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REGULAR SEMIGROUP OF LINEAR 
TRANSFORMATIONS ON CLASS FUNCTIONS OF A 

FINITE GROUP 

Biju.G.S 1,3, Vinod.S 2,3 

Abstract : In this paper we intend to construct a bilinear form, with the help of 
the character values of a finite group G, on the vector space of all class functions 
defined on G. The bilinear form obtained thus is non-degenerate. Here we 
construct the regular semigroup associated with this bilinear form.         
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INTRODUCTION:   
In [1] we see that by starting with an arbitrary bilinear form on the Cartesian 
product of two finite dimensional vector spaces, a regular semigroup of pairs of 
linear maps is constructed. The character table of a finite group gives rise to a 
bilinear form on the Cartesian product of the space of all class functions on this 
group. The bilinear form obtained is non-degenerate. We show that there exists a 
regular semigroup associated with the bilinear form. For basic definitions, 
concepts and theorems that are required in this sequel refer [2,3,4,5].  

NON-DEGENERATE BILINEAR  FORM THE CHARACTER VALUES 
OF A FINITE GROUP 

Let G be a finite group of order n. Let mCCC .........,,, 21 be the conjugacy classes 

and m .........,,, 21 be the irreducible characters.  Define  mjicC ij .....,,2,1,,][   
where ijc  are the character values in the character table of the group G. The matrix 
C of order m is called character matrix of the group G. Let X be the vector space 
of all class functions defined on G.  

Let C ,  . Then  i ii
  å and i ii

   ¢ å  , for unique values of 

}.......,,,{ 21 m and }.......,,,{ 21 m . Define :B X X´ ®C  by  
 ( , ) ( , ,......., ) ( ) ( , ,......., ) (1)1 2 1 2B c cm mij i ij jj i

           ¢ åå
 

Theorem 2.1  : Let X be the vector space of all class functions defined on a 
finite group G of order n. Then :B X X´ ®C  by, ( , )B ci ij jj i

    ¢ åå is a bilinear 

form and the matrix of B is the character matrix in the basis given by the simple 
characters. 
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The bilinear form B defines two linear maps *:1B X X® defined by 

( ) ( , )1 1B B    and *:2B X X® defined by ( ) (_ , )2 2B B    .  

Theorem 2.2 : If  B is the bilinear form associated with the character matrix, 
then the map *:1B X X®  is an injection. 

Theorem 2.3 : The bilinear form B associated with the character matrix is non-
degenerate. 

Proof : dim( X ) = dim( *X ) = m. Since 1B is an injection, .}0{)( 1 B  
Hence .0)( 1 Bn This implies mXBr  )dim()( 1  . Since the matrix of B is C 
and it is a square matrix of order m, it follows that mBr )( 2 .  

Hence ( ) 0 ( ) 02 2n B B= Þ h =   
Thus ( ) 0 ( )1 2B B   . Hence B is a non-degenerate bilinear form. 

From the theorem 2.3 and the necessary and sufficient condition for a bilinear 
form to be degenerate [5], we get an interesting result which can be stated as 
follows. 

Theorem 2.4 : The character matrix of a finite group is non-singular. 
Theorem 2.5 : If B is the bilinear form associated with the character matrix 

then the linear map *
2 : XXB  is an isomorphism of X onto *X  . 

Theorem 2.6 : Every )(XLf  there exist )(XLg such that ),( gf  is an 
adjoint pair with respect to B. 

Proof : since B is non-generate 1B and 2B are isomorphisms of X onto *X  . 

Therefore  1
1
B and 1

2
B exists. Let )(XLf   . Define *f on *X by  

fttf *
 for all *Xt  

Then )( ** XLf  . Now define  
* 1

2 2g B f B  
Clearly ).(XLg  

* 1 *
2 2 2 2g B f B gB B f= Þ =    

Hence ),( gf  is an adjont pair. 

 
Theorem 2.7 : The set of all adjoint pairs arising from the non-degenerate 

bilinear form B associated with the character matrix C form a regular 
subsemigroup of ( ) ( )OPL X L X´  . 
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Proof : Let ( ) {( , ) ( ) ( ) :( , )OPS B f g L X L X f g= Î ´  is an adjoint pair with respect to B 

} .  Since ( , ) ( )I I S BX X Î , )(BS  is non empty where XI  is the identity map on X.  Let

( , ), ( , ) ( )1 1 2 2f g f g S BÎ   Then for all Xyx , , we have  

   

( ( ), ) (( ) , )1 2 1 2
( , )1 2
( , ( ) )2 1
( , )2 1

( , ) ( )1 2 2 1

B x f f y B xf f y

B xf yg

B x yg g

B x yg g

f f g g S B









Þ Î

. 

Similarly we can prove the associativity. Since B is non-denerate, we have 
1

2
*

2
 BfBg . Since )(XL is regular there exist )(XLf  such that ffff   . 

Since )(XLf  there exist OPXLg )( such that ),( gf  is an adjoint pair. 

Hence 1
2

*'
2

 BfBg where tftf '*'  for all *Xt . Since ffff  it is enough if 
we show gggg   . 

   

'** 1 1 * 1( ) ( )( )2 2 2 2 2 2
'** 1 1 * 1( )( ) ( )( )2 2 2 2 2 2

'** * 1( )2 2

gg g B f B B f B B f B

B f B B f B B f B

B f f f B

  ¢

  



 

Now for all *( ),t L XÎ   
'* '** * * *( ) ( )( )

'* *( )
'* *( )

*( )

( )

t f f f tf f f

ft f f

f tf f

ff tf

ff f t

ft







 ¢

 ¢



 

Therefore )(BS is a regular subsemigroup of ( ) ( )OPL X L X´  .  

Theorem 2.8 : ( , ) ( )f g S BÎ if and only if ( ) ( )TM f C C M g .  
Proof :  Let ( ) ( ): , 1, 2,.....,M f a i j mij  and ( ) ( ): , 1, 2,.....,M g a i j mij   

( ) ( ) , , 1, 2,.....,M B c C i j mij   . Then f ai ij jj
  å  and g bi ij jj

  å   

),(),()(),( ygxByxfBBSgf  for all Xx  and Yy . In particular, 
 ( , ) ( , )B f B fi j i j     for all i  and j . 
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a c c bik kj ik kjk k
Þ =å å for all i  and j . 

Let C , .Then  i ii
  å and i ii

   ¢ å  , for unique values of 

}.......,,,{ 21 m and }.......,,,{ 21 m . Now  

( )

( )

f fj jj
aj ij ij i

a ji j ii j

   å

  å å

  å å

 

and     

( )

g gj jj
b ji j ii j

   ¢ å

  å å  
Therefore ( , )B f a cji j ik ki jk

    ¢ ååå and ( , )B g c bi jik jki jk
    ¢ ååå  

It follows that ( , ) ( , )B f B g    ¢ ¢  . Implies  ( , ) ( )f g S BÎ . 
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