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Abstract: Constructive Neural Networks (CoNN) offer an interesting framework for pattern classifications problems. 
It provides an optimal way to determine the topology of a multilayer perceptron network trainable with supervised 
learning algorithms. This paper focuses on a simple CoNN with dynamic structure using Genetic Algorithm. 
Conventional neural network training involves topology to be defined before training, which results in an exhaustive 
search for solutions. CoNN learning algorithms eliminate the need for choosing the architecture before hand, and 
provide a mean for constructing networks whose size is dependent on the problem in hand. We apply Genetic 
Algorithm (GA) on the input data set subsequently until we get a best set of template strings. Data extracted from 
real world problems frequently contains rogue values. Rogue values decreases the quality of data and will affect 
the training process leading to inaccurate NN models. The template string helps to remove rogue values from the 
actual training set reducing the size of the input data set and thereby making learning easier. CoNN along with GA 
classifies the patterns in Iris dataset, Pima Indians Diabetes dataset and Wine dataset available in UCI machine 
learning repository with faster convergence and less space.
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1. INTRODUCTION
Artificial Neural Networks (ANNs) are models for computation inspired by biological neural networks. 
Artificial neural networks are generally presented as systems of processing elements called “neurons” 
massively interconnected by trainable connections called weights. These numeric weights that can be tuned 
based on experience, making neural nets adaptive to the given data and capable of learning. ANN algorithms 
involve training the numeral connection weights through a systematic procedure. Learning in ANN refers 
to the search for an optimal network topology and weights so as to accomplish a specific task. ANNs are 
capable of generalization, refitting and performing computation in parallel resembling the human brain. A 
“layer” in ANN has common functionality. The choice of number of neurons in input, hidden and output 
layers and their functionality depend on the task and the learning algorithm used. The input layer neuron 
count is usually same as the number of attributes of the training patterns, and, the output layer neuron count 
is same as the number of categories sought. Determination of the hidden layer neuron count is dependent 
on the inherent complexity of the task and number of training examples available.

A wide range of ANN architectures and algorithms have been put forward by researchers, among which 
Constructive Neural Networks (CoNN) offer a winning framework for pattern classifications problems. 
CoNN algorithms present an optimal way to determine the architectural structure of a Multi Layer Perceptron 
network trainable with learning algorithms to determine appropriate weights[1][2][3]. These algorithms 
initially start with a small network and allow the network to grow dynamically by adding and training neurons 
as needed until a satisfactory solution is found [4]. The architectural adaptation process is continued till the 
training algorithm finds a near optimal topology that gives suitable solution for the problem. Traditional 
neural network learning involves modification of interconnection weights on a network architecture 
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defined prior to the training. Determining the network architecture in such a case is a challenge, which 
requires an expensive trial-and-error process. Instead of learning on a pre-specified network topology, a 
constructive algorithm learns the topology in a way specific to the problem. Constructive learning is capable 
of automatically fitting network size to the data without overspecializing, but yields better generalization 
for arbitrary pattern classification and thus has faster convergence in learning [5].

Constructive Neural Networks provide an optimal way to build minimal networks for the classification 
of patterns. They are based on elementary Threshold Logic Units (TLU), which tools a hard -limiting 
function. It starts with single TLU and add TLUs if necessary. CoNN became popular in two subtasks.
• When current topology fail to achieve the result, then it incrementally adds one or more threshold 

neurons to the network.
• Using different types of training algorithms to train the newly added threshold neuron(s).

The input data set selection method of NN is based on the template strings produced by Genetic 
Algorithm (GA). In the field of artificial intelligence, GA is a search heuristic based on the process of natural 
selection that mimics the biological evolution. This heuristic is routinely used to generate useful solutions 
to optimization and search problems. GA generates solutions to optimization problems using techniques 
inspired by natural evolution, such as inheritance, crossover, mutation and selection.

Template strings generated by GA is matched with the actual data set. This template string helps to 
remove rogue values from the actual training set reducing the size of the input data set and thereby making 
learning easier. CoNN along with GA classifies the patterns in Iris dataset, Pima Indians Diabetes dataset 
and Wine dataset available in UCI machine learning repository with faster convergence and with less 
spatial requirements.

The rest of the paper is divided into six sections. Section-II presents a literature review. Section-III 
discusses the proposed system. Section-IV describes the methodology being used. Section-V illustrates 
the practical applicability of the proposed system in comparison with existing architectures on various 
datasets and analyzes their performance and Section-VI is the conclusion. Section-VII is the future work.

2. LITERATURE REVIEW
Everett Fall, et al, has presented a new approach in designing neural networks [6]. The structure of the 
proposed NN is not stringently defined (each neuron may receive input from any other neuron). Instead, 
the initial network structure can be generated at random, and traditional methods of training, such as back 
propagation, are replaced or augmented by a genetic algorithm (GA). The weight of each input neuron 
is encoded to serve as the genes for the GA. By means of the training data provided to the supervised 
topology, the contribution of each neuron in creating a desired output serves as a selection strategy. Each 
of the neurons is then modified to store and recall past weightings for possible future use. The proposed 
NN can mimic the flexibility of biological networks in adapting to unexpected data. A simple network is 
trained to identify vertical and horizontal lines as a proof of concept.

Dr. S.S. Sridhar, et al, presents several CoNN learning algorithms that enable the NN architecture to 
be constructed along with the learning process [2]. This paper explores several algorithms like MTower, 
MPyramidal, MTiling, MSequential, MPerceptroncascade, MUpstart, Dist AI and algorithms such as 
Pocket algorithm along with ratchet modification and Barycentric correction procedure commonly used for 
training individual TLU’s which have been proved to converge on Multi-categories. Constructive learning 
aims at automatically designing a network topology of appropriate size, given the full training data set. 
Constructive algorithms offer an attractive approach to automated design of neural networks for pattern 
classification. They eliminate the need for choosing the architecture before hand, and provide a mean for 
constructing networks whose size is dependent on the problem in hand. This paper has focused on a family of 
such algorithms that incrementally construct networks of threshold neurons that deal with multi categories.
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Rajesh Parekh, et al, provides convergence proofs for several constructive learning algorithms [4]. 
These algorithms offer a winning approach for incremental construction of potentially near-minimal neural 
network architecture for pattern classification tasks. These algorithms help to overcome the need for ad-
hoc and often inappropriate choice of network topology for the algorithms that search for a suitable weight 
setting in a-priori fixed network architecture. The convergence proof for the Tower, Pyramidal, Tiling, and 
Sequential Learning (except Upstart, Perceptron cascade) relies on the assumption that the pattern attributes 
values are either binary or bipolar. This paper explores multi-category extensions of several CoNN learning 
algorithms for classification tasks where the input patterns may take on real valued attributes.

Dr. S.S. Sridhar, et al, proposes a new Tiling architecture for Constructive Neural Networks [1]. In 
the study they proposed a new MTiling architecture with unsupervised learning strategy on binary pattern 
datasets for achieving better performance in terms of generalization capability, faster convergence and 
fewer connections thereby less storage requirement.

Philipp Koehn introduces the idea of the genetic algorithm paradigm applied to neural networks in 
the task of weight as well as architecture optimization [7]. Since genetic algorithms operate on simple 
fitness, i.e. quality evaluations, they can be applied to a larger class of problems. The application of GANN 
architecture optimization is feasible, if the goal is a good topology for a large class of similar problems. 
In these cases, the high computation time is justified, since it has to be performed only once. Then, for a 
particular instance of the problem the optimized architecture can be used.

Joao R. Bertini, et al, makes a comparative study of two TLU training algorithms [8]. CoNN algorithms 
enable the architecture of a NN to be constructed as an intrinsic part of the learning process. These algorithms 
are dependent on the TLU training algorithm employed. Generally they use a perceptron based algorithm 
such a Pocket or Pocket with Ratchet Modification (PRM) for training individual node added to the network, 
during the learning process. PRM is a practical choice for training a TLU but its cost of computation can 
be reasonably high when there are many training instances; it takes a long time to find an optimal solution. 
Inference based on results of the experiments shows that there are domains whose characteristics favour 
the geometric approach employed by BCP and others does not. Depending on the domain, BCP makes a 
better option than PRM to be used as a part of constructive neural methods.

3. SYSTEM STUDY
Constructive neural network architectures use the multi-category extensions of CoNN learning algorithms 
for classification tasks. Data extracted from real world problems frequently contains rogue values. Rogue 
values decreases the quality of data and will affect the training process leading to inaccurate NN models. 
That is, the quality of the data may be reduced by errors or deviations produced in the data collection phase, 
as a consequence of human error in translating information or due to limitations in the tolerance of the 
measurement equipment. This may result in errors in the values of attributes or in the instances.

In general, rogue values may bias the learning process, making it more difficult for learning algorithms 
to form accurate NN models for the data. This is the issue addressed in this work.

Proposed work presents a CoNN which provides an optimal way to determine the architecture of a 
multilayer neural network trainable with supervised learning algorithms for pattern classification tasks. Instead 
of feeding the network with input dataset that contains rogue values, we remove the rogue values prior to the 
training process. This can lead training to the right direction resulting an accurate CoNN model which have 
faster convergence to the solution and requires less space. Figure 1 is the block diagram of the proposed system.

4. METHODOLOGY
A. Template String Generation Using GA: A genetic algorithm (or GA) is a search technique used in 

computing to find true or approximate solutions to optimization and search problems. GAs are a 
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particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such 
as inheritance, mutation, selection, and crossover (also called recombination).

 The evolution usually starts from a population of randomly generated individuals and happens in 
generations. Here the inputs from the dataset are considered as initial population.

 In each generation, the fitness of every individual in the population is evaluated, multiple individuals 
are selected from the current population (based on their fitness), and modified to form a new population. 
The contribution of each attribute of a data (individual) in making the data lie in an acceptable range act 
as a fitness strategy. The new population is used in the next iteration of the algorithm. The algorithm 
terminates when the required number of template strings are achieved.

Figure 1: Block diagram of proposed system

Figure 2: Demonstrates the GA process
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B. Refining The Actual Dataset Using Template String: Template strings are considered as the bench 
mark datasets. The actual dataset is refined using the template string generated using GA. Only those 
datasets that matches with the template strings is being refined. This process of refinement will remove 
the rogue values thereby reducing the number of datasets for training the network.

C. Constructive Neural Network Learning Algorithm: In order to classify a set of input patterns into one 
of two classes, a single perceptron or TLU shall be trained. This perceptron computes a hard-limiting 
function of weighted sum of inputs. The Multi-category Tiling algorithm incrementally constructs 
networks of threshold neurons to handle multi categories as discussed here.

This algorithm constructs a layered network of TLUs (Threshold Logic Units). The bottom-most layer 
receives inputs from each of the X input neurons. The neurons in each subsequent layer receive inputs 
from the neurons in the layer immediately below itself; in this process each layer maintains a master 
neuron (output of that layer). In addition to master neurons, ancillary neurons are added to the layers for 
faithful representation, if classification is not done properly. Figure 3 is a CoNN constructed using MTiling 
algorithm [2].

Figure 3: A CoNN using MTiling algorithm

Algorithm
(a) Initialize a layer of O master neurons each connected to X input neurons and train them.

(b) If the desired classification is achieved by master neurons, then stop.

(c) else, if the current layer is not faithful,

 Then, add ancillary neurons to the current layer to make it faithful as follows, Else go to step d.

1. Identify the output vectors for which maximum number input patterns map to (an output vector is 
said to be unfaithful if it is generated by input patterns belonging to different classes)
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2. Identify the set of patterns that generate the output vector identified in step c (1) above. This set of 
patterns will form the training set for ancillary neurons.

3. Add and train a set of n (1 <= n <= O) ancillary neurons where n is the number of target classes 
represented in the set of patterns identified above.

4. Repeat the last three steps till the output layer representation of the patterns is faithful.

(d) The new layer of master neurons are trained, which are connected to each neuron in the previous layer, 
then go to step b.

A simple perceptron learning algorithm is used for training individual TLU’s.

5. EXPERIMENTAL RESULTS
The performance of the existing CoNN and the new CoNN with GA is analyzed in this section. The real-world 
datasets Iris, Pima Indian diabetic and Wine are available at the UCI Machine Learning Repository [9].

All the datasets are initially normalized to distribute the data evenly and scale it into an acceptable 
range for the network [10]. Patterns in each normalized dataset were divided as training and evaluation set 
for both the cases. The normalized attribute values of each training data set are fed to the CoNN to make 
it learn. Equal number of datasets is used for training the existing CoNN and the new CoNN with GA, and 
equal number of datasets is used for evaluation in both the cases. The parameters like the number of hidden 
layers, number of neurons in each hidden layer, number of weight connections, generalization capability, 
number of ancillary neurons , total number of neurons and time taken for training the CoNN are analyzed 
based on the results obtained during the evaluation.

Table 1, 2 and 3 summarizes the results of experiments done to test the performance of CoNN and 
CoNN with GA.

On applying Iris dataset as in Table-I, it was found that in CoNN with GA has fewer weight connections 
thereby less storage requirement, time taken is also reduced when compared with the other. The performance 
graph is shown in Figure 4.

On applying Pima Indian diabetic dataset as given in Table 2, it was found that CoNN and CoNN with 
GA behaved in a similar manner for all the parameters except for the number of misclassifications and time 
taken. CoNN with GA has reduced the number of misclassifications and the time taken. The performance 
graph is shown in Figure 5.

On applying Wine dataset as in Table 3, it was found that the total weight connections are considerably 
reduced in CoNN with GA when compared with other thereby minimizing its space requirements; time 
taken is also being reduced. The performance graph is shown in Figure 6.

Table 1 
Performance on iris dataset

CoNN CoNN (GA)
Misclassifications 3 1
Hidden Layers 2 1
Hidden Layer Neurons 8 4
Ancillary Neurons 2 1
Total Neurons 15 11
Total Weight Connections 44 28
Time In ms 1705 1674
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Table 2 
Performance on pima indian diabetic dataset

CoNN CoNN (GA)
Misclassifications 5 4
Hidden Layers 2 2
Hidden Layer Neurons 6 6
Ancillary Neurons 2 2
Total Neurons 16 16
Total Weight Connections 39 39
Time In ms 1325 1245

Table 3 
Performance on wine dataset

CoNN CoNN (GA)
Misclassifications 4 2
Hidden Layers 2 2
Hidden Layer Neurons 10 8
Ancillary Neurons 4 2
Total Neurons 26 24
Total Weight Connections 105 80
Time In ms 1625 1368

Figure 4: Performance on Iris dataset
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Figure 5: Performance on Pima Indian Diabetic dataset

Figure 6: Performance on Wine dataset
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6. CONCLUSION
In this work, we reduced the time and spatial requirements of a CoNN by applying GA to the input data 
set prior to the training process. The template string generated by GA removed rogue values from the 
actual training set reducing the size of the input data set and thereby making learning easier. This lead the 
constructive training algorithms to generate an accurate CoNN model which has faster convergence to the 
solution with less space.

7. FUTUTE WORK
Following are some of the future research directions

1. The performance of CoNN with GA in terms of parameters like the network size, training time, 
generalization capability and convergence properties on various other datasets of UCI repository shall 
be done.

2. Other learning algorithms shall be experimented for improving the performance of CoNN with GA.

3. Various pre-processing techniques shall be applied to input dataset for the performance improvement.

References
1. Dr. S.S. Sridhar and Dr. M. Ponnavaikko, “New Constructive Neural Network Architecture for Pattern Classification”, 

Journal of Computer Science 5 (11): 843-848, 2009 ISSN 1549-3636.
2. Dr S.S. Sridhar and Dr M. Ponnavaikko, “Analysis of Constructive Neural Network Learning Algorithms for Pattern 

Classification”, 2009 IEEE International Advance Computing Conference (IACC 2009) Patiala, India, 6–7 March 2009.
3. Maria do Carmo Nicoletti, João R. Bertini Jr., David Elizondo, Leonardo Franco, and José M. Jerez*,“Constructive Neural 

Network Algorithms for Feed forward Architectures Suitable for Classification Tasks”
4. Rajesh Parekh, Jihoon Yang and Vasanth Honavar, “Constructive Neural Network Learning Algorithm For Multi-Category 

Real valued Pattern Classification”, Springer-Verlag Berlin Heidelberg 2009
5. Justin Fletcher and Zoran ObradoviC, “Constructively Learning a Near-Minimal Neural Network Architecture”, IEEE, 

1994
6. Everett Fall and Hsin-Han Chiang, “Neural Networks with Dynamic Structure Using a GA-based Learning Method”, 

2015 IEEE 12th International Conference on Networking, Sensing and Control Howard Civil Service International House, 
Taipei, Taiwan, April 9-11, 2015

7. Philipp Koehn ,“Combining Genetic Algorithms and Neural Networks: The Encoding Problem”, A Thesis Presented for 
the Master of Science, Degree,The University of Tennessee, Knoxvill, December 1994

8. Joao R. Bertini, Maria do Carmo Nicoletti and Estevam R. Hruschka Jr, “A Comparative Evaluation of Constructive 
Neural Networks Methods using PRM and BCP as TLU Training Algorithms”, 2006 IEEE International Conference on 
Systems, Man, and Cybernetics,October 8-11, 2006, Taipei, Taiwan

9. P. Murphy and D. Aha, “Repository of machine learning databases”, Dept. Inform. Comput. Sci., Univ. California,Irvine,CA, 
http://www.ics.uci.edu/AI/ML/MLDBRepository.html,1994

10. Lou Mendelsohn, “Preprocessing Data for Neural Networks”




