Common Coupled Fixed Point Theorems in V-Fuzzy Metric Spaces

Pritha Bhattacharyya* Samir Kumar Bhandari** Sudeshna Ghosh***

Abstract

In this paper we establish a coupled common fixed point theorem in V-fuzzy metric spaces. These spaces are further generalization of fuzzy metric spaces in the sense of George and Veeramani. The concept of W-compatibility is utilized here.

1. INTRODUCTIONAND PRELIMINARIES

The purpose of the paper is to establish a common coupled fixed point theorem in V- fuzzy metric spaces. In 1965 Zadeh introduced the concept of fuzzy sets in his famous work in [15]. After that many eminent authors established many fixed point results using this concepts. Some references may be noted as [6, 7, 9, 13]. Fuzzy metric spaces are important generalizations of metric spaces. Fuzzy metric spaces have been introduced in different ways by many authors [3, 2, 10]. George and Veeramani [4] introduced the concept of fuzzy metric spaces modifying the work of Kramosil and Michalek [11] to introduce a Hausdroff topology on fuzzy metric space. Recently Gupta and Kanwar introduced V-fuzzy metric spaces in their work [8]. The concept is another generalization of fuzzy metric spaces .

Before we go to our main result, we recall some of the basic concepts and results which are discussed below.
Denition $1.1(t$-norm) [14] A binary operation* : $[0,1] \times[0,1] \rightarrow[0,1]$ is a t-norm if it satises the following conditions:

1. $*(1, a)=a, *(0,0)=0$
2. $*(a, b)=*(b, a)$
3. $*(c, d) \geq(a, b)$ whenever $c \geq a$ and $d \geq b$
4. ${ }^{*}(*(a, b), c)={ }^{*}(a, *(b, c))$ where $a, b, c, d \in[0,1]$

Typical examples of t-norms are $a_{*_{1}} b=\min \{a, b\}, a_{*_{2}}=a b$ and $a_{*_{3}} b=\operatorname{Max}\{a+\mathrm{b}-1,0\}$.
Denition 1.2 (Fuzzy Metric Space - George and Veeramani) [4] The 3-tuple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X \times X \times(0, \infty)$ satisfying the following conditions:

1. $\mathrm{M}(x, y, 0)>0$,
2. $\mathrm{M}(x, y, t)=1$ for all $t>0$ iff $x=y$,
3. $\mathrm{M}(x, y, t)=\mathrm{M}(y, x, t)$,
4. $\mathrm{M}(x, z, t+s) \geq(\mathrm{M}(x, y, t) * \mathrm{M}(y, z, s))$,
5. $\mathrm{M}(x, y,):.(0, \infty) \rightarrow[0,1]$ is left- continuous, where $x, y, z \in X$ and $t, s>0$.
[^0]Example 1.1 [4] Let $\mathrm{X}=\mathrm{R}$. Let $a * b=a . b$ for all $a, b \in[0,1]$. For each $t \in(0, \infty) x, y \in \mathrm{X}$,
let

$$
\mathrm{M}(x, y, t)=\frac{t}{t+|x-y|}
$$

Then ($\mathrm{R}, \mathrm{M}, *$) is a fuzzy metric space.
Denition 1.3[5] Let (X, \preceq) be a partially ordered set and $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping from X to itself. The mapping F is said to be non-decreasing if, for all $x_{1}, x_{2} \in \mathrm{X}, x_{1} \preceq x_{2}$ implies $\mathrm{F}\left(x_{1}\right) \preceq \mathrm{F}\left(x_{2}\right)$ and non-increasing if, for all $x_{1}, x_{2} \in \mathrm{X}, x_{1} \preceq x_{2}$ implies $\mathrm{F}\left(x_{1}\right) \succeq \mathrm{F}\left(x_{2}\right)$.

Denition 1.4 [5] Let (X, \preceq) be a partially ordered set and $\mathrm{F}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ be a mapping. The mapping F is said to have the mixed monotone property if F is non- decreasing in its rst argument and is non-increasing in its second argument, that is, if, for all $x_{1}, x_{2} \in \mathrm{X}, x_{1} \preceq x_{2}$ implies $\mathrm{F}\left(x_{1}, y\right) \preceq \mathrm{F}\left(x_{2}, y\right)$ for fixed $y \in \mathrm{X}$ and if, for all $y_{1}, y_{2} \in \mathrm{X}, y_{1} \preceq y_{2}$ implies $\mathrm{F}\left(x, y_{1}\right) \succeq \mathrm{F}\left(x, y_{2}\right)$, for fixed $x \in \mathrm{X}$.

Denition 1.5 [5] Let (X, \preceq) be a partially ordered set and $\mathrm{F}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $h: \mathrm{X} \rightarrow \mathrm{X}$ be two mappings. The mapping F is said to have the mixed h-monotone property if F is monotone h-non-decreasing in its first argument and is monotone h-non-increasing in its second argument, that is, if, for all $x_{1}, x_{2} \in \mathrm{X}, h x_{1} \preceq h x_{2}$ implies $\mathrm{F}\left(x_{1}, y\right) \preceq \mathrm{F}\left(x_{2}, y\right)$ for all $y \in \mathrm{X}$ and if, for all $y_{1}, y_{2} \in \mathrm{X}$, $h y_{1} \preceq h y_{2}$ implies $\mathrm{F}\left(x, y_{1}\right) \succeq \mathrm{F}\left(x, y_{2}\right)$, for any $x \in \mathrm{X}$.

Denition 1.6 [5] Let X be a nonempty set. An element $(x, y) \in \mathrm{X} \times \mathrm{X}$ is called a coupled fixed point of the mapping if

$$
\mathrm{F}(x, y)=x, \mathrm{~F}(y, x)=y .
$$

Further Lakshmikantham and-Ciric have introduced the concept of coupled coincidence point.
Denition 1.7 [12] Let X be a nonempty set. An element $(x, y) \in \mathrm{X} \times \mathrm{X}$ is called a coupled coincidence point of a mapping F : $\mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and if

$$
\mathrm{F}(x, y)=h x, \mathrm{~F}(y, x)=h y .
$$

If further $x=h x=\mathrm{F}(x, y)$ and $y=h y=\mathrm{F}(y, x)$ then (x, y) is a common coupled fixed point of h and F .
Denition 1.8 [1] Let X be a nonempty set. Mappings F and h are called W -compatible if

$$
g(\mathrm{~F}(x, y))=\mathrm{F}(g x, g y)
$$

whenever

$$
g(x)=\mathrm{F}(x, y) \text { and } g(y)=\mathrm{F}(y, x) \text { for some }(x, y) \in \mathrm{X} \times \mathrm{X} .
$$

Example 1.2 Define $\mathrm{P}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{X}$ where $\mathrm{X}=[-1,1], \mathrm{P}(x, y)=\frac{x^{2}+y^{2}}{2}, \mathrm{Q}(x)=x$, which satises $\mathrm{Q}(\mathrm{P}(x, y))=\mathrm{P}(\mathrm{Q} x, \mathrm{Q} y)$ and $\mathrm{Q}(\mathrm{P}(y, x))=\mathrm{P}(\mathrm{Q} y, \mathrm{Q} x)$. For $x=1$ and $y=1$, we get $\mathrm{P}(x, y)=\mathrm{Q}(x)$ and $\mathrm{P}(y$, $x)=\mathrm{Q}(y)$. This implies that the mappings $\mathrm{P}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{X}$ and $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{X}$ are W -compatible.

Denition 1.9 (V - Fuzzy Metric Space) [8] Let X be a nonempty set. A triplet (X, V, *) is said to be a Vfuzzy metric space (denoted by VF-space), where * is a continuous t-norm, and V is a fuzzy set on $X^{n} \times(0, \infty)$ satisfying the following conditions for all $t, s \geq 0$:

1. $\mathrm{V}(x, x, x, \ldots, x, y, t) \geq 0$ for all $x, y \in \mathrm{X}$ with $x \neq y$,
2. $\mathrm{V}\left(x_{1}, x_{1}, x_{1}, \ldots, x_{1}, x_{2}, t\right) \geq \mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, t\right)$ for all $x_{1}, x_{2}, x_{3}, \ldots, x_{n} \in \mathrm{X}$ with $x_{1} \neq x_{2} \neq x_{3}$ $\ldots \neq x_{n}$,
3. $\mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, t\right)=1$ if and only if $x_{1}=x_{2}=x_{3}=\ldots=x_{n}$,
4. $\mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \mathrm{t}\right)=\mathrm{V}\left(p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right), t\right)$ where p is a permutation function,
5. $\mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, t+s\right) \geq \mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1} l, t\right) * \mathrm{~V}\left(l, l, l, \ldots, l, x_{n}, s\right)$,
6. $\lim _{t \rightarrow \infty} \mathrm{~V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, t\right)=1$,
7. $\mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right):(0, \infty) \rightarrow[0,1]$ is continuous.

Example 1.3 [8] Let (X, A) be an A-metric space. The t-norm $a * b=a b$ or $a * b=\min \{a, b\}$. For all x_{1}, $x_{2}, x_{3}, \ldots, x_{n} \in \mathrm{X}, t>0$, denote

$$
\mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, t\right)=\frac{t}{t+\mathrm{A}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)}
$$

Then $\left(X, V,{ }^{*}\right)$ is a V-fuzzy metric space.
Lemma 1.1 [8] Let $(\mathrm{X}, \mathrm{V}, *)$ be a V -fuzzy metric space. Then $\mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, t\right)$ is nondecreasing with respect to t.

Lemma 1.2 [8] Let (X, V, *) be a V -fuzzy metric space such that

$$
\mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, k t\right) \geq \mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, t\right)
$$

with $k \in(0,1)$. Then $x_{1}=x_{2}=x_{3}=\ldots=x_{n}$.
Denition 1.10 [8] Let ($\mathrm{X}, \mathrm{V},,^{*}$) be a V -fuzzy metric space. A sequence $\left\{x_{r}\right\}$ is said to converge to a point $x \in \mathrm{X}$ if $\mathrm{V}\left(x_{r}, x_{r}, x_{r}, \ldots, x_{r}, x, t\right) \rightarrow 1$ as $r \rightarrow \infty$ for all $t>0$, that is, for each $\varepsilon>0$, there exists $n \in \mathrm{~N}$ such that for all $r \geq \mathrm{N}$, we have $\mathrm{V}\left(x_{r}, x_{r}, x_{r}, \ldots, x_{r}, x, t\right)>1-\varepsilon$, and we write $\lim _{n \rightarrow \infty} x_{r}=x$.

Denition 1.11 [8] Let (X, V, *) $^{\text {) }}$ be a V -fuzzy metric space. A sequence $\left\{x_{r}\right\}$ is said to be a V -Cauchy sequence if $\mathrm{V}\left(x_{r}, x_{r}, x_{r}, \ldots, x_{r}, x_{q}, t\right) \rightarrow 1$ as $r, q \rightarrow \infty$ for all $\mathrm{t}>0$. In otherwords, for each $\in>0$, there exists n_{0} $\in \mathrm{N}$ such that for all $r, q \geq n_{0}$, we have $\mathrm{V}\left(x_{r}, x_{r}, x_{r}, \ldots, x_{r}, x_{q}, t\right)>1-\in$.

Denition 1.12 [8] The V -fuzzy metric space ($\mathrm{X}, \mathrm{V}, *$) is said to be V -complete if every Cauchy sequence in X is convergent.

Now we give our main result.

2. MAIN RESULT

Lemma 2.1 Let ($\mathrm{X}, \mathrm{V},{ }^{*}$) be a V -fuzzy metric space. If there exists $k \in(0,1)$ such that min $\left\{\mathrm{V}\left(x_{1}, x_{2}, x_{3}\right.\right.$, $\left.\left.\ldots, x_{n}, k t\right),\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}, k t\right)\right\} \geq \min \left\{\mathrm{V}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}, t\right),\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}, t\right)\right\}$ for all $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, $y_{1}, y_{2}, y_{3}, \ldots, y_{n} \in X$ and $t>0$ then $x_{1}=x_{2}=x_{3}=\ldots=x_{n}$ and $y_{1}=y_{2}=y_{3}=\ldots=y_{n}$.

Proof: Using lemma 1.2 we can prove this lemma.

2.1. Main Theorem

Let (X, V, *) be a V-fuzzy metric space with $a^{*} b=\min \{a, b\}$ for all $a, b \in[0,1]$ and $\mathrm{F}: \mathrm{X} \mathrm{XX} \rightarrow \mathrm{X}, g$: $\mathrm{X} \rightarrow \mathrm{X}$ be mappings satisfying
$\mathrm{V}(\mathrm{F}(x, y), \mathrm{F}(u, v), \mathrm{F}(u, v), \ldots, \mathrm{F}(u, v), k t) \geq \min \{\mathrm{V}(g x, g u, g u, \ldots, g u, t), \mathrm{V}(g y, g v, g v, \ldots, g v, t)\}$
for all $x, y, u, v \in \mathrm{X}$, where $0<k<1, \mathrm{~F}(\mathrm{X} \times \mathrm{X}) \subset g(\mathrm{X})$ is a complete subspace of X and the pair $(g, \mathrm{~F})$ is W -compatible. Then F and g have unique common fixed point.

Proof : Let $x_{0}, y_{0} \in \mathrm{X}$, denote $\mathrm{Z}_{n}=\mathrm{F}\left(x_{n}, y_{n}\right)=g x_{n+1}$ and $p_{n}=\mathrm{F}\left(y_{n}, x_{n}\right)=g y_{n+1}, n=0,1,2, \ldots$
Let $\quad r_{n}(t)=\mathrm{V}\left(z_{n}, z_{n+1}, z_{n+1}, \ldots, z_{n+1}, t\right)$
and $\quad s_{n}(t)=\mathrm{V}\left(p_{n}, p_{n+1}, p_{n+1}, \ldots, p_{n+1}, t\right)$
2Now, $\quad r_{n+1}(k t)=\mathrm{V}\left(\mathrm{Z}_{n+1}, \mathrm{Z}_{n+2}, \mathrm{Z}_{n+2}, \ldots, \mathrm{Z}_{n+2}, k t\right)$

$$
=\mathrm{V}\left(\mathrm{~F}\left(x_{n+1}, y_{n+1}\right), \mathrm{F}\left(x_{n+2}, y_{n+2}\right), \ldots, \mathrm{F}\left(x_{n+2}, y_{n+2}\right), k t\right)
$$

$$
\geq \min \left\{\mathrm{V}\left(g x_{n+1}, g x_{n+2}, g x_{n+2}, \ldots, g x_{n+2}, t\right),\right.
$$

$$
\left.\mathrm{V}\left(g y_{n+1}, g y_{n+2}, g y_{n+2}, \ldots, g y_{n+2}, t\right)\right\} \quad[\text { Using 2.1] }
$$

$$
=\min \left\{\mathrm{V}\left(\mathrm{Z}_{n}, \mathrm{Z}_{n+1}, \mathrm{Z}_{n+1}, \ldots, \mathrm{Z}_{n+1}, t\right), \mathrm{V}\left(p_{n}, p_{n+1}, p_{n+1}, \ldots, p_{n+1}, t\right)\right\}
$$

$$
=\left\{r_{n}(t), s_{n}(t)\right\}
$$

Therefore,

$$
\begin{equation*}
r_{n+1}(k t) \geq \min \left\{r_{n}(t), s_{n}(t)\right\} \tag{2.2}
\end{equation*}
$$

Also, $\quad s_{n+1}(k t)=\mathrm{V}\left(p_{n+1}, p_{n+2}, p_{n+2}, \ldots, p_{n+2}, k t\right)$

$$
=\mathrm{V}\left(\mathrm{~F}\left(y_{n+1}, x_{n+1}\right), \mathrm{F}\left(y_{n+2}, x_{n+2}\right), \ldots, \mathrm{F}\left(y_{n+2}, x_{n+2}\right), k t\right)
$$

$$
\begin{equation*}
\geq \min \left\{\mathrm{V}\left(g y_{n+1}, g y_{n+2}, g y_{n+2}, \ldots, y_{n+2}, t\right), \mathrm{V}\left(g x_{n+1}, g x_{n+2}, g x_{n+2}, \ldots,\right.\right. \tag{n+2}
\end{equation*}
$$

$=\min \left\{\mathrm{V}\left(p_{n}, p_{n+1}, p_{n+1}, \ldots, p_{n+1}, t\right), \mathrm{V}\left(\mathrm{Z}_{n}, \mathrm{Z}_{n+1}, \mathrm{Z}_{n+1}, \ldots, \mathrm{Z}_{n+1}, t\right)\right\}$
$=\left\{s_{n}(t), r_{n}(t)\right\}:$
Therefore,

$$
\begin{equation*}
s_{n+1}(k t) \geq \min \left\{s_{n}(t), r_{n}(t)\right\} \tag{2.3}
\end{equation*}
$$

Thus, $\quad \min \left\{r_{n+1}(k t), s_{n+1}(k t)\right\} \geq \min \left\{r_{n}(t), s_{n}(t)\right\}$.
Hence,

$$
\begin{align*}
\min \left\{r_{n}(t), s_{n}(t)\right\} & \geq \min \left\{r_{n-1}\left(\frac{1}{k}\right), s_{n-1}\left(\frac{t}{k}\right)\right\} \\
& \geq \min \left\{r_{n-2}\left(\frac{1}{k}\right), s_{n-2}\left(\frac{t}{k}\right)\right\} \\
& \geq \min \left\{r_{0}\left(\frac{1}{k^{n}}\right), s_{0}\left(\frac{t}{k^{n}}\right)\right\} . \tag{2.4}
\end{align*}
$$

So, $\quad \min \left\{r_{n}(t), s_{n}(t)\right\} \geq \min \left\{\mathrm{V}\left(z_{0}, z_{1}, z_{1}, \ldots, z_{1}, \frac{t}{k^{n}}\right), \mathrm{V}\left(p_{0}, p_{1}, p_{1}, \ldots, p_{1}, \frac{t}{k^{n}}\right)\right\}$.
For any positive integer n and xed positive integer p, we have

$$
\begin{align*}
& \mathrm{V}\left(z_{n}, z_{n+p}, z_{n+p}, \ldots z_{n+p}, t\right) \geq \mathrm{V}\left(z_{n+p-1}, z_{n+p,}, z_{n+p, \ldots}, z_{n+p}, \frac{t}{p}\right) \\
& * \mathrm{~V}\left(z_{n+p-2,} z_{n+p-1}, z_{n+p-1, \ldots} z_{n+p-1}, \frac{t}{p}\right) \\
& * \ldots \mathrm{~V}\left(z_{n}, z_{n+1}, z_{n+1}, \ldots z_{n+1}, \frac{t}{p}\right) \\
& \geq \min \left\{\mathrm{V}\left(z_{0}, z_{1}, z_{1}, \ldots, z_{1}, \frac{t}{p k^{n+p-1}}\right), \mathrm{V}\left(p_{0}, p_{1}, p_{1}, \ldots, p_{1}, \frac{t}{p k^{n+p-1}}\right)\right\} \\
& * \min \left\{\mathrm{~V}\left(z_{0}, z_{1}, z_{1}, \ldots, z_{1}, \frac{t}{p k^{n+p-2}}\right), \mathrm{V}\left(p_{0}, p_{1}, p_{1}, \ldots, p_{1}, \frac{t}{p k^{n+p-2}}\right)\right\} \\
& * \ldots * \min \left\{\mathrm{~V}\left(z_{0}, z_{1}, z_{1}, \ldots, z_{1}, \frac{t}{p k^{n}}\right), \mathrm{V}\left(p_{0}, p_{1}, p_{1}, \ldots, p_{1}, \frac{t}{p k^{n}}\right)\right\} \tag{2.5}
\end{align*}
$$

Letting $n \rightarrow \infty$ and using the axiom (6) from the denition of V-fuzzy metric space we get,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{~V}\left(\mathrm{Z}_{n}, \mathrm{Z}_{n+p}, \mathrm{Z}_{n+p}, \ldots, \mathrm{Z}_{n+p}, t\right) \geq 1 * 1 * 1 \ldots * 1=1 \tag{2.6}
\end{equation*}
$$

Hence,

$$
\lim _{n \rightarrow \infty} \mathrm{~V}\left(\mathrm{Z}_{n}, \mathrm{Z}_{n+p}, \mathrm{Z}_{n+p}, \ldots, \mathrm{Z}_{n+p}, t\right)=1:
$$

Thus $\left\{\mathrm{Z}_{n}\right\}$ is V -Cauchy sequence in X . Similarly we can show that $\left\{p_{n}\right\}$ is also a V-Cauchy sequence in X . Since $g(\mathrm{X})$ is V-complete, $\left\{\mathrm{Z}_{n}\right\}$ and $\left\{p_{n}\right\}$ converge to some u and v in $g(\mathrm{X})$ respectively. Hence there exist x and y in X such that $u=g x$ and $v=g y$.

Now,

$$
\begin{align*}
& \mathrm{V}\left(\mathrm{Z}_{n}, \mathrm{~F}(x, y), \mathrm{F}(x, y), \ldots, \mathrm{F}(x, y), k t\right) \\
= & \mathrm{V}\left(\mathrm{~F}\left(x_{n}, y_{n}\right), \mathrm{F}(x, y), \mathrm{F}(x, y), \ldots \mathrm{F}(x, y), k t\right) \\
\geq & \min \left\{\mathrm{V}\left(g x_{n}, g x, g x, \ldots, g x, t\right), \mathrm{V}\left(g y_{n}, g y, g y, \ldots, g y, t\right)\right\} \\
= & \min \left\{\mathrm{V}\left(\mathrm{Z}_{n-1}, g x, g x, \ldots, g x, t\right), \mathrm{V}\left(p_{n-1}, g y, g y, \ldots, g y, t\right)\right\} \tag{2.7}
\end{align*}
$$

Taking $n \rightarrow \infty$, we get

$$
\begin{equation*}
\mathrm{V}(g x, \mathrm{~F}(x, y), \mathrm{F}(x, y), \ldots, \mathrm{F}(x, y), k t) \geq \min \{1,1\}=1 \tag{2.8}
\end{equation*}
$$

Hence, $\quad \mathrm{F}(x, y)=g x$. Similarly we can show that $\mathrm{F}(y, x)=g y$. So,

$$
g u=g g x
$$

$$
=g(\mathrm{~F}(x, y))
$$

$$
=\mathrm{F}(g x, g y) \quad[\text { as }(g, \mathrm{~F}) \text { are W-compatible }]
$$

$$
=\mathrm{F}(u, v)
$$

and $\quad g v=g g y$

$$
=g(\mathrm{~F}(y, x))
$$

$$
=\mathrm{F}(g y, g x)
$$

[as ($g, \mathrm{~F}$) are W-compatible]

$$
=\mathrm{F}(v, u)
$$

So, $(u, v) \in \mathrm{X} \times \mathrm{X}$ is a coupled coincidence point of F and g. To show that (u, v) is also a common coupled xed point of F and g.

Now, $\quad \mathrm{V}\left(\mathrm{Z}_{n}, g u, g u, \ldots, g u, k t\right)=\mathrm{V}\left(\mathrm{F}\left(x_{n}, y_{n}\right), \mathrm{F}(u, v), \mathrm{F}(u, v), \ldots, \mathrm{F}(u, v), k t\right)$

$$
\begin{equation*}
\geq \min \left\{\mathrm{V}\left(g x_{n}, g u, g u, \ldots, g u, t\right), \mathrm{V}\left(g y_{n}, g v, g v, \ldots, g v, t\right)\right\} \tag{2.9}
\end{equation*}
$$

Taking $n \rightarrow \infty$ in above eqn,

$$
\begin{equation*}
\mathrm{V}(u, g u, g u, \ldots, g u, k t) \geq \min \{\mathrm{V}(u, g u, g u, \ldots, g u, t), \mathrm{V}(v, g v, g v, \ldots, g v, t)\} \tag{2.10}
\end{equation*}
$$

Similarly we can show that

$$
\begin{equation*}
\mathrm{V}(v, g v, g v, \ldots ., g v, k t) \geq \min \{\mathrm{V}(v, g v, g v, \ldots, g v, t), \mathrm{V}(u, g u, g u, \ldots, g u, t)\} \tag{2.11}
\end{equation*}
$$

From (2.10) and (2.11)

$$
\begin{aligned}
& \min \{\mathrm{V}(u, g u, g u, \ldots, g u, k t), \mathrm{V}(v, g v, g v, \ldots, g v, k t)\} \\
\geq & \min \{\mathrm{V}(u, g u, g u, \ldots, g u, t), \mathrm{V}(v, g v, g v, \ldots, g v, t)\}
\end{aligned}
$$

So by lemma $2.1 u=g u$ and $v=g v$. Therefore, $u=g u=\mathrm{F}(u, v)$ and $v=g v=\mathrm{F}(v, u)$. Hence (u, v) is a common coupled fixed point of F and g. For uniqueness, let $\left(u_{1}, v_{1}\right)$ be another common coupled xed point of F and g. So,

$$
\begin{align*}
\mathrm{V}\left(u, u_{1}, u_{1}, \ldots, u_{1}, k t\right) & =\mathrm{V}\left(\mathrm{~F}(u, v), \mathrm{F}\left(u_{1}, v_{1}\right), \mathrm{F}\left(u_{1}, v_{1}\right), \ldots, \mathrm{F}\left(u_{1}, v_{1}\right), k t\right) \\
& \geq \min \left\{\mathrm{V}\left(u, u_{1}, u_{1}, \ldots, u_{1}, t\right), \mathrm{V}\left(v, v_{1}, v_{1}, \ldots, v_{1}, t\right)\right\} \tag{2.12}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\mathrm{V}\left(v, v_{1}, v_{1}, \ldots, v_{1}, k t\right) \geq \min \left\{\mathrm{V}\left(v, v_{1}, v_{1}, \ldots, v_{1}, t\right), \mathrm{V}\left(u, u_{1}, u_{1}, \ldots, u_{1}, t\right)\right\} \tag{2.13}
\end{equation*}
$$

Thus from (2.12) and (2.13),
$\min \left\{\mathrm{V}\left(u, u_{1}, u_{1}, \ldots, u_{1}, k t\right), \mathrm{V}\left(v, v_{1}, v_{1}, \ldots, v_{1}, k t\right)\right\} \geq \min \left\{\mathrm{V}\left(u, u_{1}, u_{1}, \ldots, u_{1} t\right), \mathrm{V}\left(v, v_{1}, v_{1}, \ldots, v_{1}, t\right)\right\}$
From lemma $2.1 u_{1}=u$ and $v_{1}=v$.
Hence (u, v) is the unique common coupled fixed point of F and g.

3. REFERENCES

1. Abbas M,Khan Ali M and Radenovic S ,(2010) Common coupled xed point the- orems in cone metric space for Wcompatible mappings, Applied mathematics and Computation, vol. 217, no. 1 pp. 195-202, .
2. Deng, Z., (1982) Fuzzy pseudo metric spaces, Journal of Mathematical Analysis and Applications, Vol. 86, pp. 74-95.
3. Erceg, M.A., (1979) Metric spaces in fuzzy set theory, Journal of Mathematical Analysis and Applications, Vol. 69, pp. 205-230.
4. George A, Veeramani P (1994) On some result in fuzzy metric space, Fuzzy Sets and Systems 64: 395-399.
5. Gnana-Bhaskar T, Lakshmikantham V (2006) Fixed point theorems in partially or- dered metric spaces and applications, Nonlinear Anal.65: 1379-1393
6. Grabiec, M., (1988) Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, Vol. 27, pp. 385-389.
7. Gregori, V. and Sapena, A.,(2002) On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, Vol. 125, pp. 245-252.
8. Gupta, V. and Kanwar, A. (2016) V-Fuzzy metric space and related fixed point theorems, Fixed point Theory and Applications, doi 10.1186/s 13663-016-0536-1.
9. Heilpern, S., (1981) Fuzzy mappings and xed point theorems, Journal of Mathe- matical Analysis and Applications, Vol. 83, pp. 566-569.
10. Kaleva, O. and Seikkala, S.,(1984) On fuzzy metric spaces, Fuzzy Sets and Systems, Vol. 12, pp. 215-229.
11. Kramosil I, Michalek J (1975) Fuzzy metric and statistical metric spaces, Kybernet- ica.11: 326-334.
12. Lakshmikantham V, Ciric L (2009) Coupled xed point theorems for nonlinear con- tractions in partially ordered metric spaces, Nonlinear Anal. 70: 4341-4349.
13. Rao, K.P.R., Altun, I. and Hima Bindu, S.,(2011) Common coupled fixed- point theorems in generalized fuzzy metric spaces, Advances in Fuzzy systems, doi:10.1155/2011/986748.
14. Schweizer, B. and Sklar, A. (1983) Probabilistic Metric Spaces, Elsevier, North- Holland.
15. Zadeh L(1965) Fuzzy sets, Inform and Control.8: 338-353.

[^0]: * Department of Humanities and Basic Sciences Fr. C. Rodrigues Institute of Technology Vashi, Navi Mumbai-400703, Maharastra, India email: pritha1972@gmail.com
 ** Department of Mathematics Bajkul Milani Mahavidyalaya Kismat Bajkul, Purba Medinipur, Bajkul West Bengal - 721655, India email: skbhit@yahoo.co.in.
 *** Department of Basic Science and Humanities Pratap University Jaipur - 303104, Rajasthan, India email: sud1800@yahoo.co.in

