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ABSTRACT:

Background: Tumor angiogenesis is the process of vessel arousal and growth, initiated by chemical substances
secreted by adjacent tissue of a tumor. After the tumor has reached a certain size, oxygen and nutrient supply
cannot be accomplished alone by diffusion and the tumor forms new vessels from the adjacent tissue, which sprout
and invade the tumor. The transition to this vascular stage is crucial to tumor development as it allows the tumor to
grow and disseminate in the whole body.

The present work proposes a partial differential equations model which uses porous medium diffusion as well as
Monod growth terms to model angiogenesis. Our hybrid model consists of two parts: in the first part, a continuous
partial differential equations model is developed which describes how the concentrations of the factors inducing
angiogenesis evolve in time, with equations for the concentration of the endothelial cells (EC), fibronectin, the
matrix degenerating enzyme (MDE), and the concentration of tumor angiogenic factors (TAF). In the second part
we model the motion of single sprouts by a random walk approach as a reaction to the underlying chemical field
determined in the first part.

Results: With our model we are able to reproduce important features of angiogenesis like the brush border effect
and the start of the tip proliferation at a certain concentration of TAF without the artificial use of Heaviside
functions. We can see that the networks generated by our random walk model resemble vessel networks generated
by angiogenesis in vivo (as seen in angiographic scans).

Conclusions: From our numerical simulations new possibilities to interpret the process of angiogenesis arise. The
composition of the tissue can be considered by the use of different porosity constants, the higher this constant, the
more collateral movement the simulated vessels show. Furthermore, the tip proliferation may no longer be the
only reason for the brush border effect and the sudden increase of the EC density at certain concentrations since
also the density of the tissue, which is modeled by the inclusion of porous medium diffusion, has to be considered.
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1. BACKGROUND

1.1 Introduction

Angiogenesis is the process of vessel arousal and growth, initiated by chemical substances secreted by
adjacent tissue. In this paper we develop a mathematical model based on a system of nonlinear partial
differential equations to describe the motion of the forming sprouts as a reaction to the underlying chemical
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field induced by these chemical substances. The movement of the vessel tips towards the tumor is modeled
by a biased random walk in which we assume the movement of the endothelial cells to depend on transition
probabilities derived from the partial differential equations. Angiogenesis is a complex process with many
factors involved; our model will focus on some of the key factors. Nevertheless, we are able to see that the
numerical simulations generate vessels that resemble vessel networks produced by angiogenesis observable
in angiographic scans. Moreover the important brush border effect, which reflects the fact that the main
vessel density is behind the leading tip front and which is induced by the strong vessel branching in the
proximity of the tumor, can be observed.

This work will be divided into two parts; in the first part we will develop a continuous mathematical
model consisting of a set of partial differential equations which describes how the concentrations of the
factors inducing the process of angiogenesis evolve in time. We choose to include the concentrations of the
endothelial cells (EC), of fibronectin and of the matrix degenerating enzyme (MDE) as well as the
concentration of tumor angiogenic factors (TAF) into our model. In the second part, we will model tumor
angiogenesis by a random walk approach which describes the motion of the sprouts as a reaction to the
underlying chemical field determined in the first part. It is based on the modeling framework called reinforced
random walks [1], which was adapted to describe angiogenesis by Sleeman [2]. As a last step we will
compare our results to vessel networks generated by angiogenesis in vivo.

In the first part of this paper, we will introduce the model in one dimension and then expand the model
to two and three dimensions. In the second part of the paper, we will develop a random walk approach in
two and three dimensions. The main focus in doing this is to develop a consistent model which will enable
us to observe the effects of the inclusion of new terms in one as well as in two and three dimensional model
settings. We will for example see how the assumption of Monod growth for the EC and the TAF and the use
of porous media diffusion instead of conventional diffusion will improve the description of angiogenesis
development.

1.2 Biological Background

Tumor development and growth evolve initially in two phases, an avascular and a vascular stage [3]. In the
avascular stage, the tumor growth is restricted to few millimeters and its oxygen and nutrients supply takes
place throughout diffusion. After the tumor has reached a certain size, oxygen and nutrient supply cannot
be accomplished alone by diffusion and the tumor forms new vessels from the adjacent tissue, which
sprout and invade the tumor. This stage is called vascular and it allows the tumor to grow and disseminate
in the whole body. It was Folkman who first suggested [4] that the growth of a tumor beyond a certain size
depends on its ability to recruit new blood vessels. Actual proof by direct observation of the process came
until the late 1970’s [5, 6].

The rise and growth of blood vessels is called angiogenesis and is essential for growth and reparative
processes in tissues and organs. Blood vessels appear with the purpose of supplying tissues and organs with
oxygen and nutrients [7]. In adults, most blood vessels remain dormant and angiogenesis becomes active in
only a few physiologic situations (e.g. in the placenta during pregnancy for supplying the embryo with
nutrients and in wound healing [7]). Tumor growth also requires angiogenesis. Vessel arousal and growth
are initialized by chemical substances secreted by the tumor in the adjacent tissue. We will use the generic
term tumor angiogenesis factor (TAF) to refer to these growth factors. Once this chemical process has been
initiated, the extracellular matrix and the basal membrane begin to dissolve. After the basal membrane has
been dissolved, the endothelial cells (EC) migrate out of the milieu towards the tumor. Simultaneously, the
EC proliferate and form vessel-like structures. These vessel-like structures (sprouts) migrate towards the
tumor. In this process, cell division is largely connected to an area just behind the sprout tip and interactions
between the extracellular matrix and the cells strongly affect cell migration. One of the several matrix molecules
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which are known to interact with the endothelial cells is fibronectin. It is especially important as it is known
to enhance cell adhesion to the matrix. When fibronectin (and also TAF) bind to membrane receptors on the
endothelial cells, cell migration is activated and as a consequence of this, the EC begin to produce a matrix
degenerating enzyme (MDE) which increases the rate of attachment between EC and fibronectin.

In the next section, we give a brief overview of some mathematical models describing angiogenesis
before we proceed to our model.

1.3 Mathematical Models of Angiogenesis

Angiogenesis is an important process in cancer growth as it is crucial to the attachment of the tumor to the
blood system and thus also to the formation of metastases in the body. Therefore there has been great
interest in modeling the process of angiogenesis and especially the role played by the EC and by the TAF
has been studied extensively. Tumor-induced angiogenesis is a process which involves several scales,
mathematical models describing all these different levels have been proposed. Our model is a hybrid model
in which the progression of the vascular network is coupled to factors inducing the process of angiogenesis.
This is a natural approach to achieve a description of angiogenesis as it deals with the relevant processes
using an appropriate mathematical description for each.

Typically, mathematical models of angiogenesis describe the generation of a network of uncirculated
proto-vessels. Among the best-known models are the works of Sleeman with Levin and later Planck [2, 8-16].
They used the idea of reinforced random walks and Michaelis Menten kinetics and have made a great
contribution to modeling tumor induced angiogenesis. Their approach is based on Othmer and Stevens
[17] and Davis [1]. They introduced their approach in [9]. This model described endothelial cell receptors
as the stimulants for transforming angiogenic factor into proteolytic enzyme. A system of ordinary and
partial differential equations (PDE) is derived to describe the aggregation of the EC and the collapse of the
vascular lamina, which opens a passage into the extracellular matrix. This model was later extended in [11]
to include the roles of pericytes and macrophages in regulating angiogenesis and included the presence of
anti-angiogenic (angiostatic) factors. In [8] endothelial cell migration and proliferation into the extra-cellular
matrix leading to angiogenesis were modeled. This model is a system of coupled nonlinear ordinary and
PDEs. In [10] they focused on the biochemistry of the process at the level of the cell and propose standard
transport equations for the diffusion of molecular species in porous media. A good agreement with
observations from rabbit cornea experiments (onset of vascularization and the rate of capillary tip growth)
was obtained.

In [2] reinforced random walks were used to model the chemotactic response of the EC to TAF. They
also model the haptotactic response to the matrix macromolecule fibronectin using transition probability
rate functions. These functions essentially assign directional probabilities for the movement of EC. Our
model lies within this category.

Later, in [13], an individual cell-based model of tumor angiogenesis in response to a diffusible angiogenic
factor is proposed. In [14] a cell-based mathematical model of an experiment is built to assess the response
of EC to various diffusible angiogenic factors. The model includes both chemotaxis and chemokinesis.
Two and three-dimensional simulations are carried out and the results correlate well with the experimental
data. In [16] and [15] a mathematical description of the role of the angioproteins in angiogenesis is given.
One of the most interesting points about these works is the access to experimental observations and the fact
that the predictions of the model are in qualitative agreement. In [12] a circular random walk model is used
to allow the cells to move independently of a lattice.

While in many cases, angiogenesis is considered in two-dimensional models, see for example Mantzaris,
Webb and Othmer [18] and McDougall, Anderson and Chaplain [19], there exist three-dimensional models,



4 IJBR

like Chaplain [20]. Many three-dimensional models focus on considering the evolution of TAF and EC in
time, while the model of Chaplain also includes fibronectin. In McDougall, Anderson, Chaplain, in addition
to that, the effect of the matrix degenerating enzyme is taken into account. The model developed by Anderson,
Chaplain, GarcReimbert and Vargas [21] as well as the model by Mantzaris, Webb and Othmer [18] also
investigate the role played by angiostatin.

While today most models are hybrid, early models may be divided into discrete and continuous models,
including a continuous part dedicated to the description of a system of (partial) differential equations
modeling the evolution of the underlying chemicals as well as a discrete part in which a random walk
model is used to simulate the evolution of particular vessels in space and time. Examples for the continuum
models are Balding and McElwain [22], H. M. Byrne and M. A. J. Chaplain [23], M. A. J. Chaplain [24], J.
Valenciano [25] and M. E. Orme and M. A. J. Chaplain [26]. These models consist of partial differential
equations, and describe macroscopic quantities like sprout density, tip density and network expansion
rates. Among the discrete type are Stéphanou et al., [27] and the already mentioned works of Sleeman and
others. These models contained stochastic elements and have the advantage of following the motion of an
individual endothelial cell. They are also able to generate a realistic capillary network structure. An example
of a hybrid model is the one proposed by Anderson and Chaplain [28]. More recent models include multi-scale
phase-field models [29], multi-compartment models [30], among others. For relatively recent reviews of
the progress in the field of angiogenesis modeling see for example [31] and [32].

In our model, we include the effects of the changes of EC, TAF, fibronectin and MDE concentrations in
time on the development of sprouts towards the tumor. We will work in a three dimensional setting and, in
contrast to most of the models mentioned above, assume that the diffusion we observe may be modeled as
a porous medium diffusion. McDougall and Sorbie [33] have used porous medium diffusion in the context
of petroleum engineering, modeling the flow of water, gas and oil through porous rock. The use of the
porous medium diffusion in the context of angiogenesis accounts for the consistence of tissue in the human
body, which, like porous rock, does not allow for material to move freely but restricts it to a microvascular
network in which diffusion can take place. The composition of human tissue, which is much different from
that of porous rock, is taken into account by the use of a porosity constant in the porous medium equation.

Porous medium equations have been used in the context of angiogenesis, though in a different approach,
for example in [34] for an equation for the extracellular matrix (ECM) which is regarded as porous material.
Similarly, Zheng et al., [35] modeled the tumor cells at the continuum level as a viscous fluid flowing
through a porous medium (extracellular matrix). Sleeman and Levine [36] also considered the ECM as a
porous medium. In [10] was also assumed that the ECM is a porous medium through which chemicals can
diffuse. Although not in the context of angiogenesis, following the modeling framework of [37], Byrne and
Preziosi [38] developed a mathematical model describing an avascular tumor as a saturated porous material.
Habbal [39] considered the vessel-matrix-tumor system as a porous medium from the tumor viewpoint and
as an elastic structural medium from the host tissue viewpoint, with both the ECM and the tumoral vasculature
as a porous medium.

2. CONTINUOUS MATHEMATICAL MODEL

Our continuous mathematical model consists of a system of four partial differential equations describing
the evolution of the concentrations of the endothelial cells, the tumor angiogenic factors, fibronectin and
the matrix degenerating enzyme in time.

2.1 Derivation of the PDE-System

Following [28], we assume the motion of the endothelial cells to be influenced by random motility,
chemotaxis and haptotaxis. Thus, the flux will be assumed to be
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We model the diffusion of the EC as a porous medium diffusion, which accounts for the composition of
human tissue and is a novel component of our model. A porous medium is a material containing pores
(voids), which are typically filled with a fluid, and a matrix, which is usually a solid. Here, we use the
porous medium diffusion because it allows us to model the inherent resistance of the tissue to the diffusing
substances and endothelial cells. In order to diffuse in the tissue of the human body, a certain amount of the
substances or EC must be available such that the “pressure” needed to penetrate the tissue can be built up.
A porous medium is most often characterised by its porosity. We choose D

n
 to be the diffusion coefficient

of the endothelial cell concentration n and � to be the porosity constant mentioned before. The Fickian
diffusion is included into our model as a special case; it is obtained if � = 0. The chemotactic flux component
reflects the influence of changes in the TAF concentration c on the EC concentration. As a simplification,
we suppose the chemotactic function �(c) to be constant. In the differential equation, we also account for
the influence of haptotaxis, where � is the rate of haptotactic cell migration and f is the fibronection
concentration, and the cell loss with death rate �. Furthermore, we will assume that the changes of EC and
TAF concentrations are linked by a process called Monod growth. This means that the growth rate of the
endothelial cells is restricted by the concentration of a “limiting nutrient”, which is in this case the TAF. A
Monod growth process is of the following form:
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where x is the concentration of the substance we consider, s is the concentration of the limiting nutrient, �
m

is the maximum specific growth rate and K
s
 is the substrate concentration that supports half-maximum

specific growth rate.

We get the following equation for the change of the endothelial cell concentration in time, which we
will need in the second part of our model in order to deduce a random walk model of angiogenesis:
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As we have seen above, the change of the endothelial cell concentration depends on several factors
which will themselves need to be described by partial differential equations. When considering the change
of the TAF concentration in time, we include a diffusion term with diffusion coefficient D

c
 into our model.

In higher dimensions, the diffusion coefficient becomes a diagonal matrix with positive constant diffusion
coefficients. In addition to that, the decay of TAF with associated decay coefficient � and a Monod growth
term, which reflects the fact that the concentration of TAF decreases if the EC density is high, are included.

These processes are modeled by the following equation:
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Next, we investigate the change of the fibronectin concentration f in time. In doing so, we take into
account the production of fibronectin by the EC with production constant � as well as the uptake and
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binding of fibronectin to the EC as they migrate towards the tumor with uptake constant �. Additionally,
the effect of the concentration of MDE (matrix degenerating enzyme) m, which enhances the attachment of
the cells to fibronectin, with coefficient � is considered. We do not consider diffusion of the fibronectin as
it is produced and also consumed only by the vessels. This results in the following equation for the fibronectin
concentration:

f
n nf mf

t

�
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�
.

The change of the MDE density in time is modeled according to McDougall, Anderson and Chaplain [19].
In this model, the change of MDE depends on the production of MDE by the EC with production rate � as
well as the diffusion of MDE with diffusion coefficient � and the spontaneous degradation of MDE at rate
�. This is modeled as follows:
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.

Taking into account all factors, we obtain the following set of four partial differential equations:
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For our calculations in one dimension, we easily deduce the following one-dimensional system of
partial differential equations:
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2.2 Initial and Boundary Conditions

In order to perform numerical simulations, we want to choose appropriate initial and boundary conditions.
We will first comment on the deduction of the initial and boundary conditions in one dimension and then
explain, how the two- and three-dimensional settings are derived.
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In our setting, the tumor is located at position x = 0 and the vessel is at x = 1. Before the basal membrane
is dissolved and the endothelial cells (EC) begin to migrate out of the milieu towards the tumor, there are
no endothelial cells in the system except for the vessel area. This is reflected by condition (3a). Fibronectin
is a native ECM protein and thus assumed to be initially present everywhere at a small initial concentration
�

0
 and higher at the vessel (3c). Initially, the concentration of the MDE is assumed to be zero (3d) which

reflects the fact that MDE is generated by the endothelial cells. Furthermore, the tumor secretes TAF in
order to initiate angiogenesis. Thus, we assume that the initial concentration of TAF is dependent on the
distance to the tumor, which may be seen in condition (3b). This condition was chosen according to [24].
We use the following initial conditions on the concentrations of the substances under consideration:

n
 
(0, x) = 0, 1,

0, 1.

n x

x
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c
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f
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0
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, 1.

f x
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��
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(3c)

m
 
(0, x) = 0. (3d)

During angiogenesis, several boundary conditions assure that the natural setting is reflected properly.
We have to assume that the vessel will emit endothelial cells for the whole duration of the process of
angiogenesis in order to ensure the ongoing of the vessel growth and that the endothelial cells will always
emit fibronectin. Furthermore, we will assume that the tumor will always emit TAF and that the TAF will
be consumed on its way to the vessel. On the other boundaries, we impose a no-flux boundary condition,
choosing an outward unit normal vector �. This may be interpreted in two different ways: it may reflect the
assumption that the EC, and thus also the sprouts, will remain in the domain under consideration or the
assumption that the same conditions apply to the area outside the domain under consideration such that
there is no flow on the boundaries. All of this will be reflected in the following boundary conditions:

n
 
(t, 1) = n

0
, c

 
(t, 0) = c

b
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(t, 1) = 0, f

 
(t, 1) = f

0
.

When we expand our setting to two and three dimensions, we assume that the tumor is located in the
middle of the left side of the domain and that the vessel is located at the right side of the domain. Most of
the initial and boundary conditions are very similar and we adapted the initial concentration of TAF to be
c

 
(0, x, y) = c

0
(x, y) = 

2 21.25 ( ( 0.5) )
1.25

x y� � �  and c
 
(0, x, y, z) = c

0
(x, y, z) = 

2 2 21.5 ( ( 0.5) ( 0.5) )
1.5

x y z� � � � �  in two and three
dimensions respectively.

2.3 Numerical Results

2.3.1 One Dimension

For our one-dimensional numerical simulations we choose the domain to be [0, 1], divided into 100 grid
points, and consider 20000 time steps. We discretise our equations using finite difference approximations
and take into account the boundary and initial conditions mentioned above. Since our simulations are
intended to show qualitative rather than quantitative results, we chose the parameters similar to the ones
used in [24], the missing ones were chosen in similar order to allow for a qualitative analysis. The non-
dimensional parameters used in simulations were D

c
 = 1, �

1
 = 10, �

1
 = 1, � = 1, D

n
 = 0.1, � = 4, n

0
 = 1, �

0
 = 1,

� = 5, �
2
 = 20, �

2
 = 0.7, � = 0.004, f

0
 = 1, � = 5, � = 0.1, � = 1, � = 1, � = 1 and � = 1. Such a choice of

parameters results in the concentration profiles for endothelial cells, TAF, fibronectin and MDE of Fig. 1.
When considering the development of the EC concentration in Fig. 1(a) at a time when EC get to the tumor,
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we can observe that the concentration of EC near the vessel is fairly high, then it decreases and rises again, as
we get closer to the tumor. The diffusion of the endothelial cells towards the tumor is inhibited by the tissue
until a certain pressure is built. This is a natural result of the porous medium diffusion and the Monod growth
in our model and does not have to be pre-imposed by the use of a Heaviside function. Furthermore, we can
observe the start of a strong tip proliferation in Fig. 1(a) around distance 0.6: Until a certain concentration of
TAF is reached, the EC do not split so often, but when this concentration is reached, the sprouts begin to
proliferate and the concentration of endothelial cells rises dramatically. We also reproduce the very important
brush border effect which means that the there is a high EC density behind the leading tip front.

When choosing different values for � in Fig. 2, the effect of the inclusion of the porous media diffusion
into our model becomes more obvious; if we choose � = 0 we obtain the result we would have obtained
when working with conventional diffusion. In this sense our model is more general. The endothelial cells
can diffuse without being stopped by the tissue. When we increase the porosity constant to higher values,
we can observe that it becomes more and more dicult for the EC to reach the tumor. For a value of � = 10,
one can observe how the EC have no chance of reaching the tumor unless they have accumulated enough
pressure to force their way through the porous tissue. When increasing the porosity constant even further,
one can see that the EC are even held back on their way to the tumor and with a constant of � = 19, we see
how the migration of the EC stops at a very early stage of the process, which may be seen in Fig. 2(d). In
Fig. 2(a) and (b), one can see that the brush border effect becomes more obvious with increasing �. We also

Figure 1: Simulation Results for Equations (2) (  = 4)

(a) EC (b) TAF

(c) Fibronectin (d) MDE
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observe in Fig. 1(b) that the more EC, the more TAF is consumed until the concentration of the TAF
reaches a kind of steady state, which means a state whose changes are so small that they can be neglected.
This is why, as a simplification, one could also assume an a priori concentration when developing a model
of tumor angiogensis. The concentration of fibronectin is very high in proximity of the original vessel and
then decreases rapidly towards the tumor as the fibronectin is needed in the process of sprout formation,
which is seen in Fig. 1(c). In addition to that, Fig. 1(d) shows that the concentration of MDE is high around
the sprouts as it is produced by the EC. Once produced, the MDE diffuses into the surrounding tissue but is
not consumed as it is an enzyme.

2.3.2 Two Dimensions

When working in the two-dimensional setting, we choose our domain to be [0, 1] � [0, 1], each side divided
into 50 steps. Also we work with 60000 time steps. In Figs. 3 and 4, we will illustrate how the substance
concentrations in two dimensions have evolved after 40000 timesteps, which is two thirds of the timesteps
we are considering. For better comparability we have chosen the parameters in the same way as we did in
one dimension, especially we chose � = 4. One can see that the qualitative course of development of the
concentrations is the same as in one dimension, compare Figs. 1 and 3. We can see the brush border effect,
the tip proliferation, the concentration of TAF, the fibronectin decay as well as the fact that most of the
MDE can be found in the area of the sprouts, which is in agreement with reality as the MDE is produced by

Figure 2: Simulation Results for Equations (2) for Different Values of  in One Dimension

(a)  = 0 (b)  = 10

(c)  = 18 (b)  = 19
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the EC. Furthermore, the same differences between the assumptions of classic and porous medium diffusion
become obvious, compare Figs. 3 and 4. In addition to that, the attraction of the endothelial cells by the
tumor can easily be observed in the surface plot of the endothelial cell concentration in Fig. 3. When
comparing this surface plot to the surface plot of the endothelial cells in Fig. 4, i.e., the surface plot of the
EC for � = 0, we observe that the attraction of the EC by the tumor is weaker, which is due to the porous
medium diffusion.

Figure 3: Graphs and Contour Plots for  = 4 in Two Dimensions
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2.3.3 Three Dimensions

In three dimensions, we want our domain to be [0, 1]3, each side divided into 20 steps. We consider 20000
timesteps. Again, we leave the parameters like they were in one and two dimensions. As we now have to
consider a three-dimensional domain, we draw a scatterplot assigning colors to different concentration
levels on the grid points. The resulting images of the distributions of the concentrations may be seen in
Fig. 5.

Figure 4: Graphs and Contour Plots for  = 0 in Two Dimensions



12 IJBR

We again see the decay of the concentrations and the high concentration of MDE around the sprouts.
The three-dimensional images in Fig. 5 are difficult to interpret due to the fact that one cannot see all points
at once, but we can consider cross-sections of the three-dimensional images. When considering these cuts,
we also see that our three-dimensional model is in agreement with the two-dimensional version as the cut
we consider looks just like the simulation results from the two-dimensional model. This is visualized in
Fig. 6 which shows a cut through the middle of the three-dimensional plot of the endothelial cell concentration
at timestep 9000 of 20000.

Figure 5: Three-Dimensional Scatterplots for  = 4

(a) TAF (b) EC

(c) Fibronectin (d) MDE

Figure 6: Two-Dimensional Cut Through the Middle of the Three-Dimensional Scatterplot of the
EC for  = 4 at Timestep 9000 of 20000
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3. DISCRETE MATHEMATICAL MODEL

The second part of our model consists in applying a random walk setting, where the probabilities of moving
in one special direction depend on the underlying concentration profiles of the substances investigated in
the first section. In this setting we will assume that the probabilities of moving forward or backward, left or
right and up or down are independent of each other where each single decision is triggered by the underlying
concentration. By comparison of coefficients, we will get expressions which are proportional to the
probabilities we are looking for.

3.1 Random Walk Model

In this section we will try to model the paths of individual endothelial cells using the discretisation of our
system of partial differential equations (1). By comparison of coefficients we obtain probabilities of
movement for an individual cell from the coefficients of the five-point finite-difference stencil in two or
the seven-point finite-difference stencil in three dimensions. In order to be able to apply the method of
comparison of coefficients, we chose � = 0 in our partial differential equations, i.e., ordinary diffusion.
However, this will not signicantly change the outcome of our random walk model as we will still apply the
concentrations from the equations with porous medium diffusion. The concentration of EC at one special
grid point at timestep t + 1 is the sum of the concentrations of EC at time t at all grid points which allows
a transition to this grid point times the probabilities of moving to this grid point. Thus, the two-dimensional
case is illustrated by the following equation:

1
, , 0 1, 1 1, 2 , 1 3 , 1 4
t t t t t t
i j i j i j i j i j i jn n P n P n P n P n P�

� � � �� � � � � .

For the coefficient P
0
 of no movement we obtain the following form

0
0 1, 1, , , 1 , 12 2
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4
1 ( 4 )
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while the coefficients P
1
, P

2
, P

3
 and P

4
 which are proportional to the probabilities of moving right, left, up

and down, may be written as:
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Analogously to the two-dimensional case, we assume for the three-dimensional case

1
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While the coefficient of no movement P
0
 may be written as
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At this point it is necessary to consider the tip proliferation. Therefore, we will use different probabilities,
depending on the distance from the tumor, for the forming of new sprouts out of already existing ones. We
assume that new sprouts can only be formed by already existing sprouts. Furthermore, we assume that the
newly formed sprouts are not instantly branching onwards. We further assume that a new sprout can form
from an existing sprout with a certain probability. This probability depends on the TAF-concentration and
the probability that it branches onwards is increasing with the TAF-concentration. Therefore, we select the
probability in the following way: near the vessel there is no branching. The probability of branching in a
certain distance, respectively concentration, is slowly increasing, until near to the tumor, a high probability
of branching exists and the so-called brush border effect occurs.

3.2 Numerical Results

In this section we present the results of our simulation. At this stage we want to note that the description is
qualitative and therefore the parameters chosen for the model aim to illustrate and describe the global
behavior. Numerical simulations have been produced using Matlab (Mathworks). The random walk model
described above produces the following images which may be viewed as examples of the process of
angiogenesis if this process takes place as described by the model equations from the first section. We can
choose the number of sprouts which are going to form from the blood vessel. In Fig. 7 we choose the
number of sprouts to be one, two and three and we also show the resulting images for � = 0 and � = 4, i.e.,
the underlying concentrations are modeled using ordinary diffusion or porous medium diffusion. We observe
that when using the same parameters except for �, in the simulations with porous medium diffusion, i.e.,
� = 4, there is more movement up and down than in the simulations with ordinary diffusion. Furthermore,
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we see that the sprouts are drawn towards the tumor more strongly. This is due to the fact that a certain
pressure has to be built up before the substances can advance in the tissue when using porous medium
diffusion.

In Figure 7, one can see how the sprouts are drawn towards the tumor which is in the middle of the left
side domain. We expected such behaviour from the two-dimensional graphs and contour plots of the
substances under consideration. Furthermore, it also becomes visible that the sprouts show a straighter
growth movement the closer they get to the tumor and in addition to that, the brush border effect can be
observed as the maximum tip density is located behind the leading front. Also, the tip proliferation and the
fact that it becomes stronger the closer we get to the tumor can be seen. After a certain concentration of
TAF is exceeded, tip proliferation starts to happen.

Figure 7: Two-Dimensional Random Walk Images for Different Number of Sprouts and Different Values of 
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In three dimensions, in Fig. 8 we observe the random walks with one, two and three sprouts, where
again the brush border effect as well as the tip proliferation and the attraction towards the tumor become
visible.

4. COMPARISON TO REAL DATA

4.1 Two-Dimensional Scans

Angiography allows to visualize the lumen of blood vessels and organs of the body by injecting a radioopaque
contrast agent into the blood vessel and producing images using X-ray based techniques. The most widely
used method for assessing tumor angiogenesis is quantification of the micro vessel density with microscopy
of a biopsy specimen, however, several imaging methods (e.g., magnetic resonance imaging, computed
tomography and spectroscopy) may be used to evaluate the degree of angiogenesis indirectly by measuring
a parameter or a combination of parameters such as vascular density, blood flow, blood volume, and/or
vascular permeability.

In this work we have experimental evidence available of angiogenesis in a variety of cancers; in the
pictures of Figs. 9 and 10, a contrast dye has been injected in the feeder arteries in order to make the entire
tumor vascularization visible. The Figures have been produced at the Eberhard-Karls-University Tübingen
(Germany), at the Department of Radiology.

Figure 10 shows further angiographic scans, in which a liver carcinoma with its feeder vessels (formed
by angiogenesis) is displayed. Note how the newly formed vessels are branching as they are nearing the
tumor mass. These images have been taken after successful angiogenesis; they show some relevant
characteristics of tumor vessels, which we expect to see also in our model. Note that the more enhanced a
vessel, the more it is perfused.

Figure 8: Three-Dimensional Random Walk Images for Different Number of Sprouts
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In order to help understand how angiogenesis functions, one could interpret the spread of contrast dye
as angiogenesis. In Fig. 10(a) we can see the vessel from which later the sprouts will direct towards the
tumor. In the next subfigures, one can see the tumor with its vessels that have been formed by angiogenesis
and are now invading this mass. Throughout the image series, more and more smaller vessels that have
originated from the larger vessels, can now be seen. They all are directing towards the main tumor mass.
This behavior is displayed in the model’s simulation by branching, see Figs. 7 and 8. In addition, it should
be noted that the vessels directing towards the tumor become more and more straight as they approach the
tumor.

Another particular behavior to observe is the so-called brush border effect reproduced first by
Muthukkarpuppan et al. [40]. This can also be seen in the model’s simulations. Characteristics of the brush
border effect are on the one hand, the maximal tip density must lay behind the leading tip front and this
magnitude must increase with the proximity to the tumor. On the other hand, the maximal tip density must
lie in front of the maximal vessel density. We have reproduced and shown all of these important effects in
our model, which may be seen in the section on numerical results.

Figure 9: Contrast-Enhanced Angiographic Scans as Angiogenesis Develops in Several Types of Tumor
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Further we can observe that, depending on the consistency of the tissue, there is more or less collateral
movement, e.g. in a “hard” tissue like the neck one can see a lot of side movement unlike in a “soft” tissue
like the kidney, where there are more straight lines towards the tumor, compare the red arrows in Fig. 9.

5. CONCLUSIONS

A main component in tumor development is the process of angiogenesis, in which from already existing
vessels, new vessels are being formed. Angiogenesis begins with chemotactic factors that are secreted by the
tumor. In response to this, vessel arousal and growth begin. In this paper, we have developed a consistent
model for the process of angiogenesis in up to three dimensions. In order to do so, we first developed a
continuous mathematical model consisting of partial differential equations, describing the evolution of the
concentration of the endothelial cells as well as the concentrations of the tumor angiogenesis factors (TAF),
the fibronectin and the matrix degenerating enzyme (MDE). A special feature of our model is the use of
porous medium diffusion as well as Monod growth terms, which proved to be useful as it enabled us to
observe the brush border effect and the tip proliferation without using Heaviside functions as a natural result
of the system of partial differential equations. Furthermore, the strong attraction of the sprouts by the tumor
becomes visible. From our numerical results, one could hypothesize that not only the tip proliferation is a
reason for the brush border effect and the sudden increase of the EC density at certain concentration values
but also the density of the tissue, which is modeled by the inclusion of porous medium diffusion.

In a second step, we developed a discrete mathematical random walk model based on the evolution of
the substances and EC from the continous mathematical model. In this part, the exact movement of the tips
towards the tumor is modeled by a random walk. We described the movement of the EC dependent on the
transition probabilities we calculated. This modeling approach allows to describe angiogenesis with the
help of a certain selection of transition probabilities, which enables description of microscopic processes.

Figure 10: Contrast-Cnhanced Angiographic Scans as Angiogenesis Develops in Liver Carcinoma
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Despite so many simplifications, our numerical simulations can show realistic networks generated by
angiogenesis and their development during different time steps. Connections between vessels and new
branching, out of existing sprouts, can be displayed. Furthermore, we compared simulation results obtained
when using porous medium diffusion with simulation results obtained with Fickian diffusion. In these
results, the effects of the use of porous medium diffusion became obvious. Further, we observed that there
is more collateral movement if the 6 is higher, i.e., if the tissue is “harder”, compare Fig. 7.

In the last part we compared our results to real data and found that our model is able to generate
networks that ressemble those generated by angiogenesis in vivo. Thus we can conclude that our model
includes the most important factors that influence angiogenesis.

The inclusion of more factors that might influence angiogenesis would not change the qualitative
behaviour of the system.

Nevertheless our model might be improved further by performing a complete parameter estimation
based on real data in order to estimate the parameters in such a way that we can predict the quantitative
behaviour of the system.

APPENDIX

Table of Parameters

Table of Parameters

Parameter Description Value

D
n

Diffusion rate of EC 0.1

n
0

Initial value 1
� Exponent of porous medium diffusion of EC 4
�

0
Chemotaxis coefficient 1

� Haptotaxis coefficient 0.004
� Death rate of EC 5
�

2
Growth rate of EC 20

�
2

Monod growth substrate concentration 0.7
D

c
Diffusion rate of TAF 1

� Death rate of TAF 1

�
1

Growth rate of TAF-consumption 10
�

1
Monod growth substrate concentration 1

� Production rate of fibronectin 5

� Degradation rate of fibronectin 0.1
� Degradation rate of fibronectin 1
� Production coefficient of MDE 1

� Diffusion coefficient of MDE 1
� Decay rate of MDE 1
f

0
Initial value 1
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