
* Supported by the NNSF of China (10571078) and the Teaching and Research Award Program
for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education
of China.

Key word: Difference equation, boundedness, global attractivity, periodic character.
AMS 2000 Mathematics Subject Classification: 39A10

GLOBAL ATTRACTIVITY OF A RATIONAL
RECURSIVE SEQUENCE

Wan-Sheng He, Lin-Xia Hu & Wan-Tong Li

Abstract

In this paper we investigate the boundedness, the periodic character and global
attractivity of the recursive sequence
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where a � 0, b, A > 0 are real numbers, k� {1,2, ...} and the initial conditions
x–k,..., x

0
 are arbitrary real numbers. We show that the positive equilibrium of

the equation is a global attractor with a basin that depends on certain conditions
posed on the coefficients.

1. INTRODUCTION

Our goal in this paper is to investigate the boundedness, the periodic character and
global attractivity of all positive solutions of the recursive sequence
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where a � 0, b, A > 0 are real numbers, k� {1, 2, ...} and the initial conditions x–

k
, . . ., x0 are arbitrary real numbers.

In [12], Li and Sun investigated the global asymptotic stability of the rational
recursive sequence
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where a, b, A are nonnegative real numbers and k � {1, 2, . . .}. In [6], He et al.
investigated the global asymptotic stability of the rational recursive sequences

x
n+1 = 

1 , 0,1,...,n

n

a bx
n

A x
��

�
�

where a � 0, A, b > 0 are real numbers, and the initial conditions x–1, x0 are arbitrary
positive real numbers. For the global behavior of solutions of some related equations,
see [1, 2, 3, 14]. Other related results refer to [4, 5, 7, 8, 9, 10, 11, 13, 15, 16].

Here, we recall some results which will be useful in the sequel.

Let I be some interval of real numbers and let F be continuous function defined
on Ik+1. Then, for initial conditions x–k

, . . . , x0 � I, it is easy to see that the difference
equation

x
n+1 = F(x

n
, . . . , x

n–k
), n = 0, 1, . . . (1.2)

has a unique solution { }n n kx �
�� .

A point x  is called an equilibrium of Eq. (1.2), when x  = F( x , . . . , x ), that

is, nx x�  for n � 0, is a solution of Eq.(1.2), or equivalently, is fixed point of F.

The linearized equation with Eq.(1.2) about an equilibrium x  is
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and its characteristic equation is
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Definition 1.1. An interval J � I is called an invariant interval of Eq.(1.2), if
x–k

, . . ., x0 � J � x
n
 � J for all n � 0. That is, every solution of Eq.(1.2) with initial

conditions in J remains in J.

Theorem 1.1 Assume that F is a C1 function and let x  be the equilibrium of
Eq.(1.2). Then the following statements are ture.

(a) If all the roots of the polynomial equation
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lie in the open unit disk |�| < 1, then the equilibrium x  of Eq.(1.2) is locally
asymptotically stable.

(b) If at least one of the roots of Eq.(1.3) has absolute value greater than one,
then the equilibrium x  of Eq.(1.2) is unstable.

Also, we need the following well-known explicit condition for local asymptotic
stability.

Theorem1.2. Assume that p1, p2, . . . , pk
 � R. Then 

1
| |

�� k

ii
p < 1 is a sufficient

condition for the asymptotic stability of the difference equation

x
n+k

 + p1xn+k–1 + . . . + p
k
 x

n
 = 0, n = 0, 1, . . . .

Theorem 1.3. Consider the difference equation

x
n+1 = F(x

n
, . . . , x

n–k
), n = 0, 1, . . . ,

where k � {1, 2, . . . }, F � C [(0, �)k+1, (0, �)] is increasing in each of its arguments
and the initial condition x–k

, . . . , x0 are positive. Assume that Eq.(1.2) has a unique
positive equilibrium x  and that the function h difined by h(x) = F(x, . . . , x), x �
(0, �) satisfies (h(x) – x) (x – x ) < 0 for x � x . Then x  is a global attractor of all
positive solution of Eq. (1.2).

2. ASYMPTOTIC STABILITY

Consider the difference equation (1.1) with

a > 0 and A > b > 0. (2.1)

The equilibria of Eq.(1.1) are the nonnegative solution of the quadratic equation

2 ( ) 0x A b x a� � � �

and the linearized equation of Eq.(1.1) about x  is

1 0, 0,1, .� �� � � �
� �

�n n n k

x b
y y y n

A x A x

Its characteristic equation

1 0.k kx b

A x A x
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(2.2)

According to our assumption, we have
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if (2.1) holds and a = (A – b)2/4, then Eq.(1.1) has a unique positive equilibrium

0 ( ) / 2;x A b� �

if (2.1) holds and a < (A – b)2 / 4, then Eq.(1.1) has two positive equilibria
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Thus, we obtain the following results.

Theorem 2.1. Assume (2.1) holds. Then

(a) the positive equilibrium 2x  of Eq.(1.1) is locally asymptotically stable (In

the sequel, we will denote 2x  as x ).

(b) the positive equilibria 0x  and 1x  of Eq.(1.1) are unstable.

Proof. (a) By (2.2), the characteristic equation (2.2) about 2x  is
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By Theorem 1.2, we have
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Hence, the positive equilibrium 2x  is locally asymptotically stable.

(b) Similarly, the positive equilibria 0x  and 1x of Eq. (1.1) are unstable for k �
{1, 2, . . .}.

3. GLOBAL ATTRACTIVITY

In this section, we study the global attractivity of all positive solution of Eq.(1.1).
We show that the positive equilibrium x  of Eq.(1.1) is a global attractor with a
basin that depends on certain conditions posed on the coefficients.
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Lemma 3.1. Assume (2.1) holds. Then the following statements are true.

(a) 10 .x x A� � �

(b) Let ( , ..., ) n k
n n k

n

a b x
F x x

A x
�

�

�
�

� , so F is a strictly increasing function in

(–�, 1x ).

Proof. The proof of (b) is obviously and will be omitted. We only prove (a). In
view of

A – 1x  = A  – 
2 2( ) 4 ( ) 4

0.
2 2

A b A b a A b A b a� � � � � � � �
� �

and the definitions of x  and 1x , the proof is obvious and complete.

Lemma 3.2. Suppose that the function h defined by

h(x) = 1( , , ) , (0, ).
a bx

F x x x x
A x

�
� �

�
�

Then (h(x) – x)(x – x ) < 0 for x � x .

Proof. By the definition of h, we have

(h(x) – x)(x – x )

=
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The proof is complete.

Theorem 3.1. Assume that 0 < a < (A – b)2 / 4 and A > b > 0 hold. Let {x
n
} be

a solution of Eq.(1.1). If (x–k
, . . . , x0) � 1 1( , ] [ / , ],�� � �kx a b x  then 0 � x

n 
� 1x  for

n � 1.

Proof. By part (b) of Lemma 3.1, we have
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0 = F (–a/b, x–1, . . . , x–k
) � x1 = F(x0, x–1, . . . , x–k

) � F( 1x , 1x , . . . , 1x ) = 1x ,

and

0 < F(0, x–1, . . . , x–k
) � x2 = F(x1, x0, . . . , x–k+1) � F 1 1 1( , ,..., )x x x = 1x .

Hence, the result follows by induction. The proof is complete.

Theorem 3.2. Assume that 0 < a < (A – b)2/4 and A > b > 0 hold. Then the

positive equilibrium x  of Eq.(1.1) is a global attractor with a basin S = (0, 1x )k+1.

Proof. Let {x
n
} is a solution of Eq.(1.1) with initial conditions (x–k

, . . . , x0) �
S. Then, by part (b) of Lemma 3.1 and Theorem 3.1, the function F(x

n
, . . . , x

n–k
) is

a strictly increasing function in each of arguments.

By Lemma 3.2, we have (h(x) – x)(x – x ) < 0. Furthermore, Theorem 1.3
implies that x  is a global attaractor of all positive solution of Eq.(1.1). Thus

2( ) 4
lim

2nn

A b A b a
x x

��

� � � �
� �

The proof is complete.

4. THE PRIME PERIOD TWO SOLUTION

In the section, we discuss whether Eq. (1.1) has the prime period two solution.

Theorem 4.1. Assume that a > 0 and A > b > 0 hold. Then Eq. (1.1) has no
positive solution with prime period two.

Proof. Assume for the sake of contradiction that there exist distinctive positive
real numbers � and � such that

. . . , �, �, �, �, . . .

is a period two solution of Eq.(1.1). There are two cases to be considered.

Case (a) k is odd. In this case x
n+1 = x

n–k
, � and � satisfy the system

� = , .
a b a b

A A

� � � �
��

� � � �

Hence (�–�) (A–b) = 0. According to the condition A > b > 0, we obtain � = �,
which contradicts the hypothesis � � �.
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Case (b) k is even. In this case x
n
 = x

n–k
, � and � statisfy the system

(A – �)�� = a + b� and (A – �)� = a + b�

Subtracting the two equations above, we obtain

(� – �)(A + b) = 0,

and so A + b = 0 or � – � = 0, which contradicts the condition A > b > 0 and the
hypothesis of � � �. The proof is complete.

Corollary 4.1. If A � b, then Eq.(1.1) has no solution with prime period two
for all a � (0, �).

5. THE CASE A = 0

In this section, we study the asymptotic stability of the difference equation

x
n+1 = , 0,1 ,n k

n

bx
n

A x
� �
�

� (5.1)

where b, A � (0, + �), k � {1, 2, . . .} and the initial conditon x–k
, . . . ,x0 are

arbitrary real numbers.

By putting x
n
 = by

n
, Eq.(5.1) yields

y
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n

y
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C y
� �
� (5.2)

where C = A/b > 0. Eq.(5.2) has two equilibria 1 20, 1.y y C� � �  The linearized

equation of Eq. (5.2) about the equilibria , 1,2,iy i �  is

z
n+1 – 

1
0, 1,2, 0,1 .i

n n k
i i

y
z z i n

C y C y �� � � �
� �

�

For 2 1,y C� �  Theorem 1.2 implies that 2y  is unstable. For 1 0y � , we have

z
n+1 – 

1
0, 0,1 .n kz n

C � � � � (5.3)

The characteristic equation of Eq.(5.3) is �k+1 – 1/c = 0. Hence, by Theorem 1.1, we
have

(i) if A > b, then 1y  is locally asymptotically stable;
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(ii) if A < b, then 1y  is a repeller;

(iii) if A = b, then linearized stability analysis fails.

In the sequel, we will discuss the global attractivity of the zero equilibrium of
Eq. (5.2). So, we assume that A > b, namely, C > 1.

Lemma 5.1. Assume that the initial conditions (y–k, . . . , y0) � [–C+1, C –1]k+1.
Then y

n
 � [–C + 1,C – 1] for n � 1.

Proof. It is easy to see that

1
0

1 1 1
1 1,

( 1) ( 1)

C y C
C y C

C C C y C C

� � � �
� � � � �

� � � � � �
� � �

and

0
2

1

1 1
1 1.

( 1) ( 1)

yC C
C y C

C C C y C C

� � �
� � � � �

� � � � � �
� � �

The result follows by induction, and this completes the proof.

Obviously, Lemma 5.1 implies that the following result is true.

Theorem 5.1. The equilibrium 1y  = 0 of Eq. (5.2) is a global attractor with a

basin S = [–C + 1, C – 1]k+1.

REFERENCES

[1] M. T. Aboutaleb, M. A. EI-Sayed and A. E. Hamza, Stability of the Recursive Sequence
x

n+1
 = (� – �x

n
) = (� + x

n–1
), J. Math. Anal. Appl., 261 (2001), 126-133.

[2] K. C. Cunningham, M. R. S. Kulenovic, G. Ladas and S. V. Valicenti, On the Recursive
Sequence x

n
 = (��+ �x

n
) / (Bx

n 
+ Cx

n–1
), Nonlinear Analysis TMA, 47(2001), 4603-

4614.

[3] C. H. Gibbons, M. R. S. Kulenovic, G. Ladas, On the Recursive Sequence y
n+1

 = (� +
�y

n–1
)/(� + y

n
), Math. Sci. Res. Hot-Line, 4(2) (2000), 1-11.

[4] C. H. Gibbons, M. R. S. Kulenovic, G. Ladas and H. D. Voulov, On the Trichotomy
Character of x

n+1
 = (��+�x

n
 + �x

n–1
) / (A+x

n
), J. Difference Equations and Applications,

8(1) (2002), 75-92.

[5] W. S. He, L. X. Hu and W. T. Li, Global Attractivity in a Higher Order Nonlinear
Difference Equation, Pure Appl. Math., 20(3) (2004), 213-218.

[6] W. S. He, W. T. Li and X. X. Yan, Global Attractivity in a Nonlinear Difference Equation,
Intern. J. Appl. Math., 11(3) (2002), 283-293.



Global Attractivity of Rational Recursive Sequence 93

[7] W. S. He and W. T. Li, Global Attractivity of a Higher order Nonlinear Difference
Equation, Intern. J. Appl. Math., 2(2)(2003), 251-259.

[8] W. S. He, W. T. Li and X. X. Yan, Global Attractivity of the Difference Equation
x

n+1
 = � + (x

n–k 
/ x

n
), Appl. Math. Comput., 151(3)(2004), 879-885.

[9] W. S. He and W. T. Li , Attractivity in a Nonlinear Delay Difference Equation , Appl.
Math. E-Notes, 4(2004), 48-53.

[10]M. R. S. Kulenovic, G. Ladas and N. R. Prokup, On The Recursive Sequence x
n+1

 =
(�x

n
 + �x

n–1
) / (1 + x

n
), J. Differ. Equations Appl., 5(2000), 563-576.

[11] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher
Order with Application, Kluwer Academic Publishers, Dordrecht, 1993.

[12]W. T. Li and H. R. Sun, Global Attractivity in a Rational Recursive, Dynamic Systems
and Applications, 11(3)(2002), 339-345.

[13]W. T. Li, H. R. Sun and X. X. Yan, The Asymptotic Behavior of a Higher Order Delay
Nonlinear Difference Equations, Indian J. Pure Appl. Math., 34(10)(2003), 1431-1441.

[14]X. X. Yan and W. T. Li, Global Attractivity in the Recursive Sequence x
n+1

 = (a – bx
n
)

/ (A – x
n–1

), Appl. Math. Comput., 138(2003), 415-423.

[15]X. X. Yan and W. T. Li, Global Attractivity in a Rational Recursive Sequence, Appl.
Math. Comput., 145(1)(2003), 1-12.

[16]X. X. Yan and W. T. Li, Global Attractivity for a class of higher order Nonlinear
Difference Equations, Appl. Math. Comput., 149(2)(2004), 533-546.

Wan-Sheng He, Lin-Xia Hu
Department of Mathematics
Tianshui Normal University
Tianshui, Gansu 741001
People’s Republic of China

Wan-Tong Li
School of Mathematics and Statistics
Lanzhou University
Lanzhou, Gansu 730000
People’s Republic of China
E-mail: wtli@lzu.edu.cn


