
1-5 Bharati Vidhyapeeth’s College of Engineering for Women, Pune (Department of Computer Engineering), Emails: pukaledd@gmail.com,
ngaikwad1052@gmail.com, pranali.dhole74@gmail.com, kajalchauhan440@gmail.com, kkm42921@gmail.com

Detection and Elimination of Vulnerabilities
in Web Applications using Data Mining and
Static Analysis
D.D. Pukale1, Neha Gaikwad2, Pranali Dhole3, Kajal Chauhan4 and Komal Kumari5

ABSTRACT

Security in web application is an important issue in present web. A noteworthy reason for this problem is insufficient
knowledge of software engineer about secure coding, which leads to vulnerabilities in web application. This issue
can be handled by the use of static analysis on source code which will detect input vulnerabilities. But this approach
can result in detection of numerous false positives. Hence our paper approaches a combination of techniques that
will detect input vulnerabilities but with lesser false positives. The problem of false positives will be solved by the
usage of data mining. Our approach will use two inverse methodologies: firstly, people will code the information
regarding input vulnerabilities (for taint analysis), secondly automatic detection of these vulnerabilities in source
code will be done (with machine learning, for data mining). Here we will do programmed code amendment by
embedding fixes in the source code. Afterwards diverse testing techniques like regression testing will be used to
ensure if the code after rectification acts of course and each vulnerability is evacuated. The approach will be
actualized in the WAP instrument and a trial assessment will be performed with numerous web applications with
PHP source code to guarantee the accuracy of hardware.

Keywords: Data mining, False Positives, Input Vulnerabilities, Source code.

1. INTRODUCTION

In today’s world one of the most important concerns regarding World Wide Web is ‘security’. Everyday
newspapers are flooded with various hacking related news of different web pages. So this paper explores
an approach that will detect input vulnerabilities but will also build programmer’s ability to develop better
and secure web pages in future. Here the input vulnerabilities will be detected by examining the source
code. The vulnerabilities will be fixed afterwards and the programmer will be informed about these
vulnerabilities. This will help programmer to improve their coding practise. After fixing the source code,
the programmer will be provided a testing module to check if the code has been fixed properly or there is
still the presence of input vulnerabilities [5]. To find the vulnerabilities, taint analysis (one of the form of
static analysis) will be used, but it have one major problem associated with it. It shows the presence of
vulnerabilities when it is not actually present in the source code, this is also known as false positives [9].
This problem becomes more difficult with PHP language which is weakly coded by the programmers and
hence leads to security threats. In 2013, 9% of all vulnerabilities recorded by the National Vulnerability
Database were connected to PHP. In this manner, we use a combination of taint analysis and data mining to
find vulnerabilities and to detect false positives respectively. This approach will use two inverse
methodologies: firstly, people will code the information regarding input vulnerabilities (for taint analysis),
secondly automatic detection of these vulnerabilities in source code will be done (with machine learning,
for data mining). Many efforts have been taken in this area to solve this problem, but much success has not
been achieved till now. Mostly two approaches have been used separately. First approach is intrusion

ISSN: 0974-5572I J C T A, 10(8), 2017, pp. 159-165
© International Science Press

160 D.D. Pukale, Neha Gaikwad, Pranali Dhole, Kajal Chauhan and Komal Kumari

detection. In this approach, detection totally relies on the information provided by the programmers whereas
in the second approach i.e anomaly based detection, detection is done with the help of machine learning. In
our approach, we have used the combination of these two approaches. Human will code the information
regarding the input vulnerabilities and machine learning will help to detect these vulnerabilities.

Here the concern that comes along with taint analysis is the presence of false positives. So to solve this
problem we take help of data mining techniques. The data mining techniques will be performed after the
implementation of taint analysis and it will only measure the parts of the code that we doubt to have false
positives present in them, and will use a combination of classifiers to label each vulnerability as true or
false. Classifiers used for this purpose will be: ID3, Random Forest, Random Tree, Logistic Regression ,
C4.5/J48, Naive Bayes, K-NN, Bayes Net, SVM and MLP. We explore the various induction rules like
PART, JRip, Prism and Ridor to present the attributes associated with false positives[9].

2. EXISTING SYSTEM

The WAP tool is one of the recent developments that detect vulnerabilities of eight classes in PHP web
application. WAP can be improved to detect different types of input vulnerabilities. It is able to handle the
vulnerability classes like SQLI, XSS, remote file inclusion (RFI), local file inclusion, OSCI, PHP command
injection, Source Code Disclosure. The tool has knowledge that is imparted manually about the
vulnerabilities[6]. It verifies if the input can reach the sensitive sinks without proper sanitization or validation.

Table 1. Shows the example of XSS, its sensitive sinks, entry points, and sanitization functions.

Table 1
Entry points, Sensitive sinks and sanitization functions for XSS vulnerabilities.

Entry Points Sensitive Sinks Sanitisation Functions

$_POST Print Htmlentities

$_GET echo htmlspecialcha

$_REQUEST die rs

$_COOKIE printf strip_tags

HTTP_POST_VA exit urlencode

RS error

HTTP_GET_VA file_put_contents

RS fprintf

HTTP_COOKIE_ file_get_contents

VARS fgets

$_FILES fgetc

$_SERVERS fscanf

The three main components of WAP are: 1) Taint Analyzer, 2) Data Mining Component, 3) Code
Corrector.

The Taint Analyzer is divided into three different parts of data about each vulnerability class: sanitization
functions, entry points, sensitive sinks. But taint analyzer tends to generate many false positives. A false
positive is a term used when taint analyzer identifies the vulnerabilities that are not true. The entry points are
the functions that reads input parameters, such as, $_GET, $_POST are always a different of the same set,
where as the rest tend to be simple to recognize the vulnerability type. The data mining segment has to be
trained with new knowledge set about false positives that may occur while processing the code for the new
class. Initially training might be skipped, and upgraded incrementally when more data becomes available. For
the training of the data set, we need data about candidate vulnerabilities which are found by the taint analyzer,

Detection and Elimination of Vulnerabilities in Web Applications using Data Mining and Static Analysis 161

which have to be labeled as true positive or false positives. False positive predictor module classifies the
vulnerability as false positive or false negative. Then, the attributes associated to the false positives have to be
used to configure the classifier[6]. The code corrector needs information about what sanitization function
need to be used at a particular point to handle that class of vulnerability, and where it shall be embedded.
Again, getting this information is possible once the new class is known and understood. Tainted model is
being used while performing static and dynamic analysis for finding the security analysis. This model is
implemented by means of static analysis in PHP for WAP tool. Lack of formal specification of PHP is one of
the limitations of WAP tool. One of the disadvantages is that amid the testing of the tool with many open
source applications, a few times WAP was not able to parse the source code for absence of a grammar rule to
deal with complicated constructions. With time, these rules were added, and these problems are solved. Pixy
uses taint analysis for verifying PHP code, but expands it with alias analysis that considers the existence of
aliases, i.e., of two or more variable names that are utilized to denominate the similar variable. Furthermore,
Pixy does only module-level analysis, whereas WAP does global analysis (i.e., the analysis is not limited to a
module or file, but can involve several). Shar and Tan created tools named PhpMinerI, and PhpMinerII, which
are two tools that use data mining for detecting the presence of vulnerabilities in PHP programs. The attribute
sets are extracted from the code slices and data mining algorithms are applied to these attributes, leading to
detecting vulnerabilities. WEKA tool performs the process of data mining. Some of the applications have also
used Penetration Testing approach which is based on stimulation of attacks against web application. As this
approach is implemented as black box testing so the scope is limited to HTTP responses.

The following is the techniques used for vulnerability scanning: Static Analysis- This technique is
known as one of the fast, reliable and efficient method to detect the vulnerabilities. It performs the analysis
of the program structure by using various methods. To detect the flaws in the code, techniques used are:
lexical analysis, constraint analysis etc. Many of the applications are implementing this technique so as to
detect the flaws along with the additional modules.

3. LITERATURE SURVEY

1. Sonam Panda, Ramani S proposed a static examination algorithm to determine SQLCIVs. It determines
the arrangements of conceivable database queries that a web application may create utilizing situation free
grammars and tracks flow of data through untrusted sources into those grammars [8]. By making use of a
general meaning of SQLCIVs based on the background of unreliable substrings, we can dodge the requirement
for manually inscribed policies. It was precise, notable unknown liabilities in the web applications of real
world with multiple negatives, showing the feasibility of our method [8].

Figure 1: Overview of the WAP tool

162 D.D. Pukale, Neha Gaikwad, Pranali Dhole, Kajal Chauhan and Komal Kumari

2. L. K. Shar and H. B. K. Tan put forward the discovery of only two major input liabilities comprising
of SQL Injection and XSS by the combination of static and dynamic analysis of the code [3]. Wherein the
hybrid characteristics of the code are collectively classified from the graph of data dependency. Nodes that
have definite problems related to security are then classified using static analysis [3].

3. Mounika B, A. Krishna Chaitanya projected an inevitable system that provided an option to produce
an output sanitization which is robotized input approval (IPAAS) and it is displayed for avoiding XSS and
SQL assaults [5]. This method advances the safe improvement of web applications by accomplishment of
parameter extraction and different type learning techniques by applying commanding information validators
at runtime [5].

4. N. L. de Poel, proposed SAFERPHP, which is a static investigation system used for detecting the
liabilities in PHP source code. This agenda employs various algorithms including: 1) To implement new
type of symbolic performance to check denial-of-service liabilities. 2) A new type of infer procedural
analysis to verify the application sanction policy and find misplaced checks before any complex database
operations [2].

5. Y.W. Huang anticipated an approach which gave quick protection at a much lower cost than others,
since approval is confined to potentially weak segments of code [6]. If Web SSARI classifies the use of
untrusted data taking after right treatment, the code is left as it is. As per several experiments, Web SSARI
carried only 0.02 percent of all the statements to be inspected with inappropriate sanitization agendas [6].
Interestingly, Sharp and Scott implements global justification for each data submitted by the user without
any complaint and without even concerning that the same validation process may be implemented by web
application as well. This finally outcomes in pointless upstairs [6].

4. OUTLINE OF THE PAPER

The paper basically focuses on following points:

1) Improvement in security of web applications by detecting and removing input vulnerabilities in
source code of web applications.

2) Usage of taint analysis and data mining techniques for detection of vulnerabilities with fewer false
positives.

3) Automatic correction in the source code and informing programmer about it.

4) Finally experimenting the tool with various web applications to see the correctness of tool.

5. PROPOSED SYSTEM

This paper proposes a system to check for vulnerabilities and detect them and also eliminate those detected
vulnerabilities in Web Application. It also proposes a tool that will scan PHP applications to detect and
remove vulnerabilities and input validation vulnerabilities. The tools for implementation of the problem in
proposed system is made by combination of two techniques : 1) Data mining 2) Static source code analysis.
To identify the false positives data mining will be used along with the top three machine learning classifiers.
Induction rule classifier will be used to confirm the presence of the false positives. The selection of classifiers
is done on basis of comparison between the available appropriate alternatives. The single detection technique
fails to provide correct results so different detection techniques are combined. But they also fail to provide
entirely correct results. After detection of candidate vulnerabilities, it will be checking for false positives
.The proposed system comprises of the tool which will replace the vulnerable code by fixes .Fixes are
nothing but the correct code. After replacing the code by fixes, testing will be performed to check for the
correct working of the system. It will check the applications behavior after replacing vulnerable code with

Detection and Elimination of Vulnerabilities in Web Applications using Data Mining and Static Analysis 163

fixes. The proposed system is designed for PHP applications[9]. The system has been experimented with
number of synthetic code in which vulnerabilities have been induced purposely.

6. IMPLEMENTATION

The approach can be implemented as a sequence of steps.

1. Taint analysis: The job of this module is to parse the source code. This also gives the trees which
describe more about candidate vulnerable control flow paths. If the variables are not checked properly they
may lead to development of vulnerabilities. So the variables need to check before reaching the sensitive
sinks. Input to the module of taint analysis is a PHP source code and the output of this module will be the

Figure 2: Architecture of Proposed System.

Figure 4:Tainted Symbol Table and Taint analysis on variables

Figure 3:Abstract Syntax Tree

164 D.D. Pukale, Neha Gaikwad, Pranali Dhole, Kajal Chauhan and Komal Kumari

candidate vulnerabilities. The first step will be parsing of the source code which will generate an Abstract
Syntax Tree i.e. AST. Lexer and Parser will do the job of creating AST. In the Fig 3 shows the Abstract
Syntax Tree for $b=$_GET[‘v’]. All the variables that act as entry points are marked tainted in the beginning.
A symbol table will be generated which will have tainted variables. Taint analysis travels through this
Tainted Symbol Table. If a variable is marked as tainted then the symbols depending on this variable are
checked. Fig 4 shows the Tainted Symbol Table for specific symbols having name, line number, and tainted
flag as its variables. In this way, all the candidate vulnerabilities are marked which will be checked by a
false positive predictor to make sure about the real vulnerability.

2. Data mining: Using data mining we will obtain the attributes from the candidate vulnerable control-
flow paths. Here data mining will be actually used to confirm the presence of false positives. This will be
done with the help of classifiers. If the presence of false positives is confirmed, further processing will be
done with the help of induction rules.

3. Code correction: After detecting vulnerabilities and checking it for false positives each real
vulnerability is removed by correction of its source code. This module for the type of vulnerability selects
the fix that removes the vulnerability and signalizes the places in the source code where the fix will be
inserted. Then, the code is corrected with the insertion of the fixes and new files are created. Fixes are small
pieces of the code (small PHP functions developed to the effect) that performing sanitization or validation
of the user inputs, depending of the vulnerability type. Our approach involves automatic code correction
using K-NN algorithm after the detection of the vulnerabilities by taint analyzer and the data mining
component.

4. Feedback: Feedback will be provided by the programmer at the end of testing module.It will be
based on experience of the client.Experience will be based on data collected from vulnerable paths ,
vulnerabilities , fixes , false positive probability and the attributes that classified it as a false positive.Feedback
will help programmer to avoid the same mistakes.

5. Testing: In this module testing will be performed on the corrected code to check for more bugs.We
will perform manual testing on the source code.In manual testing ,testing is done without using automation
tools.Test cases are executed manually.Different manual testing tools are Selenium ,QTP, Jmeter, Loadrunner.

7. ALGORITHMS USED

The algorithms which will be used in implementing the proposed system are Logistic Regression, Naïve
Bayes (NB) and K-Nearest Neighbor (KNN). The other algorithms that will be used are random tree and
random forest classifier.

8. CONCLUSION

The following paper put forwards an approach for finding and amending vulnerabilities within the web
applications, and a tool that accomplishes the approach for PHP programs and input validation vulnerabilities.
A blend of two systems: static source code examination and data mining is utilized for the approach and the
device search for vulnerabilities. To recognize false positives, Data mining is incorporated which utilizes
the main three machine learning classifiers, and an induction rule classifier, to legitimize their occurrence.
After an intensive comparison between several alternatives all classifiers were chosen. The static examination
issue is undecidable and depending on data mining can’t evade this undecidability, however it just gives
probabilistic consequences. The tool is used to correct the code by embedding fixes, comprising sanitization
and validation functions. Testing is utilized to check if the fixes surely evacuate the vulnerabilities and do
not compromise the (correct) conduct of the applications. The tool became explored by way of the usage of
synthetic code with vulnerabilities embedded on motive, and with a widespread variety of open source
PHP applications. It turned into additionally contrasted with source code analysis tools: Pixy, and PHP

Detection and Elimination of Vulnerabilities in Web Applications using Data Mining and Static Analysis 165

MinerII. This evaluation proposes that the device can discover and correct the vulnerabilities of the classes
it is programmed to deal with. it may find out 388 vulnerabilities in 1.4 million strains of code. Its exactness
and accuracy were round 5% advanced to PHP MinerII’s, and 45% superior to Pixy’s.

REFERENCES
[1] L. K. Shar “Predicting common web application vulnerabilities from input validation and sanitization code patterns”,

Automated Software Engineering (ASE), 27th IEEE/ACM International Conference, 2012.

[2] N. L. de Poel, “Automated security review of PHP web applications with static code analysis,” ACM 23rd international
conference on World wide web, 2014.

[3] L. K. Shar and H. B. K. Tan, “Automated removal of cross site scripting vulnerabilities in web applications,” Journal of
Information and Software technology, Vol 54, Issue.5, May 2012.

[4] Y.W. Huang , “Web application security assessment by fault injection and behavior monitoring,”, ACM 12th international
conference on World Wide Web, 2003.

[5] Mounika B, A. Krishna Chaitanya, “Survey on Preventing Input Validation Vulnerabilities in Web Applications through
Automated Type Analysis”, International journal of Mathematics and Computer Research,Volume 1, Issue 2 March
2013.

[6] Y.W. Huang , “Securing web application code by static analysis and runtime protection,”, ACM 1-58113-844-X/04/
0005, WWW 2004.

[7] L. K. Shar, H. B. K. Tan, “Mining SQL injection and cross site scripting vulnerabilities” in International Conference on
Software Engineering, 2012.

[8] Sonam Panda, Ramani S, “Protection of Web Application against SQL Injection Attacks”, IJMER Vol 3, Issue.1, Jan-Feb
2013

[9] Iberia Medeiros, Numo Neves, “Detection of web application vulnerabilites using static analysis.”, IEEE transaction on
relaibility.

[10] Symantec, Internet threat report. 2012 trends, vol. 18, Apr. 2013.

[11] Ashwani Garg, Shekhar Singh, “A Review on Web Application Security Vulnerabilities” IJARSCE, Volume 3, Issue 1,
January 2013.

