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1.	 Introduction and Preliminiaries

Optimization problems involving set functions have been extensively studied in recent 
years. These problems arise in various areas and have many interesting applications 
in Mathematics, for example, in fluid flow [2], electric insulator design [4], plasma 
confinement [4] and many more. The first theory of optimizing set functions was 
developed by Morris [8]. Subsequently, several authors [1,5,7] have made significant 
contributions in developing optimality conditions and duality results for various 
optimization problems involving n-set functions under different set ups. In [9], Preda 
introduced ( )-convexity for n-set functions defined by using a sublinear functional 
which satisfies certain convexity type condition. Later, Jo, Kim and Lee [6] extended 
the concept of ( )-convexity to generalized ( )-convexity for    n-set functions and 
established several sufficient optimality conditions for multiobjective programming 
problem with inequality and equality constraints. Recently, Bhatia and Kumar [3] 
obtained sufficient optimality conditions and duality results for fractional minmax 
problem under generalized -convexity conditions.

The purpose of this paper is to establish sufficient optimality conditions and duality 
results for generalized fractional minmax programming problem involving n-set 
functions under generalized ( )-convexity assumptions on few of the objective and 
the constraint functions.

Throughout the paper ( ) is a finite atomless measure space with L1( ) 
separable, An is the n-fold product of -algebra A of subsets of the set X. A pseudometric 
‘d’ of An is defined as
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where S = ( 1S , 2S ,…, nS ), T = ( 1T , 2T ,…, nT )  nA , and ii TS   denotes the 
symmetric difference of sets iS  and iT . 

For f  1L (X,A,) and S  A, the integral 
S

μdf  will be denoted by f, Sχ , 

where Sχ  is the characteristic function of S. 

We now give some definitions from Jo, Kim and Lee [6] that are used in the 
sequel. 

Definition 1.1   A functional  on nA  nA  X(Ln
1 , nA ,) is said to be sublinear 

with respect to its third argument if for any S, T  nA , 

(S,T; 21 ηη  )   (S,T; 1η ) + (S,T; 2η )     21 η,η   X(Ln
1 , nA ,) 

(S,T;) =   (S,T;)       0,    X(Ln
1 , nA ,). 

Throughout this paper, unless otherwise stated, we assume that the sublinear 
functional on nA  nA  X(Ln

1 , nA ,) satisfy the following condition: 

(C) For  = ( 1η , 2η ,…, nη )  X(Ln
1 , nA ,), 

and    *S  = ( *
1S , *

2S ,…, *
nS )  nA , 

we have 

, Sχ  *Sχ  = ( 1η , Sχ  *Sχ ,  2η , Sχ  *Sχ , …,  nη , Sχ  *Sχ )   0 

implies  (S, *S ;)   0     S  nA . 

Definition 1.2 Let  be a sublinear functional on nA  nA  X(Ln
1 , nA ,). Let the 

function F : nA   R be differentiable,  : nA  nA   nA  nA  with (S, *S )  0 
for   S  *S , and   R 

(i) The function F is said to be (,,)-quasiconvex at *S  if for each   S  nA  
such that F(S)   F( *S ), we have 

(S, *S ;D *SF ) +  2d ((S, *S ))   0. 
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(ii) The function F is said to be (,,)-pseudoconvex at *S  if for each            
S  nA  such that F(S) < F( *S ), we have 

(S, *S ;D *SF ) +  2d ((S, *S )) < 0. 

(iii)  The function F is said to be strictly (,,)-pseudoconvex at *S  if for each 
S  nA , S  *S , such that F(S)   F( *S ), we have 

(S, *S ;D *SF ) +  2d ((S, *S )) < 0. 

2. OPTIMALITY CONDITIONS 

The following generalized fractional minmax programming problem is studied in 
this paper 

(P)   
S

min
pi1

max


( iF (S)/ iH (S)) 

subject to 

   G(S)   0, 

   Q(S) = 0 

   S = ( 1S , 2S ,…, nS )  nA  

where F = ( 1F , 2F ,…, pF ): nA   pR , H = ( 1H , 2H ,…, pH ): nA   pR ,              

G = ( 1G , 2G ,…, mG ): nA   mR , Q = ( 1Q , 2Q ,…, sQ ): nA   sR , are vector-

valued differentiable n-set functions defined on nA . 

Let  = {S  nA  G(S)   0, Q(S) = 0} be the set of feasible solutions of (P).     
We assume that F(s)   0 and  H(S) > 0,   S   . 

Using parametric approach, we associate the following problem with (P) 

(EP)  min q 

subject to 

   iF (S) – q iH (S)   0 , 1   i   p,                                         (2.1) 

      S    , q   R                                                        (2.2) 
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The following Lemma establishes the equivalence between (P) and (EP). 

Lemma 2.1 [3]. If *S  is an optimal solution of (P), then ( *S , *q ) with                 
*q  = 

pi1
max


 ( iF ( *S )/ iH ( *S )) is an optimal solution of (EP). 

Conversely, if ( 0S , 0q ) is optimal for (EP), then 0S  is optimal for (P). 

Theorem 2.1 (Necessary Optimality Conditions) [3]. Let *S  be a regular optimal 

solution of (P) with *q  = 
pi1

max


( iF ( *S )/ iH ( *S )). Then there exist *u   pR  ,  




p

1i

*
iu = 1, *v  mR   and *w  sR  such that 


t*u rD (F- *q H *S)  + 

t*v rD *SG  + 
t*w rD *SQ , 

rSχ   *
rSχ    0 

 rS   A , 1   r   n                            (2.3) 

*
iu ( iF ( *S )  *q iH ( *S )) = 0 ,  1   i   p                         (2.4) 

*
jv jG ( *S ) = 0 , 1   j   m                      (2.5) 

where the superscript ‘t’ denotes the transpose of a vector. 

 We now present sufficient optimality conditions for the existence of an 
optimal solution of problem (P). 

Theorem 2.2  Let *S   nA  be a feasible solution of (P) with                               
*q  = 

pi1
max


( iF ( *S )/ iH ( *S )). Assume that there exist  *u   pR  , 



p

1i

*
iu = 1, 

*v  mR   and *w  sR  such that conditions (2.3)-(2.5) are satisfied. Further, if 

(i)   iF   *q iH  , i  I( *S ) are (, i1ρ ,)-psedoconvex at *S , 

(ii)   jG  , j  J( *S ) are (, j2ρ ,)-quasiconvex at *S , 

(iii)  kQ , 1   k   s are (, k3ρ ,)-quasiconvex at *S , 
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(iv)   kQ , 1   k   s are (, k4ρ ,)-quasiconvex at *S with k3ρ  + k4ρ    0 

 k, 1   k   s. 

(v) 
 )S(Ii

*
i

*
u i1ρ  + 

 )S(Jj

*
j

*
v j2ρ  + 



s

1k

*
kw k3ρ    0 

where        I( *S ) = { i  iF ( *S )  *q iH ( *S ) = 0}; 

                   J( *S ) = { j  jG ( *S ) = 0}. 

Then *S  is an optimal solution of (P). 

Proof.  Suppose *S  is not an optimal solution of (P). Then by Lemma 2.1, ( *S , *q ) is 

not optimal for (EP). Therefore, there exists (S,q), feasible for (EP), with S  *S  

and  q < *q . This along with (2.1) yields 

iF (S)/ iH (S)   q < *q , 1   i   p, 

which implies that 

iF (S) - *q iH (S) < 0 = iF ( *S )  *q iH ( *S ), i  I( *S ) 

Thus, (, i1ρ ,)-psedoconvexity of iF   *q iH  at *S  implies 

(S, *S ;D( iF  *q iH *S) ) + i1ρ
2d ((S, *S )) < 0,  i  I( *S ). 

From (2.4) it follows that *
iu  = 0 for i  I( *S ), and therefore, 

 )S(Ii

*
i

*
u  = 1 

ensures the existence of at least one *
iu  > 0, i  I( *S ). Hence, by multiplying each 

of the above inequalities by *
iu , i  I( *S ), summing, and using sublinearity of , 

we get 

(S, *S ; 
 )S(Ii

*
i

*
u D( iF  *q iH *S) ) + 

 )S(Ii

*
i

*
u i1ρ

2d ((S, *S )) < 0 

Again, as *
iu  = 0, i  I( *S ), the above inequality can be rewritten as 
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(S, *S ; 


p

1i

*
iu D( iF  *q iH *S) ) + 

 )S(Ii

*
i

*
u i1ρ

2d ((S, *S )) < 0       (2.6) 

Also, we have   jG (S)   0 = jG ( *S ), j  J( *S ). 

Applying (, j2ρ ,)-quasiconvexity of jG  at *S , we get 

(S, *S ;D(( jG *S) ) + j2ρ
2d ((S, *S ))   0, j  J( *S ). 

Multiplying each of the above inequalities by *
jv    0, j  J( *S ), summing, and 

using the sublinearity of , we obtain 

(S, *S ; 
 )S(Jj

*
j

*
v D( jG *S) ) + 

 )S(Jj

*
j

*
v j2ρ

2d ((S, *S ))   0 

In view of (2.5), *
jv  = 0, j  J( *S ), thus 

(S, *S ; 


m

1j

*
jv D( jG *S)  + 

 )S(Jj

*
j

*
v j2ρ

2d ((S, *S ))   0          (2.7) 

Further, we have 

kQ (S) = kQ ( *S ) = 0 , 1   k   s 

So, by (, k3ρ ,)-quasiconvexity of kQ  and at *S ,  (, k4ρ ,)-quasiconvexity 

of  kQ  at *S , we have 

(S, *S ;D(( kQ *S) ) + k3ρ
2d ((S, *S ))   0 , 1   k   s         (2.8) 

(S, *S ; D(( kQ *S) ) + k4ρ
2d ((S, *S ))   0 , 1   k   s           (2.9) 

As k3ρ  + k4ρ    0   k, 1   k   s, therefore (2.9) can be rewritten as 

(S, *S ; D(( kQ *S) )  k3ρ 2d ((S, *S ))   0 , 1   k   s          (2.10) 

Let   *w  = 1w   2w ;  



	 Fractional Minmax Problems Containing Generalized ( )-Convex...	 201

1w  = ( 1
1w , 1

2w ,…, 1
sw ), 2w  = ( 2

1w , 2
2w ,…, 2

sw )   0; 1w , 2w   sR . 

Multiplying (2.8) by 1
kw , (2.10) by 2

kw , and using sublinearity of , we obtain 

(S, *S ; 1
kw D(( kQ *S) ) + 1

kw k3ρ
2d ((S, *S ))   0 , 1   k   s 

(S, *S ;  2
kw D(( kQ *S) )  2

kw k3ρ
2d ((S, *S ))   0 , 1   k   s. 

Adding the above inequalities and using sublinearity of , it follows that 

(S, *S ; 


s

1k

*
kw D(( kQ *S) ) + 



s

1k

*
kw k3ρ

2d ((S, *S ))   0 ,        (2.11) 

Adding (2.6), (2.7) and (2.11); and by sublinearity of , we get 

(S, *S ;
t*u D(F *q H *S)  + 

t*v D *SG  + 
t*w D *SQ ) 

+ ( 
 )S(Ii

*
i

*
u i1ρ  + 

 )S(Jj

*
j

*
v j2ρ  + 



s

1k

*
kw k3ρ ) 2d ((S, *S )) < 0 

which in view of assumption (v) implies 

(S, *S ;
t*u D(F *q H *S)  + 

t*v D *SG  + 
t*w D *SQ ) < 0             (2.12) 

Since the sublinear functional  satisfy condition (C), it follows from (2.3) that 

(S, *S ;
t*u D(F *q H *S)  + 

t*v D *SG  + 
t*w D *SQ )   0   S  nA  

which contradicts (2.12). 

Hence *S  is an optimal solution of (P). 

Remark 2.1  

Theorem 2.1 also holds under any of the following different sets of assumptions 

(i)  
 )S(Ii

*
i

*
u ( iF  *q iH ) is (, 1ρ ,)-pseudoconvex at *S  

(ii)  
 )S(Jj

*
j

*
v jG  is (, 2ρ ,)-quasiconvex at *S  
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(iii)  


s

1k

*
kw kQ  is (, 3ρ ,)-quasiconvex at *S  

(iv)   1ρ  + 2ρ  + 3ρ    0 

‘OR’ 

(i)  
 )S(Ii

*
i

*
u ( iF  *q iH ) is (, 1ρ ,)-quasiconvex at *S  

(ii)  
 )S(Jj

*
j

*
v jG  is strictly (, 2ρ ,)-pseudoconvex at *S  

(iii)  


s

1k

*
kw kQ  is (, 3ρ ,)-quasiconvex at *S  

(iv)   1ρ  + 2ρ  + 3ρ    0 

‘OR’ 

(i)  
 )S(Ii

*
i

*
u ( iF  *q iH ) is (, 1ρ ,)-quasiconvex at *S  

(ii)  
 )S(Jj

*
j

*
v jG  is (, 2ρ ,)-quasiconvex at *S  

(iii)  


s

1k

*
kw kQ  is strictly (, 3ρ ,)-pseudoconvex at *S  

(iv)   1ρ  + 2ρ  + 3ρ    0 

‘OR’ 

(i)  
 )S(Ii

*
i

*
u ( iF  *q iH ) is (, 1ρ ,)-pseudoconvex at *S  

(ii)  
 )S(Jj

*
j

*
v jG  is (, 2ρ ,)-quasiconvex at *S  

(iii)  


s

1k

*
kw kQ  is (, 3ρ ,)-quasiconvex at *S  
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(iv)   1ρ  + 2ρ  + 3ρ    0 

‘OR’ 

(i)  
 )S(Ii

*
i

*
u ( iF  *q iH ) is (, 1ρ ,)-pseudoconvex at *S  

(ii)  
 )S(Jj

*
j

*
v jG  + 



s

1k

*
kw kQ  is (, 2ρ ,)-quasiconvex at *S  

(iii)   1ρ  + 2ρ    0 

‘OR’ 

(i) 
 )S(Ii

*
i

*
u ( iF  *q iH ) + 

 )S(Jj

*
j

*
v jG  + 



s

1k

*
kw kQ   is (,,)-

pseudoconvex at *S  with    0. 

3. DUALITY 

In this section, we present duality results between problem (P) and its following 
dual 

(D)   Min q 

 subject to 

 tu rD (FqH T)  + tv rD TG  + tw rD TQ , 
rSχ   

rTχ    0  

 rS  A ,  1   r   n                                             (3.1) 

iu ( iF   q iH )(T)   0 ,  1   i   p                              (3.2) 




m

1j
jv jG (T) + 



s

1k
kw kQ (T)   0                    (3.3) 

u  pR  , 


p

1i
iu  = 1, v  mR   and w  sR , q  R , T  nA              (3.4) 

Theorem 3.1 (Weak Duality) Let S and (T,u,v,w,q) be arbitrary feasible solutions 
of (P) and (D) respectively. Further, assume that 
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(i)   


p

1i
iu ( iF   q iH ) is (, 1ρ ,)-pseudoconvex 

(ii)  


m

1j
jv jG  + 



s

1k
kw kQ  is (, 2ρ ,)-quasiconvex 

(iii)  1ρ  + 2ρ    0 

Then,  
pi1

max


( iF (S)/ iH (S))   q. 

Proof.  Suppose on the contrary  
pi1

max


( iF (S)/ iH (S)) < q 

which implies that  iF (S) – q iH (S) < 0 ,   1   i   p. 

From (3.4), we have u  pR   with 


p

1i
iu = 1, which ensures existence of atleast one 

iu  > 0, 1   i   p. Therefore, by multiplying the above inequalities by iu , 1   i 
  p, summing and using (3.2), we get 




p

1i
iu ( iF   q iH )(S) < 



p

1i
iu ( iF   q iH )(T) 

By (, 1ρ ,)-pseudoconvexity hypothesis, the above inequality implies 

 (S,T; tu D(F  qH T) ) + 1ρ
2d ((S,T)) < 0                       (3.5) 

Moreover, feasibility of  S  for (P) implies 

jG (S)   0, 1   j   m  

kQ (S) = 0, 1   k   s 

Since jv    0, 1   j   m, so we obtain 




m

1j
jv jG (S) + 



s

1k
kw kQ (S)   0 

The above inequality along with (3.3) yields 
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


m

1j
jv jG (S) + 



s

1k
kw kQ (S)   



m

1j
jv jG (T) + 



s

1k
kw kQ (T) 

Applying (, 2ρ ,)-quasiconvexity of 


m

1j
jv jG  + 



s

1k
kw kQ ,  we get 

 (S,T; tv D TG  + tw D TQ ) + 2ρ
2d ((S,T)) < 0                     (3.6) 

From (3.5) and (3.6) it follows that 

(S,T; tu D(F  qH T)  + tv D TG  + tw D TQ ) + ( 1ρ + 2ρ ) 2d ((S,T)) < 0 

which in view of assumption (iii) implies 

 (S,T; tu D(F  qH T)  + tv D TG  + tw D TQ ) < 0                   (3.7) 

From (3.1) and the fact that  satisfies condition (C), we have 

 (S,T; tu D(F  qH T)  + tv D TG  + tw D TQ )   0   S  nA  

which contradicts (3.7). 

Hence the result. 

Remark 3.1.  Theorem 3.1 also holds good under other conditions as stated below. 

Theorem 3.2 (Weak Duality) Let S and (T,u,v,w,q) be arbitrary feasible solutions 
of (P) and (D) respectively. Further, if 

(i)   


p

1i
iu ( iF   q iH ) is (, 1ρ ,)-quasiconvex, 

(ii)  


m

1j
jv jG  + 



s

1k
kw kQ  is strictly (, 2ρ ,)-pseudoconvex and 

(iii)  1ρ  + 2ρ    0 

‘OR’ 

(i)   


p

1i
iu ( iF   q iH ) is (, 1ρ ,)-quasiconvex, 



206	 Narender Kumar and R. K. Budhraja

(ii)  


m

1j
jv jG  + 



s

1k
kw kQ  is (, 2ρ ,)-quasiconvex and 

(iii)  1ρ  + 2ρ  > 0 

‘OR’ 




p

1i
iu ( iF   q iH ) + 



m

1j
jv jG  + 



s

1k
kw kQ  is (,,)-pseudoconvex with    0. 

Then,   
pi1

max


( iF (S)/ iH (S))   q. 

Theorem 3.3 (Strong Duality)  Let *S  be a regular optimal solution of (P). Then 

there exist *u   pR  , 


p

1i

*
iu = 1, *v  mR  , *w   sR  and *q   R  such that      

( *S , *u , *v , *w , *q ) is feasible for (D). Further, if the conditions of any one of the 

Weak Duality theorems hold, then ( *S , *u , *v , *w , *q ) is an optimal solution of 

(D), and 
pi1

max


( iF ( *S )/ iH ( *S )) = *q . 

Proof.  Since *S  is a regular optimal solution of (P), therefore, by Theorem 2.1, 

there exist *u  pR  , *v  mR  , *w   sR , and  *q  = 
pi1

max


( iF ( *S )/ iH ( *S )) 

such that conditions (2.3)-(2.5) hold. 

Now, as *S  is feasible for (P), we also have Q( *S ) = 0, and therefore, 

*
kw kQ ( *S ) = 0,  1   k   s 

This along with (2.5) gives 




m

1j

*
jv jG ( *S ) + 



s

1k

*
kw kQ ( *S ) = 0                             (3.8) 

It follows from (2.3), (2.4) and (3.8) that ( *S , *u , *v , *w , *q ) is feasible for (D). 

Optimality of ( *S , *u , *v , *w , *q ) follows from the Weak Duality theorem. 
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Theorem 3.4 (Strict Converse Duality)  Let *S  be optimal for (P) with              
*q  = 

pi1
max


( iF ( *S )/ iH ( *S )). Let (T,u,v,w, *q ) be optimal for (D).  Further, if 

tu (F  *q H) is strictly (, 1ρ ,)-pseudoconvex, tv G + tw Q is (, 2ρ ,)-
quasiconvex with  1ρ  + 2ρ    0.  

Then   *S  = T. 

Proof.  We assume that *S   T and exhibit a contradiction. 

Since *q  = 
pi1

max


iF ( *S )/ iH ( *S ), therefore, we have 

iF ( *S )  *q iH ( *S )   0, 1   i   p. 

Multiplying the above inequalities by iu    0, 1   i   p, and adding, we get 

tu (F *q H)( *S )   0 

which along with (3.2) yields 

tu (F *q H)( *S )   tu (F *q H)(T) 

By strict (, 1ρ ,)-psedoconvexity of tu (F *q H), it follows that 

 ( *S ,T; tu D(F *q H T) ) + 1ρ
2d (( *S ,T)) < 0                     (3.9) 

Also since *S  is feasible for (P), and jv    0, 1   j   m, we have 




m

1j
jv jG ( *S ) + 



s

1k
kw kQ ( *S )   0 

which together with (3.3) imply 

tv G( *S ) + tw Q( *S )   tv G(T) + tw Q(T). 

Using (, 2ρ ,)-quasiconvexity of tv G + tw Q, we get 

 ( *S ,T; tv D TG  + tw D TQ ) + 2ρ
2d (( *S ,T))   0        (3.10) 
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Adding (3.9) and (3.10), and using sublinearity of , we obtain 

( *S ,T; tu D(F *q H T)  + tv D TG  + tw D TQ ) + ( 1ρ + 2ρ ) 2d (( *S ,T)) < 0 

Since 1ρ  + 2ρ    0, the above inequality can be rewritten as 

 ( *S ,T; tu D(F *q H T)  + tv D TG  + tw D TQ ) < 0               (3.11) 

Now, from (3.1) and the fact that  satisfy condition (C), we have 

(S,T; tu D(F *q H T)  + tv D TG  + tw D TQ )   0    S  nA . 

But this contradicts (3.11) for  S = *S . 

This completes the proof. 

Remark 3.2  Theorem 3.4 also holds good under other conditions as stated below. 

Theorem 3.5 (Strict Converse Duality)  Let *S  be an optimal solution of (P) with 
*q  = 

pi1
max


( iF ( *S )/ iH ( *S )). Let (T,u,v,w, *q ) be an optimal solution of (D). 

Further, if tu (F *q H) is (, 1ρ ,)-quasiconvex, tv G + tw Q is                         
(, 2ρ ,)-quasiconvex with  1ρ  + 2ρ  > 0 

‘OR’ 

tu (F *q H) is (, 1ρ ,)-quasiconvex, tv G + tw Q is strictly                              
(, 2ρ ,)-psedoconvex with 1ρ  + 2ρ    0. 

Then *S  = T. 

ACKNOWLEDGEMENTS 
Authors are thankful to Prof. R.N. Kaul, Retired Professor, Department of 
Mathematics, University of Delhi, Delhi for his valuable guidance. 

REFERENCES 
[1] Bector, C.R., Bhatia, D. and Pandey, S., “Duality in nondifferentiable generalized 

fractional programming involving n-set functions”, Utilitas Mathematica, Vol. 45, pp 
91-96, 1994. 



	 Fractional Minmax Problems Containing Generalized ( )-Convex...	 209

[2] Begis, D. and Glowinski, R., “Application de la methode des element fini o 
lapproximation d’un probleme de demaine optimal, Methodes de resolution de 
problemes approaches”, Appl. Math. Optim., Vol. 2,     pp 130-169, 1975. 

[3] Bhatia, D. and Kumar, P., “A Note on Fractional Minmax Progams containing n-Set 
Functions”, J. Math. Anal. Appl., Vol. 215,  pp 283-292, 1997. 

[4] Cea, J., Gioan, A. and Michel, J., “Quelque Resultas Sur l'identification de Domaines”, 
Calcolo, Vol. 10, pp 133-145, 1973. 

[5] Corley, H.W., “Optimization for n-set functions”, J. Math. Anal. Appl., Vol. 127, pp 
193-205, 1987. 

[6] Jo, C.L., Kim, D.S. and Lee, G.M., “Optimality for nonlinear programs containing n-
set functions”, J. Info. Optim. Sc., Vol. 16, pp243-253, 1995. 

[7] Lin, L.J., “Optimality of differentiable vector-valued n-set functions”, J. Math. Anal. 
Appl., Vol. 149, pp 255-270, 1990. 

[8] Morris R.J.T., “Optimal constrained selection of measurable subsets”, J. Math. Anal. 
Appl., Vol. 70, pp 546-562, 1979. 

[9] Preda, V., “On Minmax programming problems containing n-set functions”, 
Optimization, Vol. 22, pp527-537, 1991. 

[10] Zalmai, G.J., “Optimality conditions and duality for constrained measurable subset 
selection problems with minmax objective functions” optimization, Vol. 20, pp 377-
395, 1989. 

 



210	 Narender Kumar and R. K. Budhraja

Narender Kumar
Department of Mathematics, 
Aryabhatta College,
University of Delhi, 
New Delhi – 110021, INDIA

R. K. Budhraja
Department of Mathematics, 
Sri Venkateswara College,
University of Delhi, 
New Delhi – 110021, INDIA


