄0; ȳ) =

∫ x̄0

0

h(y′)dy′ − ȳx̄0 ≥ (h(x̄0)− ȳ)x̄0 ≥ 0;

hence, (B.6) holds. In contrast, if ȳ > h(x̄0), we see that f̄(· ; ȳ) attains the mini-
mum at h−1(ȳ) or 0. When f̄(h−1(ȳ); ȳ) < 0, it holds that H̄(ȳ) = f̄(h−1(ȳ); ȳ).
When f̄(h−1(ȳ); ȳ) ≥ 0, it holds that H̄(ȳ) = 0. In both cases, we see that (B.6)
actually holds. (B.6) implies the first equality of (B.5). The second equality of
(B.5) is obtained by a straightforward calculation using [A3]. The last assertion

is obtained by the continuity of b̂, σ̂, h, H̄, and H(s, p). □
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The following proposition is obtained by a standard argument (see [6, 18, 21]
for details).

Proposition B.3. J is the viscosity supersolution of (3.2).

Proposition B.4. Assume (3.1). Then J is the viscosity subsolution of (3.2).

Proof. Fix each (t, z) ∈ (0, T ] × D̃. Let v ∈ C1,2((0, T ] × D̃) be a test function,
such that J −v attains the local maximum, 0, at (t, z). Then we can find an r > 0
such that

J(t′, z′) < v(t′, z′) (B.7)

holds for each (t′, z′) ∈ B̄r((t, z)) \ {(t, z)}, where

B̄r((t, z)) = {(t′, z′) ∈ (0, T ]× D̃ ; |t′ − t|2 + |z′ − z|2 ≤ r2}.

For each L > 0, define

FL(z, p,Σ) = −1

2
σ̂(s)2Σss − b̂(s)ps + inf

0≤y≤L
f(y; s, p),

JL(t, c, x, s) = sup
(xr)r∈AL

t (x)
E[u(Ct, Xt, St)],

AL
t (x) = {(xr)r ∈ At(x) ; |xr| ≤ L}.

Here, (Cr, Xr, Sr)r is given as (2.2) and (C0, X0, S0) = (c, x, s). Note that JL(t, c,
x, s) ↗ J(t, c, x, s), L → ∞. By the same argument as Proposition B.18 in [14],
we see that JL is a viscosity solution of

∂

∂t
JL + FL(z,DJL,D2JL) = 0. (B.8)

Because JL − v is continuous, JL − v attains a maximum on the set B̄r((t, z));
namely, there is a (tL, zL) ∈ B̄r((t, z)) such that maxB̄r((t,z))(J

L−v) = JL(tL, zL)−
v(tL, zL). We show that

(tL, zL) −→ (t, z), L → ∞. (B.9)

Because {(tL, zL)}L is a bounded sequence, we see that for each increasing
sequence, (Ln)n ⊂ (0,∞), there is a subsequence, (Lnk

)k, such that (tLnk
, zLnk

)

converges to a point, (t∗, z∗) ∈ B̄r(t, z). Dini’s theorem implies that JL −→ J ,
L → ∞ is uniform convergence on any compact set; thus, we see that

J(t∗, z∗)− v(t∗, z∗) = lim
k→∞

(JLnk (tLnk
, zLnk

)− v((tLnk
, zLnk

))) = 0.

Combining this with (B.7), we conclude that (t∗, z∗) must coincide with (t, z).
Therefore, (B.9) is true.

Next, we define ṽ ∈ C1,2((0, T ]× D̃) by

ṽ(t′, z′) = v(t′, z′) + JL(tL, zL)− v(tL, zL).
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Then we see that JL−ṽ attains a local maximum, 0, at (tL, zL). Moreover, because
JL is a viscosity solution to (B.8), it holds that

∂

∂t
ṽ(tL, zL) + FL(zL,D ṽ(tL, zL),D

2ṽ(tL, zL))

=
∂

∂t
v(tL, zL) + FL(zL,Dv(tL, zL),D

2v(tL, zL)) ≤ 0. (B.10)

Note that (zL,Dv(tL, zL),D2v(tL, zL)) ∈ R holds for large enough L. Indeed,
(3.1) implies that (∂/∂s)v(t, z) > 0, and the convergence (tL, zL) −→ (t, z) and
the continuity of Dv lead us to (∂/∂s)v(tL, zL) > 0 for large enough L. Moreover,
using Lemma B.2 and Dini’s theorem again, we see that FL converges to F as
L → ∞ uniformly on any compact set in R. Therefore, taking L → ∞ in (B.10),
we arrive at

∂

∂t
v(t, z) + F (z,Dv(t, z),D2v(t, z)) ≤ 0.

This completes the proof. □

Proof of Theorem 3.1. Assertion (i) is a consequence of Propositions B.3–B.4. As-
sertion (ii) is obtained by the same arguments as the proofs of Propositions B.21–
B.23 in [14]. We note that Proposition B.22 of [14] requires the convexity of g only
on [x1,∞) for large enough x1. □

We prepare the following lemma to show Theorem 4.1.

Lemma B.5. Assume [B] and that J ∈ C1,1,1,2((0, T ]×D). It holds that

∂

∂c
J(t, c, 0, s) = U ′(c), (B.11)

∂

∂x
J(t, c, 0, s) ≥ sU ′(c), (B.12)

∂

∂s
J(t, c, 0, s) =

∂

∂x
J(t, c, x, 0) = 0, (B.13)

∂

∂t
J(t, c, 0, s) =

∂

∂t
J(t, c, x, 0) = 0 (B.14)

for each t > 0 and (c, x, s) ∈ D.

Proof. (B.11), (B.13) and (B.14) are obtained from J(t, c, 0, s) = J(t, c, x, 0) =
U(c).

To show (B.12), for each fixed t > 0 and each x ∈ (0, t2), set xr =
√
x1[0,

√
x](r)

and let (Cr, Xr, Sr)r be the controlled process associated with (xr)r ∈ At(x).
Then we see that

1

x
(J(t, c, x, s)− J(t, c, 0, s))

≥ 1

x
E[U(Ct)− U(c)] = E

[∫ 1

0

U ′(c+ kxAx)dkAx

]
, (B.15)

where Ax = 1√
x

∫√
x

0
Srdr. By the Doob inequality, (3.18) in [11], and (A.1)–(A.2),

we have E[|Ax − s|] −→ 0, x → 0. In particular, Ax converges to s in probability.
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Moreover, by (A.1)–(A.2) and the concavity of U , we have

E[ sup
0≤x≤t2

A2
x] < ∞, E[ sup

0≤k≤1,0≤x≤t2
(U ′(c+ kxAx))

2] ≤ (U ′(c))2.

Therefore, we can apply the dominated convergence theorem to get

E

[∫ 1

0

U ′(c+ kxAx)dkAx

]
−→ sU ′(c), x → 0. (B.16)

(B.15)–(B.16) lead us to (B.12). □

Proof of Theorem 4.1. Define

x̂t = Ξ(St,DJ(T − t, Ct, Xt, St))1[0,τ̄)(t). (B.17)

Because XT∧τ̄ ≥ 0, it holds that (x̂t)t ∈ AT (x0). Then Proposition A.1 implies

that there is a controlled process (Ĉt, X̂t, Ŝt)t associated with (x̂t)t. We see that

Ĉt = Ct∧τ̄ , X̂t = Xt∧τ̄ and Ŝt∧τ̄ = St∧τ̄ .
Put τ̂R = inf{t ≥ 0 ; Ŝt ≥ R} ∧ (T − 1/R)+ for each R > 0. Note that (A.1)–

(A.2) and the Chebyshev inequality imply that τ̂R ↗ T , R → ∞. Ito’s formula
gives us

E[J(T − τ̂R, Ĉτ̂R , X̂τ̂R , Ŝτ̂R)]− J(T, c0, x0, s0)

= E

[∫ τ̂R

0

(
− ∂

∂t
J + L x̂tJ

)
(T − t, Ĉt, X̂t, Ŝt)dt

]
. (B.18)

Based on Theorem 3.1(i), Lemma B.2, and the smoothness of J , we have(
− ∂

∂t
J + L x̂tJ

)
(T − t, Ĉt, X̂t, Ŝt)

=

(
− ∂

∂t
J + sup

y≥0
L yJ

)
(T − t, Ct, Xt, St) = 0, t < τ̄ . (B.19)

On {t ≥ τ̄}, either X̂t = 0 or Ŝt = 0 holds. If X̂t = 0, we have(
− ∂

∂t
J + sup

y≥0
L yJ

)
(T − t, Ĉt, 0, Ŝt)

= sup
y≥0

{(
ŜtU

′(Ĉt)−
∂

∂x
J(T − t, Ĉt, 0, Ŝt)

)
y

}
= 0 =

(
− ∂

∂t
J + L x̂tJ

)
(T − t, Ĉt, 0, Ŝt), t ≥ τ̄ (B.20)

by Lemma B.5. If Ŝt = 0, Lemma B.5 also implies that(
− ∂

∂t
J + sup

y≥0
L yJ

)
(T − t, Ĉt, X̂t, 0)

= 0 =

(
− ∂

∂t
J + L x̂tJ

)
(T − t, Ĉt, X̂t, 0), t ≥ τ̄ . (B.21)
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Combining (B.18)–(B.21), we arrive at E[J(T − τ̂R, Ĉτ̂R , X̂τ̂R , Ŝτ̂R)] = J(T, c0, x0,

s0). Letting R → ∞, we have E[u(ĈT , X̂T , ŜT )] = J(T, c0, x0, s0) due to the dom-
inated convergence theorem. Therefore, (x̂t)t is the optimizer to J(T, c0, x0, s0).
Based on (4.2) and (B.17), we see that x̂t = 0 or x̂t > x̄0. □

Proof of Theorem 4.2. Fix any (xt)t ∈ A∞
T (x0) and n ∈ N, and let xn

t = (1 −
1/n)xt. Denote by (Ct, Xt, St)t ( respectively, (C

n
t , X

n
t , S

n
t )t) the controlled pro-

cess associated with (xt)t ( respectively, (xn
t )t). Note that (A.1)–(A.2) imply

E[sup0≤t≤T (S
n
t )

m] < ∞ for each m > 0, and that (Cn
t , X

n
t , S

n
t ) ∈ D̃, t ∈ [0, T ]

holds a.s.
Take any R > 0 and set τR = inf{t ≥ 0 ; Sn

t ≥ R}∧ (T −1/R)+. By a standard
argument using Ito’s formula, we arrive at

E[v(T − τR, C
n
τR , X

n
τR , S

n
τR)]− v(T, c0, x0, s0)

≤ E

[∫ τR

0

(
− ∂

∂t
v + sup

y≥0
L yv

)
(T − t, Cn

t , X
n
t , S

n
t )dt

]
.

Combining this with assumption (iii), we have

E[v(T − τR, C
n
τR , X

n
τR , S

n
τR)] ≤ v(T, c0, x0, s0).

Here, based on assumptions (i)–(ii) and the Chebyshev inequality, we see that
τR ↗ T , R → ∞ a.s. and

E[u(C
n
T , X

n
T , S

n
T )] ≤ v(T, c0, x0, s0). (B.22)

Because (xt)t is essentially bounded, by using Theorem 2.5.9 in [18], we obtain

E[sup0≤t≤T | logSn
t − logSt|4] −→ 0, n → ∞. Then we have E[sup0≤t≤T |Sn

t −
St|2] −→ 0, and thus E[|Cn

T −CT |] −→ 0. Moreover, we see that E[|Xn
T −XT |] −→

0. Therefore, letting n → ∞ in (B.22) and applying Lemma B.2 in [14], we arrive
at

E[u(CT , XT , ST )] ≤ v(T, c0, x0, s0).

Because (xt)t ∈ A∞
T (x0) is arbitrary, we deduce that

J(T, c0, x0, s0) = J∞(T, c0, x0, s0) ≤ v(T, c0, x0, s0).

This and assumption (iv) lead to the conclusion that

J(T, c0, x0, s0) = E[u(ĈT , X̂T , ŜT )] = v(T, c0, x0, s0).

□

Theorems 5.3 and 5.5 are obtained by a straightforward calculation using The-
orem 4.2.

Proof of Theorem 5.7. Theorem 5.2 in [12] tells us that (5.8) is equivalent with
the optimization problem

c0 + sup
(xt)t∈AT (x0)

∫ T

0

Ŝtxtdt,
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where

dŜt = −Ŝt(µ̃+ ĝ(xt))dt, Ŝ0 = s0,

ĝ(x) = γα0x
2 + α1 log(α0β1x

2 + 1).

Moreover, we see that

ĝ′′(x) ≥ α0α1β1(α0β1x
2 − 3)2

4(α0β1x2 + 1)2
,

hence, ĝ(x) is strictly convex (see Corollary 1.3.10 in [22] for instance). Therefore,
we can apply Theorem 5.5 to complete the proof. The optimal execution speed ν̂
satisfies Gĝ′(ν̂) = µ̃, where

Gĝ′(x) = xĝ′(x)− ĝ(x)

= γα0x
2 + α1

{
2

(
1− 1

1 + α0β1x2

)
− log(α0β1x+ 1)

}
.

□
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24. Roşu, I.: A dynamic model of the limit order book, Rev. Financ. Stud. 22 (2009), no. 11,
4601–4641.

25. Veraat, E. D. and Winkel, M.: Time change, Encyclopedia of Quantitative Finance, Eds.
Cont, R., Wiley, Chichester, 2010, 1812–1816.

Takashi Kato: Association of Mathematical Finance Laboratory (AMFiL), 2–10,

Kojimachi, Chiyoda, Tokyo 102-0083, Japan
E-mail address: takashi.kato@mathfi-lab.com


	Communications on Stochastic Analysis
	6-29-2017

	An Optimal Execution Problem with S-shaped Market Impact Functions
	Takashi Kato
	Recommended Citation

	An Optimal Execution Problem with S-shaped Market Impact Functions
	Cover Page Footnote


	tmp.1513441608.pdf.C4mjh

