REGULAR SEMIGROUP OF LINEAR TRANSFORMATIONS ON CLASS FUNCTIONS OF A FINITE GROUP

Biju.G.S^{1,3}, Vinod.S^{2,3}

Abstract: In this paper we intend to construct a bilinear form, with the help of the character values of a finite group G, on the vector space of all class functions defined on G. The bilinear form obtained thus is non-degenerate. Here we construct the regular semigroup associated with this bilinear form.

Keywords: Regular semigroup, character values, bilinear form, class functions.

INTRODUCTION:

In [1] we see that by starting with an arbitrary bilinear form on the Cartesian product of two finite dimensional vector spaces, a regular semigroup of pairs of linear maps is constructed. The character table of a finite group gives rise to a bilinear form on the Cartesian product of the space of all class functions on this group. The bilinear form obtained is non-degenerate. We show that there exists a regular semigroup associated with the bilinear form. For basic definitions, concepts and theorems that are required in this sequel refer [2,3,4,5].

NON-DEGENERATE BILINEAR FORM THE CHARACTER VALUES OF A FINITE GROUP

Let G be a finite group of order n. Let C_1, C_2, \ldots, C_m be the conjugacy classes and $\chi_1, \chi_2, \ldots, \chi_m$ be the irreducible characters. Define $C = [c_{ij}], i, j = 1, 2, \ldots, m$ where c_{ij} are the character values in the character table of the group G. The matrix C of order m is called character matrix of the group G. Let X be the vector space of all class functions defined on G.

Let
$$\theta, \theta' \in C$$
. Then $\theta = \sum_{i} \alpha_{i} \chi_{i}$ and $\theta' = \sum_{i} \beta_{i} \chi_{i}$, for unique values of $\{\alpha_{1}, \alpha_{2}, \dots, \alpha_{m}\}$ and $\{\beta_{1}, \beta_{2}, \dots, \beta_{m}\}$. Define $B: X \times X \rightarrow \mathbf{C}$ by
 $B(\theta, \theta') = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{m})(c_{ij})(\beta_{1}, \beta_{2}, \dots, \beta_{m}) = \sum_{i} \sum_{i} \alpha_{i} c_{ij} \beta_{j}$ (1)

Theorem 2.1: Let X be the vector space of all class functions defined on a finite group G of order n. Then $B: X \times X \rightarrow \mathbf{C}$ by, $B(\theta, \theta') = \sum_{i} \sum_{i} \alpha_i c_{ij} \beta_j$ is a bilinear

form and the matrix of B is the character matrix in the basis given by the simple characters.

The bilinear form B defines two linear maps $B_1: X \to X^*$ defined by $B_1(\theta) = B_1(\theta, -)$ and $B_2: X \to X^*$ defined by $B_2(\theta) = B_2(-, \theta)$.

Theorem 2.2 : If B is the bilinear form associated with the character matrix, then the map $B_1: X \to X^*$ is an injection.

Theorem 2.3 : The bilinear form B associated with the character matrix is nondegenerate.

Proof : dim $(X) = \dim(X^*) = m$. Since B_1 is an injection, $\eta(B_1) = \{0\}$. Hence $n(B_1) = 0$. This implies $r(B_1) = \dim(X) = m$. Since the matrix of B is C and it is a square matrix of order m, it follows that $r(B_2) = m$.

Hence $n(B_2) = 0 \Rightarrow \eta(B_2) = 0$

Thus $\eta(B_1) = 0 = \eta(B_2)$. Hence B is a non-degenerate bilinear form.

From the theorem 2.3 and the necessary and sufficient condition for a bilinear form to be degenerate [5], we get an interesting result which can be stated as follows.

Theorem 2.4 : The character matrix of a finite group is non-singular.

Theorem 2.5 : If B is the bilinear form associated with the character matrix then the linear map $B_2: X \to X^*$ is an isomorphism of X onto X^* .

Theorem 2.6 : Every $f \in L(X)$ there exist $g \in L(X)$ such that (f,g) is an adjoint pair with respect to B.

Proof: since B is non-generate B_1 and B_2 are isomorphisms of X onto X^* . Therefore B_1^{-1} and B_2^{-1} exists. Let $f \in L(X)$. Define f^* on X^* by

$$tf^* = ft$$
 for all $t \in X^*$

Then $f^* \in L(X^*)$. Now define

$$g = B_2 f^* B_2^-$$

Clearly $g \in L(X)$.

$$g = B_2 f^* B_2^{-1} \implies g B_2 = B_2 f^*$$

Hence (f,g) is an adjoit pair.

Theorem 2.7 : The set of all adjoint pairs arising from the non-degenerate bilinear form B associated with the character matrix C form a regular subsemigroup of $L(X) \times L(X)^{OP}$.

Proof: Let $S(B) = \{(f,g) \in L(X) \times L(X)^{OP} : (f,g) \text{ is an adjoint pair with respect to B} \}$. Since $(I_X, I_X) \in S(B)$, S(B) is non empty where I_X is the identity map on X. Let $(f_1, g_1), (f_2, g_2) \in S(B)$ Then for all $x, y \in X$, we have

$$\begin{split} B(x(f_1f_2), y) &= B((xf_1)f_2, y) \\ &= B(xf_1, yg_2) \\ &= B(x, (yg_2)g_1) \\ &= B(x, yg_2g_1) \\ &\Rightarrow (f_1f_2, g_2g_1) \in S(B) \end{split}$$

Similarly we can prove the associativity. Since B is non-denerate, we have $g = B_2 f^* B_2^{-1}$. Since L(X) is regular there exist $f' \in L(X)$ such that ff' = f. Since $f' \in L(X)$ there exist $g' \in L(X)^{OP}$ such that (f',g') is an adjoint pair. Hence $g' = B_2 f'^* B_2^{-1}$ where $ff'^* f' t$ for all $t \in X^*$. Since ff' = f it is enough if we show gg'g = g.

$$gg'g = (B_2f^*B_2^{-1})(B_2f'^*B_2^{-1})(B_2f^*B_2^{-1})$$
$$= (B_2f^*)(B_2^{-1}B_2)f'^*(B_2^{-1}B_2)(f^*B_2^{-1})$$
$$= B_2(f^*f'^*f^*)B_2^{-1}$$

Now for all $t \in L(X^*)$,

$$t(f^{*}f^{'*}f^{*}) = (tf^{*})(f^{'*}f^{*})$$

= $ft(f^{'*}f^{*})$
= $f(tf^{'*})f^{*}$
= $ff'(tf^{*})$
= $(fff)t$
= ft

Therefore S(B) is a regular subsemigroup of $L(X) \times L(X)^{OP}$.

Theorem 2.8 : $(f,g) \in S(B)$ if and only if $M(f)C = CM(g)^T$. **Proof :** Let $M(f) = (a_{ij})$: i, j = 1, 2, ..., m and $M(g) = (a_{ij})$: i, j = 1, 2, ..., m $M(B) = (c_{ij}) = C, i, j = 1, 2, ..., m$. Then $\chi_i f = \sum_j a_{ij} \chi_j$ and $\chi_i g = \sum_j b_{ij} \chi_j$ $(f,g) \in S(B) \Longrightarrow B(xf, y) = B(x, yg)$ for all $x \in X$ and $y \in Y$. In particular, $B(\chi_i f, \chi_j) = B(\chi_i, \chi_j f)$ for all i and j. $\Rightarrow \sum_{k} a_{ik} c_{kj} = \sum_{k} c_{ik} b_{kj} \text{ for all } i \text{ and } j.$ Let $\theta, \theta' \in C$. Then $\theta = \sum_{i} \alpha_{i} \chi_{i} \text{ and } \theta' = \sum_{i} \beta_{i} \chi_{i}$, for unique values of $\{\alpha_{1}, \alpha_{2}, \dots, \alpha_{m}\}$ and $\{\beta_{1}, \beta_{2}, \dots, \beta_{m}\}$. Now $\theta f = \sum_{j} \alpha_{j} \chi_{j} f$ $= \sum_{j} \alpha_{j} (\sum_{i} a_{ij} \chi_{i})$ $= \sum_{i} (\sum_{j} a_{ji} \alpha_{j}) \chi_{i}$

and

$$\begin{aligned} \theta' \, g &= \sum_{j} \beta_{j} \, \chi_{j} \, g \\ &= \sum_{i} (\sum_{j} b_{ji} \, \beta_{j}) \chi \end{aligned}$$

Therefore $B(\theta f, \theta') = \sum_{k} \sum_{i} a_{ji} \alpha_{j} c_{ik} \beta_{k}$ and $B(\theta, \theta'g) = \sum_{k} \sum_{i} \alpha_{i} c_{ik} b_{jk} \beta_{j}$ It follows that $B(\theta f, \theta') = B(\theta, \theta'g)$. Implies $(f, g) \in S(B)$.

D(0,0,0) = D(0,0,0)

REFERENCES

- D.Rajendran and K.S.S. Nambooripad. 2000. "Cross-connection of bilinear form semigroups". Semigroup Forum, 61. 249-262.
- 2. Herstein I.N, Topics in Algebra, II edn, Wiley Eastern Limited India 1987.
- Lallement. G, Semigroups and Combinatorial Applications, John Wiley ans Sons Inc. USA,
- Walter Leaderman, Introduction to Group Characters, Second Edition, Cambridge University Press.
- Jacobson.N., Lectures in Abstract Algebra, Vol.II, D Van Noustrand Company Inc.1961.

^{1, 3}Biju.G.S ¹Department of Mathematics, College of Engineering, Thiruvananthapuram, Kerala, ^{2, 3}Vinod.S ²Department of Mathematics, Government College for Women, ruvananthapuram, Kerala, INDIA

³Department of Collegiate Education, Kerala, INDIA