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REGULAR SEMIGROUP OF LINEAR
TRANSFORMATIONS ON CLASS FUNCTIONS OF A
FINITE GROUP

Biju.G.S 3, Vinod.S 23

Abstract : In this paper we intend to construct a bilinear form, with the help of
the character values of a finite group G, on the vector space of all class functions
defined on G. The bilinear form obtained thus is non-degenerate. Here we
construct the regular semigroup associated with this bilinear form.

Keywords: Regular semigroup, character values, bilinear form, class functions.

INTRODUCTION:

In [1] we see that by starting with an arbitrary bilinear form on the Cartesian
product of two finite dimensional vector spaces, a regular semigroup of pairs of
linear maps is constructed. The character table of a finite group gives rise to a
bilinear form on the Cartesian product of the space of all class functions on this
group. The bilinear form obtained is non-degenerate. We show that there exists a
regular semigroup associated with the bilinear form. For basic definitions,
concepts and theorems that are required in this sequel refer [2,3,4,5].

NON-DEGENERATE BILINEAR FORM THE CHARACTER VALUES

OF A FINITE GROUP
Let G be a finite group of order n. Let C,,C,,......... ,C,, be the conjugacy classes
and g, Xyseeeeeens » X» be the irreducible characters. Define C=[c, 1,i, j=1.2,....,m

where ¢, are the character values in the character table of the group G. The matrix

C of order m is called character matrix of the group G. Let X be the vector space
of all class functions defined on G.

Let 6,0’ C . Then ezgai x; and 9':§Bi x; - for unique values of
{a,,a,,....... ,a, + and { B, By,....... ,[3,,} . Define B:x xx -C by
B(0,0") = (0] ,0) 5eves am)(cl-j)(BI,Bz ......... Bm) = %%aicijﬁj o
Theorem 2.1 : Let X be the vector space of all class functions defined on a

finite group G of order n. Then B:x x X -C by, B(6,0) = Zzo‘icijﬁj is a bilinear
J 1

form and the matrix of B is the character matrix in the basis given by the simple
characters.
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The bilinear form B defines two linear maps Bj:X—>X * defined by
B (0)=B,(6,-) and B,:X —x defined by By(0)=B,(_,0) .

Theorem 2.2 : If B is the bilinear form associated with the character matrix,
then the map B : X - X * isan injection.

Theorem 2.3 : The bilinear form B associated with the character matrix is non-
degenerate.

Proof : dim( X )=dim(X ) =m. Since B, is an injection, 77(B,)= {0}.
Hence n(B,)= 0. This implies #(B,)= dim(X) =m . Since the matrix of B is C
and it is a square matrix of order m, it follows that »(B,)=m .

Hence n(By)= 0= n(B,)=0
Thus n(B))=0=n(B,) . Hence B is a non-degenerate bilinear form.

From the theorem 2.3 and the necessary and sufficient condition for a bilinear
form to be degenerate [5], we get an interesting result which can be stated as
follows.

Theorem 2.4 : The character matrix of a finite group is non-singular.
Theorem 2.5 : If B is the bilinear form associated with the character matrix
then the linear map B, : X — X" is an isomorphism of X onto X .

Theorem 2.6 : Every f e L(X)there exist geL(X)such that(f,g) is an
adjoint pair with respect to B.

Proof : since B is non-generate B, and B, are isomorphisms of X onto X~ .
Therefore B1_1 and Bz_lexists. Let feL(X) .Define f on X by
¢ =fi forall te X~
Then f~ €L(X").Now define
g=B,1 B,
Clearly geL(X).
g=Byf By = ¢By=Byf
Hence (f.8) is an adjont pair.

Theorem 2.7 : The set of all adjoint pairs arising from the non-degenerate
bilinear form B associated with the character matrix C form a regular

subsemigroup of L(X)x L(X )OP .
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Proof : Let S(B)= {(f,g)eL(X)x L(X )OP :(f,g) 1is an adjoint pair with respect to B
}. Since (I y,ly)eS(B), S(B) is non empty where/, is the identity map on X. Let
(f1-81)> (f2,87) €S(B) Then forall x,y € X, we have

B(x(f1/2),y)=B((xf1) /2, ¥)
=B(xf1,¥g)
=B(x,(¥g2)81) .
=B(x,yg781)

= (f1/2,8281) €S(B)

Similarly we can prove the associativity. Since B is non-denerate, we have
g=B,f B;'. Since L(X)is regular there exist f’eL(X)such that ff =/ .
Since /' e L(X)there exist g’'e€L(X)“ such that (f’,g")is an adjoint pair.
Hence g'=B, f B, wheretf " f't forall t € X . Since fff =71 itisenough if
we show gg'g =g .

* ] 'k —1 * 1
88'e=(Byf By )(Byf By )NByof By')
= By W8y By By B By )
=51 B!
Now for all 1 eL(X *),
W1 =G
- A
o
=1 S
= 1)
=
= fi

Therefore S(B) is a regular subsemigroup of L(X) x L(X )OP .
Theorem 2.8 : (f,g)<S(B)if and only if M(f)C=CM(g)" .

(f,2)eS(B)= B(xf,y)=B(x,yg)forall xeX and y Y . In particular,
B(yif.xj)= B>y f) forall i and j.
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= %aikc]g = %Cikblg‘ forall i and ;.
Let 6,0’ C .Then 0=Ya;y; and ©=YB;y; , for unique values of
i ) i 1)

{a,,a,,....... o, yand { B, By, B, } . Now
9f=§0tjxjf

:§°‘j (?a,]x,)
:%(%aﬁ Otj)xi

and
0'g=2B;x;e
J

=2(2bji By
tJ
Therefore B(6f,0")= %ZZaﬂajclkBk and B(0,0'g)= %ZZalclkbjkBj
i )
It follows that B(©r,0")= B(6,0'g) . Implies (f,g)eS(B).
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