International Journal of Control Theory and Applications

CONTROL THEORY
AND APPLICATIONS ISSN : 0974-5572

This titte s f

is indexed
in Scopus
sEBETS

Gurgaon, Haryana (India

© International Science Press

Volume9 e« Number43 .« 2016

An Efficient Approach for Automated Bug System

Sheryl Maria Sebastian®, Asst Prof Neethu Subash” and Asst Prof Ani Sunny*

““Department of Computer Science and Engineering, M.A College of Engineering, Kothamangalam, Kerala, India. Email:
“sherylmariasebastian@gmail.com; bneethu.subash@gmail.cam; “anisunny88@gmail.com

Abstract: Software developing companies spends a lot of time consumed in tracking of bugs in their software. Locating
the source code files with the corresponding bugs is a difficult task. It is challenging for developers to manually
debug and fix them. Introduced an automatic system that can rank the source code files with bug reports. Describes
a methodology learning to rank files that is, ranking score is computed by the weighted combination of the features.
Weights are trained on previously fixed bug reports. Here finding the similarity between the bug reports and the
source code files and its methods, API similarities between the bug reports and source code files, semantic similarity
between the bug report and source code files, dependency graph. And also method for removing the duplicate bug
reports. Manual bug assigning to the correct developer is expensive and results in wrong assignment of bug reports
to developers. Proposing a method to automatically assign the bug reports to the correct developers by data reduction
technique by feature selection that is, improving the quality of bug data. From the historical data sets retrieving the
attributes and constructing model that predicts the new bug set. We first applies feature selection technique (e.g.
Chi-square) to preprocess the textual information in bug reports, and then applies text mining technique (e.g., naive
Bayes) to build statistical models. Thus we are developing an effective bug system that is finding the relevant pages
that can occur the bugs, removing the duplicate bugs, and assigning this ranked pages to the correct developers so
they can fix the bug fastly and accurately which can reduce the time consuming. We perform experiments on six large
scale open source java projects namely, Eclipse, Aspectj, Tomcat, SWT, JDT, Birt.

Keywords: Software engineering; Bug Reports; Learning to rank; Artificial Intelligence; Information retrieval.

1. INTRODUCTION

Software bug which results in an incorrect output or unexpected output due to the error or failure in a computer
program. To permanently cure a bug we need to change the program. New bugs can be introduced due to the
bug fixing process, so it should be the one of the most important step. Most of the cause of the bug are due to
the mistakes, errors or due to the components in the operating systems. Some of them are due to the incorrect
code which is produced by the compiler. Buggy means a program will be containing a huge number of bugs and
the will be adversely affecting the functionality of the program. Under a testing environment while in the testing
phase when testing the software which is found out by the testers are list of bugs are known as bug report or

International Journal of Control Theory and Applications

Sheryl Maria Sebastian, Asst Prof Neethu Subash and Asst Prof Ani Sunny

issue report. The test environment will be similar to the original environment. In the development site the test
environment is created similar to the actual environment in which the software is supposed to work or run in live
scenario. Bug reports which is used for understanding the developers about the software product defects.

Majority of the companies spend their time in resolving the bugs during their day-to-day process. The
software companies will be having different teams and this teams will be receiving a large number of bugs.
One of the most difficult tasks is that the finding the location of source files with the correct bug. In their daily
process as they are receiving a large number of bug reports and it is challenging for them to analyse manually
debug and resolve them. So here introducing an automatic system that can rank the source code files with the
relevant bug reports. From the source code will be taking the summary and description. Code and comments are
extracted from the source code. This paper which describes a methodology learning to rank files that is, ranking
score is computed by the weighted combination of the features. Features which specifies the relationship between
the source code and bug report. Weights are trained on previously fixed bug reports. Here finding the similarity
between the bug reports and the source code files and its methods, API similarities between the bug reports and
source code files, semantic similarity between the bug report and source code files, computing collaborative
score for recommending systems, bug fixing history, code change history, page rank score, hubs and authority
score and local graph features by the dependency graph. That is obtaining ranking as which the pages that can
occur the bug is being retrieved effectively. And also method for removing the duplicate bug reports.

Manual bug assigning to the correct developer is expensive and usually results in wrong assignment of bug
reports to developers. Proposing a method to automatically assign the bug reports to the correct developers by
data reduction technique by feature selection that is, improving the quality of bug data. From the historical data
sets we will be retrieving the attributes and constructing model that predicts the new bug set. We first applies
feature selection technique (e.g. Chi-square) to preprocess the textual information in bug reports, and then applies
text mining technique (e.g., naive Bayes) to build statistical models. The approach also includes the usage of
the clustering to group the similar bug reports instead of random grouping that make it easy to assign the bug
to the appropriate developer.

For this process to take place, we have to label the clustered groups in the order of prioritization. Then, the
labeled groups will be assigned to the correct developer based on the domain knowledge. The purpose of doing
this automation is that if we are considering an example eclipse which will be created by a group of developers.
When a bug is occurred that is it will be a bug which is not fixed. To assign whom is a huge work. This process is
having overhead. Developers will be working on different modules. So to identify a particular person we should
take the previous history, current and we should communicate with peer developers and users. After that we
should recreate the problem from that only we can identify the bug. This is time consuming to assign the bug to
correct developer within a short span of time. And also expenditure will be also high. Thus we are developing
an effective bug system that is finding the relevant pages that can occur the bugs, removing the duplicate bugs,
and assigning this ranked pages to the correct developers so they can fix the bug fastly and accurately which
can reduce the time consuming. We perform experiments on six large scale open source java projects namely,
Eclipse, Aspectj, Tomcat, SWT, JDT, Birt.

2. RELATED WORK

The paper ‘Improving bug localization using structured information retrieval” which is written by Saha[1]. Here
uses Bluir method in which source code will be taken as the input and then we will be creating abstract syntax
tree (AST) using JDT (Java development toolkit) and parsing through the abstract syntax tree. Dividing the source
code into four document fields class, variable, comment, and method. Then performing tokenization splitting
into a bag of words using white spaces. And will be stored in the structured Xml document. Then it will be

I International Journal of Control Theory and Applications _

An Efficient Approach for Automated Bug System

indexed into an array using an indexer. From the bug report extracting the summary and description. Performing
tokenization as discussed above which is splitting into tokens by a bag of words using the white spaces.

Bluir which outperforms bug locator and here computing the similarity between the features as a single
sum is having less accuracy than our method. In this method using the fixed revision of source code is used for
the evaluation of bugreports which can lead to very bad contamination bug reports in case of future fixing bug
information.

Next paper *Where Should the Bugs Be Fixed?’ which is written by Zhou[2]. Here propose a buglocator
which is a method for retrieving the information. This is done for finding the location of the bug files. This method
ranks all files that is having a textual similarity between the bug report and the source code file using the vector
space representation model(VSM). When bug is received we will be computing the similarity between the bug
and source code using the similarity measures by analysing the past fixed bugs. The ranked list of files will be
in decreasing order. The top in the list are more likely to contain the result. If contains similar bugs then they are
proposing another method that is, three layer heterogeneous graph. First layer which represents the bug reports.
Second layer shows previously reported bug reports, and the last layer which is the third layer which represents
the source code files. Major disadvantages to the work are if the developer uses non-meaningful names the
performance will be severely gets affected. And also bad reports which can cause misleading of the information
and also essential information can cause significiant delay. And thereby performance will be affected.

Next paper ‘Mapping Bug Reports to Relevant Files: A Ranking Model, a Fine-Grained Benchmark, and
Feature Evaluation’ written by Xin ye[3] in this it is being done by using learning to rank algorithm. The ranking
score is computed similarity between the source code files and the bug report. So for that using the feature
extraction, extracting 19 features.

3. PROPOSED WORK

First from the collection of bug reports we will be text preprocessing is being done. Then calculation of the
weights calculation of the features and ranking of the bug reports are being done.

A. Preprocessing

Preprocessing in which knowledge extraction is being done. From the bug report use both description and
summary. From the source code file use the whole content code and comments. For tokenisation we will be
splitting into words by using the white spaces. Then we remove thee stop words, punctuation, numbers etc. all
words are reduced using porter stemmer as the NLTK[1] package.

B. Weight Computation

For this we are using TF-IDF for calculation. TF which indicates the number of occurrences of specific term in
the document. IDF which indicates the number of documents that contain the specific term. After the TF-IDF
calculation cosine similarity is being done. Cosine similarity is the similarity between the bug report and the
source code file.

C. Semantic Similarity

Semantic similarity between two words which means that the two words whose meanings are similar. To find out
the meaning between bug report and source code file we use machine learning approach. There are two phases:
training phase and testing phase. The training which consist of bugreports and corresponding bug ids which

_ International Journal of Control Theory and Applications I

Sheryl Maria Sebastian, Asst Prof Neethu Subash and Asst Prof Ani Sunny

indicates the semantic similarity between bugports and source code files. Every bug reports in the training data
which indicates the a set of features. At training time, we range all bug reports and feature extraction functions to
compile a feature vector per bug report. The feature vectors are stored in a matrix. We train a supervised learning
method from the features and the bug ids of the training examples As the bug ids in the evaluation set that we use
are binary, we build a classifier. At testing time, features are generated for the bug ids in the test set in a similar
fashion as in the training phase, and a final prediction is made with the classifier trained in the training step.

D. Assigning Correct Developer

In this system we are developing a model to directly assign the bug report to the correct developer. The ranked
list of pages that can occur as bug will be given to the correct developer. So for this process to occur we will be
performing data reduction. That is reducing the data and also removing the duplicate bug reports. The architecture
of the system is shown below.

DY
Reduced
Bug Training Dataset Developers
Dataset D1
L2
Reduce
d'uplicate
Dk
~—

TF-IDF Extracting Ranked
Preprocessing alculation . Feature source
files

Figure 1: Architecture

E. Reduction of Data

This can be done by using feature selection techniques. Converting the bug data into a two- dimensional matrix.
That is word and bug. Feature selection which is carried out by the chisqaure test which is defined as follows:

Y et e(0,1), ece(0, 1) Z(Net Oc — Eet 6¢)2/Eet 6¢
et = 1(vocabulary contains term t)
ec = 1(word is in class c)
N = observed frequency of words
E = expected frequency of words.

E=N * P(t) * P(c)

Expected frequency of # & ¢ occurring:

E11=N* (N11 +NIOYN * (N11 +NOI)/N

An Efficient Approach for Automated Bug System

Arithmetically,

X2(V, £, ¢) = (N11 + N10 + NO1 + N00) * (N11N00 — N10 NO1)2
(N11+NO01) (N11 +N10) (N10 +N00) (NOI + N00)

The values are calculated. Selecting the top words and then generating the training dataset.

F. Text Categorization

Classification of documents (vocabulary) in to fixed number of predefined categories. Supervised machine
learning algorithm is used to generate a classifier. eg: Naive Bayesian Bug reports are instances, words are
features & label (developer) indicates class.

G. Naive Bayes (nb)
Naive Bayes assumes that features (i.e., terms) are conditionally independent given a label. Based on Bayes Rule.
For a document d and a class c,
P(c|d) = P(d|c) . P(c)
P(d) Relies on Bag of Words representation of bug reports
To find most likely class we use
CMAP = argmax ceCP(d|c).P(c)
Assuming the conditional independence between the term and class, we have
ie., P(tl, ...,tn|c)=P(tl | c) * P(t2 | c) * P(t3|c) * ... * P(tn | ¢)
CNB = argmax ceCP(cj) . II xeX P(xj|c)
Learning the Multinomial Naive Bayes Model

Prior Probability P(¢c) = %

Nc =no: of docs labelled as ¢, N = total no: of d

Conditional probability: fraction of times word appears among all words in document of classc, = P(tk|c)
= Count(tk, c)/ZteV Count(w, ¢)

After Laplace Smoothing
CMAP = argmax ceCP(tl, t2, ...)|c).P(c)
Best class can be found using
P(tk|c) = Count(tk, ¢) + 1/ZteV Count(w, ¢) + [V|

Here extracting attributes for historical bug datasets and trained by using a naive Bayesian classifier.
Predicting the reduction order for a new bug dataset. Then applying the predicted reduction orders to the new bug
dataset. Assigning the bug reports to the correct developers. The major advantage of naive Bayes classification is
its short computational training time, since it assumes conditional independence. Notice that in naive Bayes, we
only consider the presence or absence of a term in a bug report. The number of times a term appears in the bug
report is not considered. From this classifier we can predict the bugs corresponding to the correct developer.

International Journal of Control Theory and Applications

Sheryl Maria Sebastian, Asst Prof Neethu Subash and Asst Prof Ani Sunny

H. Removing Duplicate Reports
Removal of bug reports which will leads to more accuracy
Algorithm:
STEP 1: Start
STEP 2: Randomly selecting a bug report from dataset.
STEP 3: Similarity of bug report between each query and every document set is compared.

STEP 4: Bug reports having similarity greater than a threshold value is removed and others are kept inside
the dataset (set threshold >0.8).

STEP 5: Do this until there exist no duplicate bug report in 2-3 iterations
STEP 6: Stop

And atlast use a svm classifier in which we give the input features to the classifier. Classifier which constructs
a training model. Lucene which is used to index the features and from that when new bug report arrives it will
predict the correct location.

I. Result

|£| Developer Console E@u

Position/Direction

f

Assigned By ‘Martin Kessler

Product “aspectjinbox

[¥/] Bug fixed with in time

System

Bugid |422943 Date '2013-12-02 08:12:29°

Bug Fixed By |*Andy Clement

Bug Fixed time_duration "2013-12-02 08:12:29°| To: "2014-01-10 11:51:38

Status | NEW

Location ‘org.aspectj.ajdt core/srciorgiaspecti/ajdiinternal/core/builderiAjState java’)

Put your summary here: Similar Bugs in the Database

Aspect) compiler takes 1h to compile workspace (often even lonc 404601
376139
3241

407017
386049
394535
422943

[LoadDatahase] [CheckJ [Refresh] [OK J [Cancel J

Figure 2: Result

International Journal of Control Theory and Applications

An Efficient Approach for Automated Bug System

{clasa-=1324932132483213249321324532

com/arjunasatsSinternal fjta/transaction/arjunacore/TransactionImple=1324533213245

FILE: C:Z\Users’ SherylyDesktopi\bugmapping\MappingBugReporti srchdataset \TreeStru
FILE: C:y\Users’ SherylyDesktopi\bugmapping\MappingBugReport' srchdataset’ Pointcut
FILE: C:Z\Users’ Sheryl\Desktopibugmapping\MappingBugReporti srchdataset \BrowserV

FILE: C:Z\Users’ Sheryl\Desktopibugmapping\MappingBuglReporti srchdataset GoToline
FILE: C:Z\Users’ Sheryl\Desktopibugmapping\MappingBugReporti srchdataset \BuildPro
FILE: prg.aspectj.ajdt.core/srcforgfaspectjSajdt/internal fcore/buildexr/2j5tate
testa/bugslT5/pr423257 /Aspecti. jJava
tests / bugsl 75/ /pr4Z23257/Teat Java
testaSsre/orgfaspectiSaystemtest /RA11Testal7 _ java
testaSsrc/orgfaspectjSaystemtest/ajeclT7s5/2jel75Tests java
tests/Ssrc/orgfaspectjSsystemtest/ajcl75/211TestsRAspectJ1l75 . java
tests/Ssrc/orgfaspect]j/aystemtest/incremental ftoocls/MultiProjectIncrementalTests.
weaver/srcforg/aspect] /weaver/beelfasm/ StackMapidder java
Beading model . . _.done._
Beading test examples.._done._
Classifying test examples...done
Buntime (without IQ) in cpu-seconds: 0.00
Average loss on test set: 0.0000
Zero/one—error on test set: 0.00% (1 correct, 0 incorrect, 1 total)
NOTE: The losa reported abkove is the fraction of swapped pairs averaged over

2ll rankings. The =zero/one—error is fraction of perfectly correct

rankings!
Total Num Swappedpsairs - a
Ay Swappedpairs Percent: 0.oa0

Rank of files:Z._3c4B7355
Bank of files:1_838B&83383
Bank of files:1l.&7173438
Bank of files:l1.8€225258
Bank of files:1.35353555

A .
Figure 3: Result with ranking of location

J. Benchmark Datasets

AspectJ13: an aspect-oriented programming extension for Java.

4. CONCLUSION

Through this work introduced an automated bug system which can be effectively used in the software companies.
We will be getting ranked list of pages that can occur the bug and it will be automatically assigned to the correct
developer who has developed the code. And also remove the duplication of the bugs. And also computed the
semantic similarity between the bug report and source code file. From the previous experiments it was proved
that learning to rank approach is having higher accuracy which is being used in our system. In the future work
we can use additional types of domain knowledge such as stack traces and also features used in the defect
prediction system. Also plan to use ranking svm in nonlinear kernels. Also to find how to prepare high quality
datasets.

International Journal of Control Theory and Applications

Sheryl Maria Sebastian, Asst Prof Neethu Subash and Asst Prof Ani Sunny

REFERENCES

(1]

[2]

(3]

[4]

R. Saha, M. Lease, S. Khurshid, and D. Perry, “Improving bug localization using structured information retrieval,” in Proc.
IEEE/ACM 28th Int. Conf. Autom. Softw. Eng., Nov. 2013, pp. 345-355.

J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? —more accurate information retrieval-based bug localization
based on bug reports,” in Proc. Int. Conf. Softw. Eng., Piscataway, NJ, USA, 2012 pp. 14-24.

Xin Ye, “Mapping Bug Reports to Relevant Files: A Ranking Model, a Fine Grained Benchmark, and Feature Evaluation”
IEEE Trans. Softw. Eng., Vol. 42, No. 4, pp. 379-402, April. 2016.

http://www.nltk.org/api/nltk.stem.html

International Journal of Control Theory and Applications

