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ABSTRACT

Artificial neural networks ANNs are inspired by the structure of brain and have the capability to solve various wide
varieties of complex problems. Learning in ANNs is a time consuming process. Hence, hunt for lower time complexity
and higher accuracy training algorithm is always on. Various learning algorithms are available in the literature to
train the neural networks. This paper carries out an extensive survey of the available training approaches. The paper
divides the training approaches into two categories. Approaches using exact reasoning are called classical approaches
and the training approaches using approximate reasoning for computing have been classified as soft computing
based approaches. This paper presents the classical as well as soft computing based search and optimization algorithms
available in the literature. The different classical approaches of learning were found to suffer from poor convergence
speed and local optima problem. Soft computing based approaches were observed to have better global optima and
hence were found to be more suitable for training ANNs. Some hybrid versions of soft computing and classical
approaches were found to perform better than standalone versions.

Index terms: Back propagation, artificial neural network, learning algorithm, soft computing.

I. INTRODUCTION

An Artificial neural network (ANN) is a massively parallel, distributed processing system made up of
simple processing elements which has the natural ability for storing experiential knowledge and making it
available for use when required. ANN is an information processing paradigm that is inspired by the structure
of brain. Neural networks have a special ability to derive something meaningful from any complicated data
which can be further used to extract patterns and detect trends that are too complex to be noticed by either
humans or computers. ANN’s are typically applied for pattern classification [1-2] and pattern recognition
[3-4]. They have been successfully used for stock market predictions [5], wear and manufacturing processes
[6], speech recognition [7], business applications [8], control applications [9], time series modelling and
estimation applications [10], medical diagnosis [11-13], aeronautics [14] etc.

ANNs also found their applications as expert system. These were also used to aid fuzzy system design.
Gallant S. [15] was the first to describe a system combining the domain expert knowledge with neural
training. This connectionist expert system (CES) consists of an expert system implemented throughout a
multi-layer perceptron. Various authors [16-17] demonstrated the structural learning with forgetting for
training neural networks. Melanie et al. [18] presented a strategy for Modular Integration of Connectionist
and Symbolic Processing in knowledge based systems. ANNs also find their application in rule base
generation from numerical data for fuzzy systems. Authors [19-20] demonstrated the rules generation from
trained network using fast pruning. A good survey has been found on the extraction of rules from the
trained neural networks in papers [21-22]. Various authors in their papers [23-42] presented the various
different techniques for extracting rules from trained neural networks. Thrun [43] presented extraction of
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rules from artificial neural networks with distributed representations. Different types of architectures and
corresponding learning algorithms can be found in literature. Some of the widely used architectures along
with their learning algorithms and applications are given in Table I. There are basically two types of
architectures: Feed forward networks, Feedback /Recurrent networks. Feed forward networks can further
be classified as single layer perceptron, multi-layer perceptron (MLP) and radial basis function networks
(RBFNs). On the other hand recurrent/ feedback type networks consist of networks like competitive networks,
Kohenen’s self-organizing Maps (SOM) Hopfield networks (HN) and adaptive resonant theory (ART)
models.

Learning is the backbone of any kind of neural network design. Learning is a process by which the free
parameters of a neural network are adapted through a process of simulation by the environment in which
the network is embedded. There are three types of learning algorithms: Supervised learning, unsupervised
learning and hybrid learning algorithms. Supervised learning is the learning with a teacher. In this type of
learning, a kind of target or desired output signal is present with which the computed output signal is
compared to compute the error signal. Paradigms of supervised learning include Perceptron learning
algorithm, error correction learning, stochastic learning, Adaline, Medaline Boltzmann learning algorithm,
learning vector quantization etc. An unsupervised learning is a kind of learning without teacher i.e. no
desired output signal is available. This type of learning is based on the concept of using self-organization to
compute the output. Paradigms of unsupervised learning are Hebbian learning and competitive learning,
Kohenen learning (SOM), ART1 and ART2. Hybrid learning is the combination of two types of learning
mentioned above. Example of hybrid learning is radial basis learning approach. The essence of a learning
algorithm is the learning rule, i.e., a weight-updating rule which determines how connection weights are
changed to reduce the error. Different types of learning laws are used to update the synaptic weights like
delta law, perceptron law, instar learning, outstar law etc. The training process can be on-line or batch
training. In on line training, the weights are adjusted after the processing of a randomly selected training
pattern while in batch training; the weights are adjusted after processing.

Since, ANN based systems are highly complex and nonlinear systems, we divide the learning algorithms
in the following two classes: a) Classical Learning algorithms b) Soft Computing based algorithms .We
define soft computing based algorithms as the one’s that uses approximate reasoning in ANN training.
These algorithms include fuzzy logic based approaches, swarm based approaches and the other approaches
based upon certain other nature inspired computing approaches. Since, ANN training is a time consuming
process, research community is continuously forced to search for new, more accurate and less time consuming
approaches to ANN training.

This paper consists of V sections. Section II of this paper presents a quick glance on the classical ANN
training approaches available in the literature. Section III reviews soft computing based training approaches
found in the literature. Section IV of this paper compares both the classes of approaches and Section V
concludes the paper.

II. CLASSICAL LEARNING APPROACHES

The main aim of training is to minimize the error between the output and target output For the ANN
modelling, it is required to decide the architecture first with consideration to the number of hidden layers
and number of neurons in each hidden layer as well. After the Architecture is decided the next step is
weight adjustment so as to minimise output error.

For our convenience we define a training approach as a classical approach if it uses exact reasoning o
hard computing for its computation. These approaches can further be classified into two classes depending
on their basic strategy. First order methods include the computation of error gradient along with simple
modifications like the use of a momentum term or the adaptive leaning methods. There may either be one
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global learning rate for all weights or individual learning rates for each single weight. Second order methods
compute a quadratic approximation of the error surface which is then minimized in order to reach the
minimum of the actual error function iteratively.

The major classical training approaches available in literature are shown in Table II. Werbos [44]
introduced EBP for the first time as the roots of propagation. Rumelhart [45] further elaborated it as the
learning representations of ANNs by back propagation of error. This algorithm includes standard or
incremental back propagation (IBP) and batch back propagation (BBP). Freeman and Skappura [46] proposed
incremental back propagation (IBP) in which the network weights are updated after presenting each pattern
from the learning data set, rather than once per iteration. Hagan et al. [47] proposed batch back propagation
(BBP) in which the network weights are updated once per iteration, while all learning data pattern are
processed through the network. Quick propagation (QP), Fahlmann [48] is a heuristic modification of the
back propagation algorithm. To improve the convergence speed of EBP, Rumelhart extended his work by
introducing the momentum term as given in [49-51]. The various adaptive learning methods like Delta –
Bar –Delta (DBD), R A Jacobs, Tollenaere [52] [54], Extended Delta bar delta(EDBD), Minai and Williams
[56], SSAB (Super-SAB), Tollenaere [57], resilient propagation(RPROP), Riedmiller and Braun [58] and
the generalized no-decrease adaptive method (GNDAM), R. Allard , J. Faubert [59] have been developed
to self-adjust the learning rate and to just get rid of the slow convergence problem thereby obtaining the
optimal solution. The hybrid learning schemes have been proposed to incorporate second derivative related
information in Rprop, such as the QRprop [60], which is the combination of RPROP with the one dimensional
secant steps of quick algorithm and the Diagonal Estimation Rprop–DERprop [61], which directly computes
the diagonal elements of the Hessian matrix. Also approaches inspired from global optimization theory
have been developed to equip Rprop with annealing strategies, such as the Simulated Annealing Rprop–
SARprop and the Restart mode Simulated Annealing Rprop i.e., ReSARprop [61] help to escape from
shallow local minima. Another improvement was proposed as Improved Rprop (iRprop) algorithm by C
Igel and M Husken [62-64] which applies a backtracking strategy (i.e. it decides whether to take back a step
along a weight direction or not by means of a heuristic), has shown improved convergence speed when
compared against existing Rprop variants, as well as other training methods. Aristoklis D A [65-66] proposed
another algorithm G Rprop which was a modification over iRprop. It exhibited better convergence speed
and stability than Rprop and iRprop.

The other two second order approaches namely conjugate gradient and Quasi Newton approaches
have been reported as the most successfully applied to the training of feed forward neural networks
amongst all those using second order information. Conjugate gradient method was first initiated by
Hestenes and Stieffel (1952) for linear functions and then based on this work, Fletcher and Reeves
(1964) further extended it as conjugate algorithm for nonlinear functions. Afterwards Beale proposed
conjugate gradient method with the provision of restarting direction procedure. Navon and Legler [67]
has presented a review of various conjugate gradient algorithms for large scale minimization where they
covered almost four types of Conjugate Gradient algorithms and compared their advantages as well as
shortcomings. Johansson et al. [68] proposed a conjugate gradient with line search (CGL) method where
a step size is approximated with line search by avoiding the calculation of Hessian Matrix. Moller [69]
proposed a Scaled conjugate gradient (SCG) method for fast supervised learning and was found to be
faster than CGL and BP. Barreto, Anderson [70] proposed a restricted Gradient descent (RGD) algorithm
for training local RBF networks in the context of reinforcement learning. BFGS Quasi Newton
optimization approach with limited memory was first proposed by R. Battiti and F. Masulli [71]. There
were basically two update approaches for quasi Newton’s method – BFGS (Broyden, Fletcher, Goldfarb
and Shanno) update, Battiti [71-72] and the DFP (named for Davidon, Fletcher and Powell) update,
Watterous [73]. J E Dennis and J J More in paper[74] presented the survey with justification of use of
Quasi Newton methods over Newton method for general and gradient non linear systems and proved it
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more computational efficient than Newton method. A Likas, A Stafylopatis [75] presented the training of
random neural network using Quasi newton methods.

For fast and efficient training, second order learning algorithms have proved to be very useful. Levenberg
Marquardt (LM) algorithm [76], which is a derivative of the Newton method, appears to be one of the most
effective algorithm. It is a good combination of Newton’s method and steepest descent. The Levenberg-
Marquardt algorithm (LM) proposed by M. T. Hagan and M. B. Menhaj [76-77], is also used as another
algorithm to increase the convergence speed. But the LM algorithm becomes impractical for large sized
neural networks which leads to another modification of LM i.e. called TREAT algorithm, Y Chan [78]. So
traditional training algorithms, such EBP and LM have been successfully applied to train neural networks
by some authors in papers [79-83]. But still these algorithms require more space complexity, time complexity,
and there is always a risk of getting trapped in local minimum, as they are not derivative free. Hence, these
appear to be some of the main reasons for a shift towards nature inspired or soft computing based search
and optimization approaches used in ANN training.

III. SOFT COMPUTING OPTIMIZATION APPROACHES

Learning most often is modelled as an optimization process wherein the error is minimized as the learning
progresses. The heuristic approaches based upon like nature inspired or soft computing based algorithms
are much superior in solving complex optimization problems where traditional or classical problem solving
methods fail. This is particularly true for NP Hard or NP complete problems. Soft computing based search
and optimization approaches can be broadly classified into four- Evolutionary computing (EC), Swarm
intelligence (SI), Bio inspired Non-SI and physics or chemistry basedappoaches. Various soft computing
based Search and optimizations based approaches available in literature are shown in Table 3 and Table 4.
Evolutionary Computing is based on the biological evolution process in nature. Swarm intelligence based
algorithms are based upon collective social behaviour of organisms. Bio inspired Non SI optimization
algorithms are bio inspired or ecology based but are not inspired by the cooperative behaviour of any
organisms. Physics or chemistry based algorithms are actually inspired by certain physical or chemistry
laws like electric charges, gravity, theory of universe etc. Literature is also rich with soft computing based
search and optimization approaches. ANN learning model, based on evolutionary algorithms (EAs), Yao
[84-85], based upon genetic algorithms (GAs), Holland [90-93] , based upon genetic programming (GP),
John Koza [97-98], based upon differential evolution(DE), Storn and Price[102] , based upon particle
swarm optimization (PSO), Eberhart and Kenedy [113], based upon big bang big crunch (BB-BC) algorithm,
Erol Eksin [118-119], ant colony optimization (ACO), Dorigo and Gambardella[122-125], based upon
ABC, Karaboga and Basturk [126], based upon firefly mating/foraging behaviour called firefly algorithm
(FA) proposed by Yang [129], based upon Fish swarm intelligence (FSA), Li Xiao-lei et al. [132], based
upon Bacterial foraging optimization algorithm(BFOA), Passino[143], based upon invasive weed
optimization (IWO), Mehrabian and Lucas [159-160], biogeography based optimization(BBO), Dan Simon
[161],based on artificial immune system (AIS), Dasgupta[166-168], based upon EEIM, Birbil & Fang
[188-193] and based upon GSA, Rashiedi et al. [197] are available in literature.

These soft computing based approaches have been successfully applied in search and optimization
problems. Kumar et al. [216] presented ANN model identification for rapid battery Charger using Parallel
BB-BC (PB3C) approach. PB3C algorithm is a multi-population algorithm and was first proposed by
Kumar et al. [218]. Kumar et al. [219] proposed fuzzy or ANN model identification in the field of
overall rating and evaluation of institutions of higher learning using BB-BC and PB3C algorithms. Similar
kinds of techniques are available for fuzzy model identification also. Fusion of Artificial Neural Networks
(ANN) and Fuzzy Inference Systems (FIS) have attracted interest of researchers in various scientific
and engineering areas due to the growing need of adaptive intelligent systems to solve the real world
problems. Neuro Fuzzy (NF) computing is a popular framework for solving complex problems. Various
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authors [221-225] have discussed the design of neuro fuzzy controller and adaptive neuro fuzzy systems
[226-227].

IV. CLASSICAL VS. SOFT COMPUTING APPROACHES

Various authors have compared the soft computing based approaches with classical learning approaches as
well as hybrid techniques for NN learning. Various comparisons have been made in literature among classical
learning approaches too. So as to speed up the back propagation, Marcus Pfister et al. [228] compared five
algorithms i.e., gradient reuse algorithm, DBD, Extended DBD, dynamic adaptation, quick prop and extended
quick prop for five different benchmark problems. This paper also concluded that a learning algorithm that
may prove fast for one problem, may fail in another case. The results show that Quickprop was the one that
performed very well in all the benchmark problems while Extended QP was a big failure. For smaller
problems gradient reuse algorithm is faster than BP but even much slower in case of complex problems.
Remy Allard et al. [229] compared and tested the various adaptive learning methods i.e. MOM (momentum),
DBD (Delta Bar Delta), SSAB (Super SAB), Resilent Prop RPROP, and Generalized no-decrease adaptive
method GNDAM on four benchmark problems i.e., parity-bit, encoder, texture detection and luminance. It
clearly shows that a single AM approach cannot be proved overall best for all the tasks but the results may
vary depending upon the task. MOM and DBD had a similar behaviour when they were used on the
luminance, encoder and parity task. The only task for which they clearly differed was the texture task where
MOM never solved the task as opposed to DBD. RPROP showed a net advantage over SSAB for the
parity-bit and luminance tasks detection. A numbers of soft computing based approaches are compared
against BP or LM for various bench mark problems in the literature.

Sagar [230] also proposed an EA for Connection Weights in Artificial Neural Networks and compared
it with BP algorithm for a X-OR benchmark problem. It was shown that EA-ANN approach gave zero
mean square error than the (BP) gradient descent method and the results did not depend on the initial
choice of weights. It gives the increased performance of the network in terms of accuracy. Jagtap [231]
proposed a quantum based method called QNN method for four well-known benchmark classification
problems namely breast cancer, Iris data classification, and heart and diabetes problems. QNN is helpful to
provide a set of appropriate weights when evolving the network structure and to alleviate the noisy fitness
evaluation problem.

Kitanao [232] compared genetic algorithms (GAs) with BP (back propagation) and presented hybrid
approach GA-BP which proved to be faster than GA alone. The author also stated that the GAs is equally
efficient to the faster variants of BP in small scale networks but found less efficient in larger networks.
Gupta et al. [233] compared Standard EBP with GA for optimizing artificial neural networks. The empirical
results showed that the GA is superior to BP in effectiveness, ease-of-use and efficiency in training ANNs.
Further Zhen Guo Che et al. [234] compared BP with GA and drawn conclusion that BP is much superior
and having faster training speed than GA with a drawback of having over training which GA didn’t have.
Paul Batchis [235] compared EA with BP using Weka Knowledge Explorer software package on three
classification problems. In this, EA is found to outperform BP method. Asha et al. [236] compared ABC
with BP for classification task using four benchmark datasets availed from the UCI machine learning. This
paper implemented ABC for optimizing the connection weights and concluded that ABC performance was
found to be better for the four datasets as compared to BPN performance.

For achieving global optimization, various soft computing based global optimization algorithms can be
used in standalone or in a hybrid manner. In a hybrid algorithm, some local search phenomena like BP or
LM is hybridized with some soft computing based global optimization algorithm. Such hybrid approaches
are also compared with standalone soft computing based approaches. Alba and J. Francisco Chicano [237]
proposed training Neural Networks with GA Hybrid Algorithms. They suggested the concept of weak
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hybridization (just the combination of two algorithms) by introducing and testing GA with the BP algorithm
(GABP), and a GA with LM (GALM) algoithm. J Zhang et al. [238] proposed a hybrid PSO-BP algorithm
where it was shown that the PSO–BP algorithm uses less CPU time to get higher training accuracy than the
PSO algorithm as well as the BP algorithm. The hybrid PSO-BP was observed to be better than using BP or
PSO alone. Another hybrid learning approach ACO-BP was proposed by L Yan Peng et al. [239] and their
results show that the ACO-BP is more effective and efficient than the standalone BP algorithm. It was also
concluded that with the variation in number of hidden nodes, the performance of ACO-BP became stable
compared to ACO or BP alone. Mavrovouniotis and Yang [240-241] proposed NNACO-BP for different real-
world benchmark dataset taken from the UCI repository.This paper compared the performance of ACO and
ACO-BP training against: two classical learning approaches i.e. BP and LM, RCH (ACO training without
pheromone consideration), a standalone ACO and a hybrid ACO i.e., ACOR and ACOR-BP, respectively, and
four soft computing based approaches i.e. GA, PSO, ABC and DE. The author concluded that ACO was a
good choice for selecting good values for the BP. The standalone ACO training was outperformed by the
standalone ACOR training whereas the hybrid ACO-BP showed superior performance, especially on large
problem instances. Secondly, the performance of gradient descent methods is degraded as the problem size
increases when compared with the hybrid ACO-BP training algorithm. Third, gradient descent methods usually
have better performance than a standalone GA, PSO, ABC, ACO and DE training. ACO has a relatively good
performance when compared with other network training algorithms for pattern classification. Huadong Chen
et al. [242] proposed a hybrid of AFSA-PSO for feed forward Neural Network Training and showed that
hybrid FSA-PSO has better global astringency and stability than standalone FSA and standalone PSO. Nandy
et al. [243] compared the performance of hybrid ABC-BP with hybrid GA-BP on the basis of three parameters
i.e. sum of squared error (SSE), convergence speed and stability on optimum solution for four datasets (Iris,
Wine, Soyabean and Glass). It showed that ABC-BP is better than GA-BP with increased efficiency.

Various soft computing based approaches for NN learning are also compared with each other. Yun Cai
[245] proposed Artificial Fish School Algorithm (AFSA) for Combinatorial Optimization Problem and
stated that the algorithm has better convergence performance than GA and ACO. Basturk and Karaboga
[246] compared the performance of ABC algorithm with GA, PSO and Particle Swarm Inspired Evolutionary
Algorithm (PS-EA). The results showed that ABC outperforms the other algorithms. Basturk and Karaboga
further in [247] compared the performance of ABC algorithm with that of DE, PSO and EA for a set of well
known test functions. Simulation results show that ABC algorithm performs better than the mentioned
algorithms and can be efficiently employed to solve the multimodal engineering problems with high
dimensionality. D Karaboga and B Akay [248] compared ABC with GA, PSO, DE and ES for optimizing a
large set of numerical test. Results show that the performance of the ABC was better than or similar to
those of other population-based algorithms with the advantage of employing fewer control parameters.
Saishanmuga Raja et al. [249] compared three optimization techniques GA, ACO and PSO in biomedical
application based on processing time, accuracy and time taken to train Neural Networks. The paper concluded
that GA outperformed the other two algorithms ACO and PSO and is most suitable for training the neural
network with minimum time and minimum mean square error. Srinivasan et al. in paper [250] proposed
particle swarm inspired EA (PS-EA) and compared it with Genetic Algorithm (GA) and PSO. It is found
that PS-EA is much superior over typical GA and PSO for complex multi-modal functions like Rosenbrock,
Schwefel and Rastrigrin functions. Ghaffari et al. [251] presented the comparison of five training algorithms-
two versions of gradient descent-IBP (incremental), BBP (Batch) and LM, QP, GA with reference to the
predicting ability. The convergence speed of BBP is three to four times higher than IBP. The performances
in terms of precision of predictive ability were in the order of: IBP, BBP > LM > QP (quick propagation) >
GA. Zhang et al. [252] presented application of bacteria foraging optimized neural network (BFO NN) for
short term electric load forecast. This paper used BFO to find optimized weights of neural network while
minimizing the MSE. Simulation results also showed that BFONN converges quickly than Genetic Algorithm
optimized neural network (GANN).
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Ivona BRAJEVIC et al. [253] presented Training Feed-Forward Neural Networks Using Firefly
Algorithm (FA) for classification purpose. This paper compares FA with GA and ABC for three well known
classification problems (X-OR, three bit parity, four bit encoder /decoder problem) FA using sigmoid transfer
function. The parameters used for comparison are MMSE: Mean of Mean Squared Errors, SDMSE: Standard
Deviation of Mean Squared Errors, MC: Mean of Cycle Numbers, SDC: Standard Deviation of Cycle
Numbers. It shows that FA performs better than GA algorithm, but worse than ABC algorithm for the
majority of benchmark problems. It also stated that the choice of transfer functions may strongly influence
the performance of neural networks, so it also compared the FA results obtained by using traditional sigmoid
transfer function with another by using sine transfer function and showed that FA implemented using sine
transfer function is much efficient with fast convergence speed. Ritwick [254] proposed a modified version
of Invasive Weed Optimization (MIWO) for training feed-forward Artificial Neural Networks (ANNs) by
adjusting the weights and biases of the neural network. In this, Modified IWO was compared with DE, BP,
One step secant learning and RPROP based on MSE. Modified IWO performed better than DE and other
classical gradient-based optimization algorithms mentioned in terms of learning rate and solution quality.
BBO has been further compared with other optimization algorithms like PSO, ACO and was found to be
better for detection of abnormal growth of tissues in MRI image segmentation by Kaur et al. [255]. Mirjalili
et al. [256] proposed hybrid PSO-GSA for training neural networks and proved it to outperform other
optimization based training algorithms such as PSO and ACO in terms of converging speed and local
minima avoidance. Sheikhpour [257] proposed a hybrid GSA-GA for neural network training that uses the
Gravitational Search Algorithm (GSA) to find global search in the beginning of stage, and then uses the GA
to do local search around the global optimum and proved it to be more efficient than standard GSA and
back propagation algorithm. Xu et al. [258] proposed an Improved Gravitational Search Algorithm (IGSA)
for Dynamic Neural Network Identification. It showed the best performance when compared with the
system identification based on gravitational search algorithm neural network (GSANN) and other
conventional methods like BPNN and GANN. Ayat et al. [259] compared various ANN learning algorithms
in which 12 algorithms concerned with Perceptron multilayer neural networks were studied along with 6
classical learning algorithms (Gdx, cgb, lm, oss, cgf, cgp) .In this paper, conjugate gradient and LM is
found to have better efficiency in reaction to the given training as compared to other learning algorithms.
The paper concluded that LM is the most convergent and represented better predict of average. Mohammadi
et al. [260] compared the PSO with the variants of back propagation techniques (LM, GD, GDM, GDA,
GDMA) based on mean square error (MSE) and accuracy. The paper concluded that LM is found to have
better performance than other variants of BP but PSO is more superior to LM and other variants of BP. The
performance level is found to be PSO>LM>other BP variants.

V. CONCLUSIONS

This paper attempts to present state of the art in ANN training through an exhaustive review of classical
as well as the soft computing based approaches available in the literature. In the case of classical learning
approaches, it is evident that not a single training algorithm can be proved best for all the test or benchmark
problems. In fact it is the problem dependant. It is found that as the classical learning approach such as
EBP or LM is having the poor convergence speed. We further observe that the soft computing based
approaches perform better as the global optimization approaches. These soft computing based approaches
can be used to evolve ANN architecture or the synaptic weights. These approaches can be used standalone
or in a hybrid manner with EBP or LM. It is evident that the hybrid techniques are found to be more
efficient than standalone soft computing approaches. This survey covers most of the available classical
and soft computing approaches used to evolve ANN’s. BB BC or parallel BB BC is a new approach
among soft computing which could be further utilized broadly for new ANN model identification
approaches.
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APPENDIX

Table 1
Ann Architectures with Learning Algorithms

Paradigm learning Rule Architecture Learning Algorithm Application

Supervised Training Error Correction Single layer or Perceptron learning Function approximation,
Multilayer Perceptron Algorithm (LMS), BP, Prediction and control

Adaline and Medaline

Boltzmann Recurrent Boltzmann Learning Pattern Classification
algorithm

Hebbian learning Multilayer feed Linear discriminant Pattern classification, data
forward Analysis Analysis

Competitive Competitive Learning Vector within class categorization
Learning Quantization

 ART networks ART map Pattern Classification, within
class categorization

Un-Supervised Error Correction Multilayer Sammon’s Projection Data Analysis
Training Perceptron

Hebbian learning feed forward or Principal Component Data Analysis, Data
Competitive; analysis; Associative compression; Associative
Hopefield network Memory Learning Memory

Competitive Competitive Vector Quantization Categorization, Data Analysis
Learning

 ART networks ART-I, ART-II Categorization

Hybrid Error Correction RBF Networks RBF Learning Pattern Classification,
and Competitive. Algorithms Function Approximation,

Prediction & Control.

Table II
Classical Learning Approaches Classical Learning Approaches

Algorithm Author, Reference Algorithm Author, Reference

EBP (Error Back Werbos, 1974; Conjugate Gradient Beale, 1972[67]
Propagation) /Steepest Rumelhart, 1986[44]
Gradient Method

EBP with Momentum Rumelhart, 1986[45] Quick propagation (QP) Fahlmann, 1988[48]
(MOM)

Standard or Incremental Freeman and Levenberg-Marquardt M. T. Hagan and
Backpropagation (IBP), Skappura, 1991[46] algorithm (LM), M. B. Menhaj, 1994[76]

Batch Backpropagation Hagan et al., 1996 Modified LM Bogdan M.
(BBP) [47] Wilamowski, 1999[77]

Delta-Bar-Delta(DBD) R A Jacobs, 1988 Newton’s method Flectcher, 1975
(Adaptive learning) [52][54]

Extended DBD Minai and Williams, Quasi Newton Bryoden, Fletcher,
1990,[56] Method-BFGS Goldfarb, Shanno,

1970R. Battiti and F.
Masulli.,1990
[71][72]

Super-SAB(SSAB) Tollenaere,1980, Quasi Newton Method- Davidon,Fletcher,
(Adaptive learning) 1990[57] DFP variant Powell, 1963[73]

contd. Table II
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Generalized no-decrease R. Allard, J. Faubert Scaled Conjugate M F Moller,1991[69]
adaptive method (GNDAM) [59] Gradient(SCG)
Resilent PROP(RPROP) Riedmiller and Braun, Restricted Gradient A M Salles Baretto,CW

1993[58] Anderson, 2008[70]
Qrprop M. Pfister and R. Rojas, Conjugate Gradient Johannson,Dorwla &

1994[60] Algotithm with line Goodman,1990[68]
search(CGL)

Diagonal Estimation 1998 [61], TREAT algorithm Y Chen,
Rprop–DERprop, B M Williamowski[78]
SA-Rprop N. K. Treadgold and Improved RPROP C Igel and M

T. D. Gedeon,1998[61] (iRPROP) Husken,2003[62][63][64]
Grprop Aristoklis D A et al., No-Prop algorithm Bernard Widrow

2004[65][66] et al.,2013[272]
mirror descent algorithm Nemirovsky and Yudin, Entropic MDA A. Beck, M. Teboulle, 2003
(MDA) 1983[273] (EMDA) [269]
Cascade Corelation (CC) Fahlman, S. and EBP-EWLS
Learning C. Lebiere (1990) [198]
Regression Neural Learning Specht, D. F., 1991[261] Extended kalman Filter Dan Simon,2002[271]

Table III
Soft Computing Based Approaches Evolutionary Algorithms

Algorithm Author, Reference Algorithm Author, Reference

EANN(Evolutionary ANNs) Yao,1999[84][85] GA-BP and GA-LM Enrique Alba and J. Francisco
Chicano[237]

GA Holland,1975[90][91] Breeder Genetic B T Zang[98]
Programming (BGP)

GP John Koza,1992[97] Improved DE Shamekhi[105]
ES 1965,1975,Richenberg, self-adaptive DE Qin et al. [106]

Schewefel[99][100] (SaDE)
DE Storn and Price, CMDE-G Radha Thangraj, Millie Pant et al.

1995 [102] [108]
QNN method A Jagtap(2014)[231] Modified DE Sibarama Panigrahi et al. [111]

PHYSICS OR CHEMISTRY BASED APPROACHES
Algorithm Author ,Reference Algorithm Author, Reference
IWD Hamed Shah-hosseini, Hybrid GSA-GA Saeide Sheikhpour [257]

2007[183]
IWD-NQ Shah-Hosseini, ImprovedGSA(IGSA) Bao-Chang Xu,2014 [258]

2009 [185]
EEIM Birbil & Fang, 2003 BH(Black hole) Zang Lieu,2008[200]

[187]
Hybrid EEIM-GA Ching-Hung Lee, SA(Simulated Annealing) Kirkpatrick, Gelatt and Vecchi,o

2009[192] 1983 [202]
Improved EEIM Ching-Hung Lee, Hybrid PSO-SA Sriram G. Sanjeevi [203]

2010[193]
ICEM Zang et al., 2013[196] BB-BC Erol and Eksin,2006[206]
GSA Rashiedi et al., 2009[197] Hybrid BB-BC(HBBBC) Kaveh,2009[208]
Hybrid PSO-GSA S. Mirjalili et al., Uniform Big_Bang– Alatas,(2011 [209]

2012[256] Chaotic Big_Crunch
(UBB–CBC)

BBBC-PSO Kaveh,2013[214] Improved BB-BC Algorithm Behrooz Hassani, 2012[210]
BBBC-PSO-ACO- Kaveh[215] BB BC with local Search Genc, Eksin and Erol,2013 [211]
Harmony Search moves

Parallel BB-BC S Kumar et al.. [218]

Algorithm Author, Reference Algorithm Author, Reference
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Table IV
Soft Computing Based Approches Swarm Intelligence(si) Based Approaches

Algorithm Author, Reference Algorithm Author, Reference

BFOA Passino,2002[143] PSO Eberhart and kenedy,1995 [113]

GA-BFOA D H Kim,2007[147] ACO  Dorigo &Gambardella[122]-[125]

Adaptive BFOA Majhi,2009[146] ACO -BP Liu et al,2006[239]

Modified BFOA EM Montes,2009[145] ABC Karaboga and Basturk ,2007 [126]

BFONN Zhang et al.[252] FA Yang,2009 [129]

Tabu Search Glover,1977[150] FSA Li Xiao-lei et al. (2002)[132]

Cuckoo Search Yang 2009; Heb Adaptive FSA Reza Aziz,2014[134]
2010[154]

Eurygaster Algorithm Fariborz Ahmadi et al. FSA-PSO Huadong Chen et .al[242]
2012)[156]

Krill Herd optimization A H Gandomi,2012 SFLA Muzaffar Eusuff and Kevin Lan sey
[157] (2003)[135]

BA Yang,2010[138]  Modified SFLA(MFLA) G Samuel and C. C A Raj,
2014 [137]

BA-HS hybrid Wang and Guo, 2013 BA-DE hybrid Fister Jr et al. (2013)

Hybrid BA Fister Jr.[139] Virtual bee algorithm X S Yang [158]

Enhanced Bat A. Kaveh and quaternion bat Fister, 2013[140]
Algorithm(EBA) P. Zakian[141] algorithm (QBA)

BIO INSPIRED NON-SI APPROACHES

Algorithm Author, Reference Algorithm Author, Reference

IWO Mehrabian and Lucas Flower pollination (X. S. Yang, 2012)[177]
(2006) [159], algorithm,

Modified IWO(MIWO) Ritwick, 2010[254] photosynthetic algorithm, (Murase, 2000) [199]

Improved HGIWO Zhi YIN,2012 [160] enzyme algorithm, (Yang, 2005) [180],

BBO Dan Simon 2008[161] cross-entropy algorithm, Rubinstein (1999; 2001)
[181][182].

AIS Dasgupta,in 1999 [166] GSO S.He,Q.H.Wu et al., 2006)[173]

NN Immune System Leandro Nunes de cultural algorithms (CA) R. G. Reynolds,1999) [175]
Castro[168]

HS  Geem et al., 2001[169]  monkey search (MS) Mucherino and O. Seref, 2007)
[176]

DHS Prithwish Chakraborty
et al. [172]




