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ABSTRACT: Revisions to the data in Sholin's tables from his paper in Optics and Spectroscopy 26 (1969) 27, are
presented. Since his data was used numerous times by various authors to calculate the asymmetry of hydrogenic spectral
lines in plasmas, our corrections should motivate revisions of the previous calculations of the asymmetry and its
comparison with the experimental asymmetry, and thus should have a practical importance.

Key words: asymmetry of spectral lines; corrections to input data; hydrogenic spectral lines in plasmas

Sholin’s tables from paper [1] were used numerous times by various authors to calculate the asymmetry of hydrogenic
spectral lines in plasmas. (The latest advances in the theory of the asymmetry can be looked up in papers [2, 3] and
references therein). However, we found that there are incorrect entries tabulated in paper [1] for the the Ly-�, Ly-�,
and H-� lines in both the intensity corrections and the quadrupole frequency corrections.

The dipole and quadrupole frequency corrections are given in paper [1] as
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where n and n' are the principal quantum numbers of the upper and lower energy levels, respectively; q = n
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' are the combinations of the corresponding parabolic quantum numbers.

Frequency Corrections

For Ly-gamma (n = 4), Eq. (2) becomes:
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It yields (0) 80, ( 1) 48, ( 2) 48, ( 3) 208.quadrup quadrup quadrup quadrup
k k k k

 The comparison shows that

in Sholin's table there are typographic errors in (0)quadrup
k

entered as 60 (instead of 80) and in ( 3)quadrup
k

 entered

as -206 (instead of -208).

For Ly-epsilon (n = 4), Eq. (2) becomes:
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It yields (0) 420, ( 1) 348, ( 2) 132, ( 3) 228, ( 4) 732,quadrup quadrup quadrup quadrup quadrup
k k k k k

( 3) 1380.quadrup
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 The comparison shows that in Sholin's table there are typographic errors in ( 2)quadrup
k

 entered

as 108 (instead of 132).

Intensity Corrections

The intensity corrections are calculated from the corresponding corrections to the wave functions. The latter are
given, e.g., in the Appendix of paper [4].

For H-alpha (n = 3 to n = 2 transition), the comparison shows that in Sholin's table there are typographic errors

in �
k
(1) corresponding to 2dipole

k
entered as -62 (instead of -62/9) and 2dipole

k
entered as 62 (instead of 62/9),

as shown in detail below.
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We note in passing that the robust perturbation theory developed by Oks and Uzer [5] allows calculating
analytically corrections to the eigenfunctions due to the quadrupole interaction in a much simpler way than in
Sholin paper [1]. Details are presented in Appendix.

For completeness we list below also previously known (for a long time) corrections to the tabulated entries
from paper [1] for the H-beta line.

For the Stark components corresponding to the radiative transitions between the parabolic states 210 and 010 or
between 120 and 100, the unperturbed intensity should be 81, instead of 16.

For the Stark component corresponding to the radiative transition between the parabolic states 210 and 001, the
intensity correction �

k
(1) should be -20 (instead of -16).

For the Stark component corresponding to the radiative transition between the parabolic states 120 and 001, the
intensity correction �

k
(1) should be 20 (instead of 16).

There are also two corrections (known for a long time) to the following typographic errors from paper [1].

In Table 2 for the H-alpha line, in the header of the last column, the scaling factor should be 106 instead of 105.

In Eq. (21), in its 2nd term in the right hand side, the coefficient should be (3/8) instead of (3/16). We note that
after this correction, Eq. (21) from [1] coincides with the corresponding term (proportional to 1/R4) in Eq. (4.59)
from book [5] after setting in the latter Z

1
 = 1, Z

2
 = Z. Equation (4.59) from book [5] was derived from the exact

expression for the energy in elliptical coordinates for the two Coulomb center problem by expanding the latter in
powers of 1/R up to (including) the term ~ 1/R6. Therefore, Eq. (4.59) from book [5] can be considered, in particular,
as the benchmark for testing Eq. (21) from [1]. Such a test confirms also that the 2nd term in the right hand side of
Eq. (21) from [1] correctly contains the first power of Z (while there were incorrect suggestions that this term
should contain Z2).

In summary, since Sholin's tables from paper [1] were used numerous times by various authors to calculate
the asymmetry of hydrogenic spectral lines in plasmas, our corrections should motivate revisions of the previous
calculations of the asymmetry and its comparison with the experimental asymmetry, and thus should have a practical
importance.

Appendix. Application of the robust perturbation theory [5] for calculating
quadrupole corrections to the wave functions

In the present paper, the robust perturbation theory [6] was employed. The gist of it is as follows. If for the perturbed
quantum system there is an operator A that commutes with the Hamiltonian H and the parts of these operators A

0
 and

H
0
, characterizing the unperturbed quantum system, also commute, then the perturbation theory can be constructed

in terms of the perturbation (A – A
0
) to the operator A

0
, rather than in terms of the perturbation (H – H

0
) to the

operator H
0
. For calculating corrections to the wave functions (which are common for both A

0
 and H

0
), the advantage

is that the eigenvalues of the operator A
0
 are typically nondegenerate (in distinction to the eigenvalues of the

operator H
0
). Therefore, for calculating the first order corrections to the wave functions it is sufficient to use the

first order of the nondegenerate perturbation theory with respect to the perturbation (A – A
0
) and it would

not involve infinite summations. In distinction, for calculating the same corrections in terms of the perturbation
(H – H

0
), one would have to proceed to the second order of the degenerate perturbation theory, involving infinite

summations.

Below as the operator A we choose the projection A
z
 of the super-generalized Runge-Lenz vector, derived by

Kryukov and Oks [7], on the axis connecting the nucleus of the hydrogenic atom/ion with the perturbing ion. The
operator of the unperturbed projection A

z
(0) has the well-known eigenvalues q/n - see. e.g., the textbook [8]. According

to Eq. (12) from [6], the first non-vanishing term of the expansion of the operator (A
z
 – A

z
(0)) in terms of the small

parameter n2/R (here and below we use atomic units) is – L2/R. Then the corrections to the wave functions are given by
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where the selection rules for non-zero matrix elements of the operator L2 require q – q' = ± 2.

The non-diagonal matrix elements of the operator L2 in parabolic coordinates (as well as of the operators
L

±
 = L

x
 ± iL

y
), have been calculated by Sholin, Demura, and Lisitsa in [9]:
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We note that matrix elements of the operator L
x
 in parabolic coordinates have been later reproduced by Gavrilenko

in paper [10]. We also note that the non-diagoanal matrix elements of the operators L
±
 can be also obtained

using their proportionality (within the manifold of the fixed n) to the non-diagonal matrix elements of the operators
(x ± iy):

<n, q ± 2, m|L
±
 | nqm > = – (±1) [2/(3n)] (x ± iy). (A.3)

(The underlying physical reason for the existence of relation (A.3) is, according to Demura [11], the O4 symmetry
of hydrogenic atoms/ions.*/) Therefore, the non-diagonal matrix elements of the operator L2 in parabolic coordinates
can be obtained using their similar proportionality to the non-diagonal matrix elements of the operator (x2 + y2). The
latter matrix elements have been calculated by Clark [12].

Anyway, after substituting the non-diagonal matrix elements of the operator L2 from Eq. (A.2) in Eq. (A.1), the
latter equation yields the following result for the corrections to the wave functions (more rigorously, for the coefficients
of the corresponding linear combinations of the unperturbed wave functions):
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This is the same result as in Sholin paper [1], but obtained in a simpler way: without the need to go to the second
order of the perturbation theory.
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