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Abstract: The on-line LFA with line outages requires the Neural Network model to be accurate, simple and 
structurally compact. This in turn to a large extent depends on the type of neural architectures and learning 
algorithms. In this paper, three types of neural architectures are considered for investigation. Each of the chosen 
neural architecture is trained off-line usingLM algorithms and tested on-line for load flow analysis. This paper 
carries out a novel investigation on various neural network models for on-line load flow analysis (LFA)with line 
outages. LFA is an important problem for real time power system planning and Operation. The conventional 
methods used for LFA are iterative techniques, takes longer time for computation and not suitable for on-line 
applications. Neural Network [NN] based approach is computationally less rigorous as compared to conventional 
methods and provides an alternate solution for on-line LFA in real time. Their performance is compared in terms of 
accuracy and structural compactness. The suitable neural architecture is identified for on-line LFA. The results are 
extensively validated for IEEE 30 bus system through MATLAB simulation. The promising results obtained are 
presented.

Keywords: On-line load flow analysis; NN architectures; LM algorithms; NN Models; cascade architectures; feed-
forward architectures.

1.	 INTRODUCTION TO CONTIGENCY ANALYSIS
Most power systems are designed with enough redundancy so that they can withstand all major failure 
events. Contingency analysis is one of the major components in today’s modern energy management 
systems1-4. For the purpose of fast estimating system stability right after outages, the study of contingency 
analysis involves performing efficient calculations of system performance from a set of simplified system 
conditions. Contingency analysis is one of the most important tasks encountered by the planning and 
operation engineers of bulk power system.

Contingency analysis is one of the “security analysis” applications in a power utility control center that 
differentiates an Energy Management System (EMS) from a less complex SCADA system. Its purpose 
is to analyze the power system in order to identify the overloads and problems that can occur due to a 
“contingency”. Contingency analysis is abnormal condition in electrical network. It put whole system or a 
part of the system under stress. It occurs due to sudden opening of a transmission line, generator tripping, 
and sudden change in generation, sudden change in load value. Contingency analysis provides tools for 
managing, creating, analyzing, and reporting list of contingencies and associated violations. Contingency 
analysis is used as a study tool for the off-line analysis of contingency events, and as an on-line tool to 
show operators what would be the effects of future outages5.

2.	 STEP-BY-STEP PROCEDURE OF CONTINGENCY ANALYSIS
Generally, once the current working state of a system is known, contingency analysis can be broken down 
into the following steps:
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(a)	 Contingency definition
(b)	Contingency selection
(c)	 Contingency evaluation

Contingency definition involves preparing a list of probable contingencies. This typically includes 
line outages and generator outages. Contingency selection process consists of selecting the set of most 
probable contingencies; they need to be evaluated in terms of potential risk to the system. Usually, fast 
power flow solution techniques such as DC power flow are used to quickly evaluate the risks associated 
with each contingency. But in this work, the Newton-Raphson load flow method will be used to ensure 
higher accuracy.

Finally, the selected contingencies are ranked in order of their security, till no violation of operating 
limits is observed. The AC load flow method of contingency analysis is adopted. The Newton- Raphson load 
flow algorithm, an algorithm under the AC load flow method, was used to solve the power flow problems 
during the analysis using MATLAB. This is because the NRLF method has more accuracy than other AC 
Load flow methods and converges faster.

3.	 BASIS OF PERFORMANCE INDEX
There are many indices using which the performance of the power system during contingency can be 
analyzed. This can be done by considering various sensitive factors of the power system such as voltage, 
real power, reactive power etc.

In literature, many indices such as real power index, reactive power performance index, LMN index 
etc have been reported.

3.1.	 Real Power Index
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Where,

	 Pi is the active power flow.

	 Pi max is the maximum active power flow on line i.

	 Wi is the weight of active power flow on line i.

	 L is the total number of lines in the power system.

	 N is the specified exponent.

3.2.	 Reactive Power Index
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Where,

	 Vi is the voltage of the bus i.

	 Vi max and Vi min are the maximum and minimum voltage limits of the bus.

	 Vi nom is the average of Vi max and Vi min.
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	 Wi is the weighting coefficient.

	 Npq is the total number of load buses in the system.

3.3.	 Severity Index
To cumulate all the advantages of above mentioned indices, apparent power index, also known as severity 
index is considered in this research work. The apparent power index is considered for contingency due to 
line outages because severity of this particular contingency gets affected both by real and reactive power 
variations in the power system.

The severity of a contingency to line overload may be expressed terms of the following severity index, 
which express the stress on the power system in the post-contingency period:
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The line flows in Equation (1.3) are obtained from Newton–Raphson load flow calculations. While 
using the above security index for security assessment, only the overloaded lines are considered to avoid 
masking effects. In this research work, security index is chosen and the value of m is fixed as 1.

4.	 CONTINGENCY RANKING
The contingency ranking is investigated for IEEE30 bus test system6. The power flow analysis is carried 
by varying both the real and reactive load power demand (75%-125%) with the increment of 0.05%. Using 
this, real power flow and reactive power flow in line are obtained. Using the real and reactive power flow 
in the line, severity index is calculated. After this, contingency ranking is obtained for all the lines. The 
ranking obtained at 125% of loading is considered for further studies. The Table 1.1 shows contingency 
ranking using severity index method.

From the table 1.1, it is observed that line 2,1,8,5 have reached severe loading condition. The other lines 
are observed to have not reached the severe loading condition even at 125% of loading. Of the top four 
severe lines, only the most severe line (line 2) is considered for security assessment in this research work. 
This is because, if this relieves overload on the most severe contingency, then, this can relieve overload 
on lines for less severe contingencies.

Simulation of transmission line outage is carried out by the formulation of the corresponding admittance 
matrix. For instance, after outage of a line 2 connecting bus ‘1’ and ‘2’, the components of the Y bus that 
will be affected are Y11, Y22, Y12, and Y21. Line outages were simulated by simply removing the line 
information from the line data matrix7-10. This is similar to the line not existing initially as the information 
no longer exists.

After that power flow analysis was done on the power system at post contingency stage and 1000 data 
sheets were obtained by varying the load from 75% to 125%

5.	 TRAINING OF NN MODELS FOR POWER FLOW ANALYSIS
1000 data are collected by varying both real and reactive load power demand (75%-125%) with the 
increment of 0.05% with severe line outage. 750 data are used for training and 250 data are used for testing. 
The three architectures namely SLFF-NN, MLFF-NN, CC-NN are considered for investigation11-13. The 
LM algorithm is chosen for study as it is concluded to be best algorithm for off-line training in previous 
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Figure 1.1: Single line diagram of IEEE 30 bus test system with outage line Marked

Table 1.1 
Contingency ranking using severity index method

Contingency Ranking Severity Index Line No.
1 2.3041025 2
2 2.1297087 1
3 1.1586057 8
4 1.0204615 5

chapters. The three neural architectures are trained with LM learning algorithm using the training data. 
To design SLFF-NN, single neuron is added in the hidden layer at a time till the target MSE is reached. In 
MLFF-NN and cascade-NN, the choice of number of layers and number of neurons in each layer is decided 
by trial and error. The design of MLFF-NN and cascade-NN is more of an art than a science. Therefore, 
in this research work, MLFF-NN and cascade-NN with two hidden layers is designed by trial and error 
method. The results are extensively validated using IEEE30 bus test system.

In IEEE30 bus test system, totally there are 24 PQ buses, 5 PV buses and 1 slack bus. The total numbers 
of outputs are 53. The target MSE is chosen as 1 × 10–7.

For training the neural network, the inputs to the NN model is chosen as real power load demand (PD) 
and reactive power demand (QD). The real power load demand is presented in equation (1.4) and reactive 
power load demand is presented in equation (1.5).
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where Pi is the real power and Qi is the reactive power at ith load bus, i = 1, 2, … n.

The outputs from the NN model are voltage magnitude (|V|) of PQ buses and voltage angles (δ) of both 
PQ and PV buses. The block diagram of NN model for voltage magnitude and angle estimation with inputs 
and outputs is shown in Figure 1.2.

Figure 1.2: NN based voltage magnitude and angle estimator for severe line outage

The tan-sigmoid function is chosen for hidden layer neurons and pure-linear function is chosen for 
output layer neurons. The flow chart for training the NN architecture for power flow analysis with line 
outage is shown in Figure 1.3. The training MSE achieved for the NN model for IEEE 30 bus test case is 
tabulated in Table 1.2.

Table 1.2 
Performance comparison of NN models trained for same accuracy 

for IEEE 30 bus test system

Test case Architecture NN Model MSE achieved
IEEE 30 bus 

system
Single Layer Feed Forward Architecture (SLFF) 2-15-53 1 × 10–7

Multi Layer Feed Forward Architecture (MLFF) 2-9-9-53 1 × 10–7

Cascade Architecture (CC) 2-3(h)-3(h)-53 1 × 10–7

6.	 TESTING OF NN MODELS FOR POWER FLOW ANALYSIS IN TERMS OF 
ACCURACY

To determine the most suitable architecture, the performance of LM-trained NN models using three NN 
architectures is compared in terms of accuracy, structural compactness and computational complexity. 
Firstly, the performance of LM trained SLFF-NN, MLFF-NN and CC-NN models is compared in terms of 
accuracy. The off-line LM trained three NN models are tested for on-line estimation of voltage magnitudes 
and angles.

The sample results for voltage magnitude of PQ bus no. 17 and angle of PV bus no. 11 estimated using 
SLFF-NN, MLFF-NN and CC-NN for the IEEE30 bus test system is presented in Figure 1.4, Figure 1.5 
and Figure 1.6 respectively. The Performance Comparison of LM Trained NN Models designed using 
SLFF-NN, MLFF-NN and CC-NN in terms of average test MSE is shown in Table 1.3.
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Figure 1.3: Training process of NN for power flow analysis with contingencies

(a)
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(b)
Figure 1.4: Voltage magnitude and angle estimated using SLFF-NN for IEEE30 bus test system with 

contingency (a) Voltage magnitude for bus No. 17 (b) Voltage angle for bus No. 11

Table 1.3 
Performance comparison of LM trained NN Models designed using SLFF-NN, MLFF-NN 

and CC-NN in terms of average test MSE for IEEE30 bus test system

Test Case Average Test MSE for SLFF-NN Average Test MSE for MLFF-NN Average Test MSE for CC-NN
IEEE 30 bus test system 7.3895 × 10–4 7.1286 × 10–4 7.4451 × 10–4

From the above investigation, it is understood that the voltage magnitude and angle with line outage 
obtained from the LM trained NN models using all the three NN architectures is found to closely match 
with the voltage magnitude and angle estimated using conventional method. Thus all the LM trained NN 
models performed equally well.

(a)
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(b)
Figure 1.5: Voltage magnitude and angle estimated using MLFF-NN for IEEE30 bus test system with 

contingency (a) Voltage magnitude for bus No. 17 (b) Voltage angle for bus No. 11

7.	 TESTING OF NN ARCHITECTURES FOR POWER FLOW ANALYSIS IN TERMS OF 
STRUCTURAL COMPACTNESS AND COMPUTATIONAL COMPLEXITY

The structural compactness and computational complexity assumes importance in real time implementation. 
This is the motivation to compare all the NN models in terms of structural compactness and computational 
complexity. For the desired accuracy, the number of hidden neurons is used as an index to measure the 
structural compactness of model. The neural network architecture with lesser number of hidden neurons 
is found to be compact and gives ease in real time implementation of the on-line power flow analysis 
with line outage. The number of parameters and nonlinear function extraction in the network indicates its 
computational complexity. Each parameter warrants some mathematical operations.

(a)
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(a)
Figure 1.6: Voltage magnitude and angle estimated using CC-NN for IEEE30 bus test system with 

contingency (a) Voltage magnitude for bus No. 17 (b) Voltage angle for bus No. 11

For 30 BUS Systems, the parameters, neurons and computations required by the SLFF-NN, MLFF-
NN and CC-NN models are tabulated in Table 1.4. From the Table 1.4, it is seen that for IEEE30 bus test 
system, SLFF-NN and MLFF-NN requires 15 and 18 hidden neurons respectively, where as CC-NN model 
requires much lesser number of hidden neurons 6 as compared to SLFF-NN and MLFF-NN models.

Table 1.4 
Performance comparison of LM trained NN models for power flow analysis in terms 

of structural compactness and Computational complexity
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SLFF 2-15-53 15 893 825 825 15 5782

MLFF 2-9-9-53 18 647 576 576 18 7842

CC 2-3(h)-3(h)-53 6 504 445 445 6 33032

On Intel(R) Core(TM) i5 32-bits processor with the clock frequency of 2.53GHz, 4 GB RAM, the 
execution time required to compute voltage magnitude and angle using SLFF-NN, MLFF-NN and CC-NN 
are computed and presented in Table 1.4. From the Table 1.4, it is seen that for IEEE30 bus test system, 
SLFF-NN and MLFF-NN requires 5782ms and 7842ms respectively, where as CC-NN model requires 
much lesser execution time of 3032 ms as compared to SLFF-NN and MLFF-NN models.Hence CC-NN 
model results in structurally compact model as compared to SLFF-NN and MLFF-NN model. The total 
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number of parameters and computations time required for CC-NN is found to be lesser as compared to 
SLFF-NN and MLFF-NN. Hence, CC-NN model is of lesser complexity as compared to SLFF-NN and 
MLFF-NN model for power flow analysis with line outage.

8.	 CONCLUSION
Thus, from the above simulation result, it can be summarized that CC-NN architecture provides the required 
accuracy, structurally compact, computationally less complex model for real time power flow analysis with 
contingency. Hence, cascade architecture trained with Levenberg Marquardt algorithm is identified to be 
most suitable NN model for on-line Power flow analysis with contingency.
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