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EXACT SOLUTION OF MULTI-LAYERED
PIEZOELECTRIC CIRCULAR DIAPHRAGM WITH
LINEAR SPRING AND SCREW SPRING
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ABSTRACT

This paper investigates dynamic behavior of multi-layered piezoelectric circular diaphragms which are simplified
as laminated circular plates with linear spring and screw spring. The simplified elastic support multi-layered plate
model was adopted as simplified model. Using the classical laminated plate theory, mechanical, electrical and
electromechanical characteristics of the multi-layered piezoelectric diaphragms have been studied. For ease of
calculation, the dimensionless method was adopted. Furthermore, exact solution of this problem was carried out.
Influence of dimensions of the laminar diaphragm and elastic coefficients on nature frequencies has also been
studied. The thickness ratio of the PZT layer to the total thickness of the laminar diaphragm has been optimized to
obtain the largest deflection.
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1. INTRODUCTION

Due to the intrinsic electromechanical coupling behaviors, piezoelectric materials have been widely used in
fabrications of actuators and sensors, and MEMS [1]-[3]. Actuators or sensors in general are mainly made of multi-
layered diaphragms (or films) with piezoelectric layers embedded (Figure 1). The multi-layered PZT diaphragms
are not only used as a mechanic-electrical converter converting mechanical quantities (deformation, stress, velocity,
acceleration, etc.) into suitable electrical signals but also be used as actuators converting electrical energies into
mechanical ones. Therefore, the multi-layered PZT diaphragms are widely employed in MEMS devices.

Figure 1: Sketch of Cross Section Model of Multi-layered Piezoelectric Diaphragm

Since the multi-layered PZT diaphragms play important roles in MEMS devices, many models have been
proposed to investigate dynamic behaviors of the laminated structures [4]-[14], in which the approximate theories
[5]-[8] and computational models [9], [10] have widely been used to predict dynamic characteristic of diaphragms.
There is an increase trend in developing exact, closed and other accurate analytic solutions in recent years. Both
coupled [7], [15] and uncoupled [6], [16] solutions have therefore been proposed. For piezoelectric actuators,



bending of rectangular plate [17]-[19], shell [20], multi-layered shell [21], circular plates [12]-[14], [22], and disk
[23], [24] structures were induced by in-plane strains. Although some models have been developed to simulate
symmetric [13] and asymmetric [15] rectangular piezoelectric/elastic plates, these models cannot be applied to
multi-layered piezoelectric plates.

In most models, actuators or sensors were in general simplified into laminated plates with clamped supported
boundary condition since the small ratio of the thickness of the multi-layered piezoelectric diaphragm to its other
dimensions. However, the validity of such simplification has not been confirmed. In [25], the validity of the simplified
clamped laminated plate models in the calculation of nature frequency is verified by comparison with the exact
model. The frequency characteristics of the clamped rectangular multi-layered piezoelectric plates are then analytically
investigated. However, there has the small error between exact model and simplified model. The elastic support
boundary condition should be introduced for more close to exact model. This paper investigates dynamic behavior
of multi-layered piezoelectric circular diaphragms which are simplified as elastic support laminated circular plates
with spring. Using the classical laminated plate theory, mechanical, electrical and electromechanical characteristics
of the multi-layered piezoelectric diaphragms have been studied. For ease of calculation, the dimensionless method
was adopted. Furthermore, exact solution of this problem was carried out. Influence of dimensions of the laminar
diaphragm and elastic coefficients on nature frequencies has also been studied. The thickness ratio of the PZT layer
to the total thickness of the laminar diaphragm has been optimized to obtain the largest deflection.

2. THE SIMPLIFIED MODEL

The cross section configuration of the micro-piezoelectric thin film diaphragm is shown in Figure 1. The PZT film
was deposited on Pt/Ti/Si

3
N

4
/SiO

2
/Si wafer. Au layer was evaporated on the surface of PZT film as the top electrode.

The backside silicon was wet-etched off till the SiO
2
 layer. In figure 1, a is the diameter of circular laminated

diaphragm, h
i
 (i = 1~6) is the thickness of each film and they are 0.2mm, 0.6mm, 0.1mm, 0.05mm, 0.2mm and

0.5mm, respectively. h
7
 is thickness of the substrate. The substrate is made of etched Si(100) wafer, the etched angle

is known of around 54.7°.

In the clamped plate model, the boundary condition is considered to be rigid, even though the substrate and the
deposited films are actually elastic. Therefore, there still exists small error in the frequencies between the exact
model and the clamped plate model even the thickness of the substrate is very small or completely neglected. A
relaxation in the clamped boundary on the clamped plate should be introduced [25]. Therefore, the laminated
diaphragm shown in Figure 1 can be simplified as a disk of diameter a and the edge of the disk is elastic support
with linear spring and screw spring as shown in Figure 2, in which k

1
 and k

2
 are elastic coefficients of linear spring

and screw spring respectively. The constrain frame surrounding laminate can be taken off. An electrical field is
applied on the upper (Au) and bottom (Pt) electrodes of the PZT (PbZr

0.54
Ti

0.46
O

3
) film. The materials properties of

each layer of the diaphragm are listed in Table 1.

Table 1
Material Properties

Material E
1
, GPa �

12
�, 103kg/m3 e

31
, C/m2 33

S� ,F/m ih ,mm

Au 80 0.42 19.32 0.2

PbZr
0.54

Ti
0.46

O
3

86.2 0.287 7.62 -7.279 3.106e-9 0.6

Pt 146.9 0.39 21.45 0.1

Ti 102.1 0.3 4.85 0.05

Si
3
N

4
150 0.24 3.24 0.2

SiO
2

72.4 0.16 2.07 0.5

Si 70 0.35 2.699

3. EQUATIONS OF MOTION

A multi-layered circular piezoelectric plate with elastic edges is adapted to study motion of the plate. Figure 3
shows the non-symmetric circular laminated plate with a diameter a that consists of n layers of films. The thickness



of the ith layer is h
i
 (i = 1, ���, n), and the thickness of the piezoelectric layer is h

p
(1 � p � n). In figure 3, h

0
 is a

distance from the top of the plate to X axes. Z
i–1

 and Z
i
 are the Z coordinate values at the top and the bottom surfaces

of the ith layer. Thus, the following relation can be obtained:

0 0 0
1

, , 1, 2,
i

i k
k

Z h Z h h i n
�

� � � �� � , (1)

Figure 2: Simplified Model of Multi-layered Piezoelectric
Diaphragm with Linear Spring and Screw Spring
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Figure 3: Side View of the Laminated Plate

(A) Displacement and Strain

For a circular plate with axisymmetric oscillations, the linear strains associated with the displacement can be expressed
as
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, (2)

where (u
r
, u�, w) are, respectively, the radial, circumferential and transverse displacements of a point on the plate at

z = 0, (�
r
, ��, �r�) is the strain components, � �0 0 0 0, ,r r� �� � � � � is the membrane strains, and � �1 1 1 1, ,r r� �� � � � �  is the

flexural (bending) strains.

(B) Equilibrium Equation

Since only small strains, displacements and rotations are considered, the effect of the rotary inertia can be neglected.
The transverse governing equations of the CLPT can be derived using the dynamic version of the principle of
virtual displacement [26]:

2

02

(2 )1 rr M MM
q I w

r r r
�� ��

� � �
� �

�� , (3)

where q is the distributed force at surface of the plate, and moment resultants and the mass moments of inertias are
defined as

0

n
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z

z
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M

M zdz

M
� �

� �

�
�
�

� � � �
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�M
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0

0 0
n

z

z
I dz�� � , (4)

where (�
r
, ��, �r�) are the radial, circumferential and shear stresses, respectively, and �

0
 is the material density.

(C) Laminate Constitutive Equation

Assume that all deposited film and silicon substrate are transversely isotropic. The piezoelectric layer is polarized
at the thickness direction, and its two surfaces are completely covered with electrodes. The linear constitutive
relations for the piezoelectric lamina can be expressed by
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where E
z
 and D

z
 are, respectively, electric field and electric displacement at Z direction; e

31
 and 33

S�  are, respectively,,

the plane-reduced piezoelectric constant and dielectric permittivities at a constant strains, that is,
2

31 31 33 13 33 33 33 33 33/ , ( ) /E E E E S E E Ee e e C C e C� �� � � � , in which the superscript E mean that they are three-dimensional

piezoelectric, dielectric and elastic constants. The plane stress-reduced stiffness coefficients C
11

, C
12

, C
66

 are known
in terms of the engineering constants (E, �):

11 21

E
C

�
�

� , 12 21

E
C

�
�

�
�

,
11 12

66 2(1 ) 2

C CE
C

�
�

� �
� . (3)

Note that the piezoelectric coefficients are zero for non-piezoelectric layer in and .

(D) Simplified Equation of Motion

The electric potential is assumed to quadratic function with regard to z:
2

0 1 2z z� � � �� � � . (4)

The electrical displacement D
z
 is constant with respect to the plate thickness as

0
3zD D� . (5)

The electrical boundary conditions for the piezoelectric layer with fully covered electrodes are:

1 1|
pz z V�
�� �  and 2|

pz z V� � � . (6)

Substituting (6) into (4), it yields

1 2
1 22 p

c
p

V V
z

h
� �

�
� � (7)

where p
cz is the distance from the Z = 0 coordinate plane to the mid-plane of piezoelectric layer, that is,

1( ) / 2.p
c p pz z z�� �

According to (4), the electric field can be expressed as

0 1
1 22z z zE z E zE

z

�
� �

�
� � � � � � �

�
. (8)

Substituting (5) and (8) into (2) through (7), it yields

0 1 1312 1

33

( )
p
c

z rS
p

e zV V
E

h �� �
�

�
� � � , 

1 1 131

33

( )z rS

e
E �� �

�
� � � . (9)

Substituting (8) through (9) into (1), the membrane stresses, � �0 0 0, ,r r� �� � �  and flexural stresses, � �1 1 1, ,r r� �� � � can

respectively be obtained as
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where 2
31 33.S

pC e� �

Substituting (1) into using (10) and (11), the membrane forces and bending moments can be obtained as

M = B 0 + D 1 – Mp (12)

where
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n
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3
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C h
D C z z ��
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in which m = 11, 12, 66, and �
0
 = 0 for m = 66 and �

0
 = 1 for m = 11 or 12.

From (3), it is known:

B
11

 – B
12

 = 2 B
66

, D
11

 – D
12

 = 2D
66

. (16)

To simplify controlling equations, the coordinate h
0
 is redefined as the reference plane such that B

11
 = 0. From

and (15), it can be deduced that:

( ) ( )
0 11 11

1 1 1

1
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2

n k n
k k

k i k k
k i k

h C h h h C h
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� �� �
� �� �� �

� �� �
� � � . (17)

Substituting (12) into through and , and condition B
11

 = 0, the equations of motion in terms of displacements can
be obtained as

4 3 2

11 04 3 2 2 3

2 1 1
( , ) ( , ) ( , )D w r t q r t I w r t

r r r r r r r

� �� � � �
� � � � � �� �� � � �� �

�� (18)

Equation is the simplified motion equation in terms of displacement. According to , the in-plane membrane
vibration is no longer coupled from the bending vibration. Hence, only the bending vibration equation under the
boundary conditions is necessary to be considered.

For the elastic edge and center point, the displacement boundary conditions are
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, 0, 0
w

w at r
r

�
� � � �

�
. (21)

where, k
1
, k

2
 are elastic coefficients of linear spring and screw spring respectively, 12 11/D D� � .

4. CALCULATION METHODOLOGY

If the structure subjects to the time harmonic loading at a circular frequency �, the displacements and sensor
voltage are also time harmonic with the same frequency. They can be expressed as

( , ) ( ) i tq r t q r e �� � , ( , ) ( ) i tw r t W r e �� , i t
sV Ve �� � , 31 2 1( )p p i t p i t

r cM M e e z V V e� �� � �� � � . (22)

Substituting (22) into (18), the bending governing differential equations of mode shape W(r) can be obtained:

4 3 2
2

11 04 3 2 2 3

2 1 1
( ) ( ) ( )

d d d d
D W r I W r q r

dr r dr r dr r dr
�

� �
� � � � �� �

� �
� . (23)

Corresponding to (23), mechanical boundary conditions for the elastic edge (19) and center point (21) are

11 1

1
, / 2

d d dW
D r k W at r a

dr r dr dr
� � � , (24)

2

11 22
( ) , / 2
d W v dW dW

D M k at r a
dr r dr dr

� � � � �� , (25)

, 0, 0
dW

W at r
dr

� � � � . (26)

Generally, because the dimension of the structure is very small, it may cause additional calculation error, even
float data overflow. To avoid data flow and reduce the calculated error, following dimensionless parameters are
therefore introduced:
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D
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where �  and � is the frequency parameter, f is nature frequency. The governing equation (23), and boundary
conditions (24) ~ (26) can be expressed by dimensionless parameters:

4 3 2
4

4 3 2 2 3

2 1 1d W d W d W dW
W q

d d d d
�
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� � � � � (29)

1

1
0, 1

d d dW
K W at

d d d
� �

� � � �
� � � (30)



2

22
0, 1

d W v dW
K M at

d d

� �
� � � � � �� �� � �� �

(31)

, 0, 0
dW

W at
d

�� � � �
� (32)

Let load and electric potential be zero for free vibration. Then the complete solution of equation (29) is:

1 0 2 0 3 0 4 0( ) ( ) ( ) ( )W C J C N C I C K� �� � �� � �� � �� (33)

where C
i
 (i = 1 ~ 4) are constants determined by boundary conditions (30) ~ (32) , J

0
, N

0
, I

0
, K

0
 are, respectively,

Bessel functions of the first kind of zero order, Bessel functions of the second kind of zero order, modified Bessel
functions of the first kind of zero order and modified Bessel functions of the second kind of zero order. Since no
external force acts at the center, the solution must be finite for x = 0, i.e. condition (32), thus, C

2
 and C

4
 must be zero.

The solution will then be given by:

1 0 3 0( ) ( )W C J C I� �� � �� (34)

According to boundary conditions (30) and (31), constants C
1
 and C

3
 should satisfy following equations.

3 3
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[ ( ) ( 1) ( )] [ ( ) ( 1) ( )] 0

J K J C I K I C

J K J C I K I C
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�
� � � � � � � � � � � � � � � � ���

(35)

where J
1
 and I

1
 are Bessel function of the first type of one order and modified Bessel function of the second kind of

one order, respectively. In order to obtain nonzero solution in equation (35) with respect to C
1
 and C

3
, its determinant

made up of the coefficients is equal to zero, which results in the characteristic equation for determining the natural
frequency parameter (�) as

3 3
1 1 0 1 1 0

0 2 1 0 2 1

( ) ( ) ( ) ( )
0

( ) ( 1) ( ) ( ) ( 1) ( )

J K J I K I

J K J I K I
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�

�� � � � � � � � � � � � � � (36)

Equation (36) results in the n-th order characteristic equation for determining the natural frequencies. The exact

nature frequencies can be obtained by means of formulae 

2
11

2
0

2 D
f

a I

�
�
�  if only the parameters are calculated.

Especially, the frequency equations with regard to several ordinarily boundary conditions can be obtained from
equation as follows:

(a) The clamped boundary condition (k
1
 = �, k

2
 = �): J

0
(�) I

1
(�) + J

1
(�) I

0
(�) = 0.

(b) The simply supported boundary condition (k
1
 = �,  k

2
 = 0):

� � � �0 0 1 0 0 1( ) ( ) ( 1) ( ) ( ) ( ) ( 1) ( ) 0J I I I J J� � � � � � � � � � � � � � � � .

(c) The free boundary condition (k
1
 = 0, k

2
 = 0): � � � �1 0 1 1 0 1( ) ( ) ( 1) ( ) ( ) ( ) ( 1) ( ) 0J I I I J J� � � � � � � � � � � � � � � � .

(d) The elastic embedding fixed boundary condition (k
1
 = �):

� � � �1 0 2 1 1 0 2 1( ) ( ) ( 1) ( ) ( ) ( ) ( 1) ( ) 0J I K I I J K J� � � � � � � � � � � � � � � � � � .

(e) The elastic support boundary condition (k
2
 = �): I

1
(�)  (�3 J

1
(�) + K

1
 J

0
(�)) + J

1
(�) (�3 I

1
(�) + K

1
I

0
(�)) = 0.

5. NUMERICAL ANALYSIS

(A) Frequency Parameters

First, the frequency parameters � � �  for several common boundary cases are calculated and listed in Table 2.

Second, Table 3 lists the frequency parameter for various dimensionless elastic coefficients (K
1
, K

2
) for the first five



vibration modes. Lastly, in order to observe expressly the frequency parameters various with dimensionless elastic
coefficients K

1
 and K

2
, figures 4-6 show their relative change cures. In these figures, the relative change is defined

as

�
i
 = (�

i
(K

1
, K

2
) – �

i
(K

1
, 0)) / �

i
(K

1
, 0)) / �

i
(K

1
, 0), i = 1, 2, 3, 4, 5, for given K

1

Because of the frequency parameters after first mode change very small, the only frequency parameter �
1
 is

shown in figure 7. From Tables 3 or Figures 4 ~7, it can obtain the following conclusions: (1) When given coefficient
K

2
, the frequency parameters are increased with elastic coefficient K

1
. The first frequency parameter is rapidly

increased with the increase of elastic coefficient K
1
, especially K

1
 < 10. However, it is slowly increased when

K
1
 > 10. (2) The first frequency parameter change is the largest among all, that is, �

1
 > �

2
 > �

3
 > �

4
 > �

5
. (3) When

given coefficient K
1
, the first frequency parameters are decreased with elastic coefficient K

2
. The larger the coefficient

K
1
 is, the less first frequency parameter decreases. (4) Frequency parameters, especially first frequency parameter

depend on parameter K
1
(<10) (linear spring) markedly and depend on parameter K

2
 (screw spring) slowly.

Table 2
Frequency Parameters  for the First Five Modes at Several Common Boundary Cases

�

( 1 2,K K ) �1 �2 �3 �4 �5

K
1
 = K

2
 = � (clamped) 3.1962 6.3064 9.4395 12.5771 15.7164

K
1
 = �, K

2
 = 0 (simply supported) 2.2116 5.4485 8.6095 11.7595 14.9058

K
1
 = 0,  K

2
 = 0 (free) 2.9895 6.1952 9.3642 12.5203 15.6708

Table 3
Frequency Parameters vs. various Elastic Coefficients (K

1
, K

2
) for the First Five Vibration Modes

K
1

K
2

�
1

�
2

�
3

�
4

�
5

0.0 0.0 2.9895 6.1952 9.3642 12.5203 15.6708

1.0 3.2488 6.3409 9.4643 12.5965 15.7322

5.0 3.5686 6.6277 9.7070 12.8038 15.9122

50 3.7950 6.9505 10.0818 13.2071 16.3306

� 3.8317 7.0156 10.1735 13.3237 16.4706

1.0 0.0 2.9477 6.1906 9.3630 12.5198 15.6705

1.0 3.2207 6.3370 9.4632 12.5960 15.7320

5.0 3.5526 6.6249 9.7061 12.8033 15.9120

50 3.7853 6.9488 10.0812 13.2068 16.3305

� 3.8229 7.0141 10.1730 13.3235 16.4705

5.0 0.0 2.7875 6.1739 9.3581 12.5177 15.6695

1.0 3.1110 6.3217 9.4585 12.5940 15.7310

5.0 3.4899 6.6135 9.7022 12.8016 15.9110

50 3.7474 6.9421 10.0789 13.2058 16.3299

� 3.7883 7.0084 10.1711 13.3226 16.4701

50 0.0 2.3079 6.0088 9.3055 12.4952 15.6579

1.0 2.6124 6.1680 9.4080 12.5720 15.7196

5.0 3.0728 6.4949 9.6599 12.7822 15.9006

50 3.4527 6.8714 10.0537 13.1940 16.3234

� 3.5161 6.9470 10.1502 13.3132 16.4651

0.0 2.2116 5.4485 8.6095 11.7595 14.9058

1.0 2.4571 5.5439 8.6691 11.8029 14.9499

5.0 2.8155 5.7837 8.8458 11.9421 15.0545

50 3.1364 6.1952 9.2822 12.3789 15.4817

� 3.1962 6.3064 9.4395 12.5771 15.7164
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(B) Dimension Effect of Diaphragm on Nature Frequency

In this part, clamped boundary condition is considered. The influence of the diameter of circular laminar diaphragm
with different thicknesses of piezoelectric layer, h

p
 = 0.6 mm, 2.4mm, 4.2mm, 6.0mm on the first nature frequency

is shown in figure 8. The frequency values decrease rapidly with the increase of the diameter, especially in the small
diameter range. Through varying thickness of the PZT films and diameter of the clamped circular plate, the required
resonance frequency can be obtained. For example, for the PZT films with thickness of 0.6mm, the resonance
frequency of the diaphragm with diameter of 1000µm to 300µm are at the range of 10 kHz to 100 kHz. This
frequencies range is particularly suitable for the ultrasonic audio applications. Because the first frequency is inverse
proportion to square of diameter of the circular plate, a simple and easy used linear relation on frequencies could be
obtained as we change x-coordinate in to the reciprocal of area of diaphragm, 4/(�a2), shown in figure 9.

(C) Thickness Ratio Effect on the Nature Frequency

The nature frequency of the diaphragm varies with the thickness of the piezoelectric film. Figure 10 shows the
influence of piezoelectric film thickness on the frequency factor f versus the thickness ratio a, where a is thickness
ratio between the thickness of the PZT layer and the total thickness of plate. It is assumed that the total thickness is
a constant while the thickness of the PZT film varies with the ratio a, other layer’s thicknesses hold the line, namely,

h = 1.65 µm, h
p
 = �h, h

m
 = h

1
 + h

3
 + h

4
 + h

5
 = 0.55 µm,  h

6
 = (1 – �) h – h

m
 = 1.1 – 1.65� (µm)
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Figure 8: Change of the First Nature Frequency via the
Variation of Diameter of Circular Diaphragm

Figure 9: Change of the First Nature Frequency via the
Variation of Inverse of Area (4/ a2) of Circular Diaphragm

The range of a is therefore 
2

0 1
3

mh

h
� � � � � . From figure 10, the optimized thickness ratio can be obtained to

be 0.42 for PbZr
0.54

Ti
0.46

O
3
, at which the largest deflection can be obtained. It is note that same optimized thickness

ratio is obtained for other different diameter.
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Figure 10: Dependence of the Thickness Ration of Piezoelectric Layer on the Frequency (a = 800µm)

6. CONCLUSIONS

The analytical model of the multi-layered laminated elastic support circular plates was formulated using the electro-
elastic theory and classical laminated plate theory. The dimensionless governing differential equations were derived
and solved. The exact solution of the laminated elastic support circular plate can be applied in many different cases,
such as laminates containing any numbers of layer, and laminates with different thickness and diameter, etc.

The influence of elastic coefficients of the support condition of laminar diaphragm on the nature frequency was
studied. The first frequency parameter is rapidly increased with the increase of small elastic coefficient (linear
spring, K

1
 < 10). However, it is slowly increased when K

1
 > 10. Frequency parameters, especially first frequency

parameter depend on parameter K
1
(<10) (linear spring) markedly and depend on parameter K

2
 (screw spring) slowly.

The influence of dimensions of the laminar diaphragm on the nature frequency was also studied. The frequency
values decreased rapidly with the increase of the diaphragm diameter, especially in the small diameter range. The



first frequency of a diaphragm versus the thickness ratio of PZT layer to total layer of the plate was constructed for
the purpose in the design of actuator or sensors in MEMS applications.
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