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Abstract: A new and further generalized form of the fractional kinetic equation involving

generalized multiindex Bessel function J, ((3; ’))qY (z) is developed. The manifold generality

of the generalized multiindex Bessel Function is discussed in terms of the solution of
fractional kinetic equation in the present paper. The graphical interpretation and numerical
results are presented of the solutions of fractional kinetic equations. The results obtained
here are capable of yielding a very large number of known and (presumably) new results.
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1. INTRODUCTION AND PRELIMINARIES

The importance of fractional differential equations in the field of applied science has gained
more attention not only in mathematics but also in physics, dynamical systems, control
systems and engineering, to create the mathematical model of many physical phenomena.
Especially, the kinetic equations describe the continuity of motion of substance. The
extension and generalization of fractional kinetic equations involving many fractional
operators were found in [1, 2, 9, 4, 8, 12, 6].

If an arbitrary reaction is described by a time dependent quantity N = N(¢), then the
fractional differential equation between rate of change of the reaction, the destruction rate
and the production rate of N was established by Haubold and Mathai in [9], is given as
follows:

dN
—=-d(N,)+ p(N,), (1)
dt

where N = N(¥) the rate of reaction, d = d(N) the rate of destruction, p = p(N) the rate of

production and N, denotes the function defined by N, (t*) =N(t - ;*), £>0.
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A special case of (1), when spatial fluctuations and inhomogeneities in the quantity
N(¢) are neglected, is given by the following differential equation as:

dN
E = _CiNi (t)’ (2)

such that N, (r = 0) = N is the number density of the species i at time =0 and ¢; > 0.
If we remove the index i and integrate the standard kinetic equation (2), we have
N(t) — Ny = —coDIN(D), (3)

where ¢ is a constant and oDz_l is the special case of the Riemann-Liouville fractional
integral operator , D, defined as

oDVF() == [ (t —s)" " f(s)ds, (t > 0,R(v) > 0). %)

rw)

The fractional generalization of the standard kinetic equation (3) is given by Haubold
and Mathai [9] as follows:

N(t) — Ny = —=c”oD7VN(t), (5)
and obtained the solution of (5) as follows:

(-
T(vk+1)

N(t) = No Zic=o (ct)"™. (6)

Further, Saxena and Kalla [16] considered the the following fractional kinetic equation:
N(t) = Nof(t) = —c¥oDsVN(t), RE) > 0,¢>0), (M

where N(¥) denotes the number density of a given species at time ¢, Ny= N(0) is the number
density of that species at time 7 = 0, ¢ is a constant and f € £(0, ).

By applying the Laplace transform to (7) (see [12]),

LIN(£); p} = No—B_ = Ny (B (—c")"p™"™)F (), (8)

1+cVp~V
(n € Ny, |§| < 1).

Let f(r) be a real or complex valued function of variable ¢ and p is a real or complex
parameter, then Laplace transform of f{(¢) is defined as (see [17])

F) = L{f();p} = [, eP'f(Ddt,  (R(p) > 0). )
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In view of the effectiveness and a great importance of the kinetic equation in certain
astrophysical problems the authors develop a further generalized form of the fractional

. . . . . . .o . Aj)m.
kinetic equation involving generalized multiindex Bessel function J,’ "(@).
vVj)ma

For our present study we start by recalling the previous work.The Bessel-Maitland

function J f () is given as (see Marichev [13]):

Ji(2) = Sy =S A1>0;z€C (10)

=0 pyin+1)n!’

The generalized form of Bessel function J Vx . (2)1is given by Jain and Agarwal [10] as:

7 v+2u+2n
Jau®) = Tieo
o =0 F(y4p+in+ D) (utn+1)’

(11

A>0,v,u € C;z € C\(—x,0].
Further, Pathak [15] gave the following more generalized form of the generalized Bessel-

Maitland function J VXJ () as:

(V)qn(_z)n
r(v+in+n!

Jon (@) = Tz (12)
Av,y €CRWA) =0,R(v) = —-1,R(y)=0and g € (0,1) UN.

If visreplaced by v — 1 and z by —z then generalized Bessel-Maitland function given in
equation (12) reduces to well known Mittag-Leffler function as follows:

J3ta(=2) = L), (13)
Lv,y €ECRA) >0,R(v) >0,R(y) >0;,9g€ (0,1)UN,

where E}{ 7 (2) denotes generalized Mittag-Lefller function, was introduced by Shukla and
Prajapati [19].

Ifg=1,y=1, visreplaced by v—1 and z by —z then generalized Bessel-Maitland function
given in equation (12) reduces to Mittag-Leffler function, studied by Wiman [21] as follows:

Jyha(=2) = E, (), LvECRQA) >0,RWV) > 0. (14)

The generalized multiindex Bessel function ]((jj;:";/(Z) studied by [5] is defined as

follows:
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(lj)m.)/ Yo Vgn (=)™
](Vj)m,q (2) = Xn=0 M, r@mn+vi+1) nt (15)

where m € N, kj, Vi ¥, 4, 2 € C (j = 1,..., m) such that

}71:1 R(A) > max{0;R(q) —1};q > 0,R(v;)) > —1,R(y) >0 and g € (0,1) UN.

2
On settingm =1, g=0, A;=1, v, = v and replace z by % in (15), we have

2 v
1 E] = C) bl (16)
where J, [z] is a well known Bessel function of first kind defined by (see [11])
(_l)n(£>2n+v
Llz] = X80 r(Tiﬂ) v € C;z € C\(—x, 0]. (17)

For more details about the Bessel function one may refer to earlier work by Erdélyi et
al. [7] and Watson [20].

2. FRACTIONAL KINETIC EQUATIONS

In this section, we investigated the solutions of the generalized fractional kinetic equations
by considering generalized Multiindex Bessel function.

Remark 1: The solutions of the fractional kinetic equations in this section are obtained
in terms of the generalized Mittag-Leffler function E,, fx) (Mittag-Leffler[14]), which is
defined as:

Eep(2) = Tizo tos R(@) > 0,R(B) > 0. (18)

T(an+p)’

Theorem 1 If a>0, d>0, v > 0; a #d; meN, A, v, 3 q € C(j = 1,....m) such that
11 R > max{0; R(q) - 1}; q > 0, R(v;) > 1, R(y)>0and q € (0,1) U N, then the

solution of the fractional kinetic equation:

@pmy

N() = Nol ([ (@) = —a’o DIV N(©), (19)

is given by the following formula

¥)gnl (vn+1)  (—dVe")™
jzll"(lin+v}-+1) n!

N() = No Zr-o I Eyynr(—a’t’). (20)
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Proof. Laplace transform of Riemann-Liouville fractional integral operator is given by

(Erdelyi et al. [3], Srivastava and Saxena [18]):
L{ oD f(£);p} =P VF (D),
where F(p) is defined in (9).

Now, taking Laplace transform on (19) gives,

L{N(®); p} = NoL {J,) 7 (d¥¢7); P} — a”L{ 4D "N (2); P}

Vj)m,q

_ © _pt gw (Ngn (-avenyr
N(p) = Ny (fo e ¥n=o L Tm+vi+) n!

dt) —a'p VN(p),

interchanging the order of integration and summation in (23), we have

— =010
—=0.1] 1
=02
=03
=l
— =021
—— =i f
v=0.7
— =08

—=1.0

t

Figure 1: Solution of (19) for Ny=5,y=7,A;=.5,A,=.8,v,=1.7,v,=2.8,

qg=.5,d=3,a=2

2D

(22)

(23)
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Figure 2: Solution of (19) for Ny=5,y=7,A;=.5,A,=.8,v,=1.7,v,=2.8,
qg=.5,d=3,a=2

N() + @ "N(p) = Ny Do iin___ GO e popeyungy (24)

n=0 7L, rAjn+vj+1)  n

=N, gn (=d") I'(vn+1)
0 &m=0 H’If'ill"(ljn+v]-+1) n! pvntl’

this leads to

N@) = No Bico ot e CO fy-omen 37 [ (2)‘”]1}. 25)

j=1 F(Ajn+vi+1) n!

Taking Laplace inverse of (25), and by using

tV—l

=t @) > 0). 26)

We can obtained from the equation (25), as follows:

@)gnl (vn+1)  (—a")"
jzll'(l)-n+v]-+1) n! (27)

L™Y{N®)} = Np X5=o I
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X L—l{z;nzo (_1)lavlp—[v(n+l)+1]}
ie.

_ ® Mgnl(n+1)  (=dVE)® (o 1 (@t}
N() = No Xn=o M7, T(Am+vj+1)  n! {Zl=0( D F(v(n+l)+1)}' (28)

now interpret the above equation (28) with the view of Mittag-Leffler function given in
equation (18) we have the required result (20).

Theorem 2: [fd > 0, v > 0; meN, 4, vj, , q€C(j = 1,....m) such that = R(\j) >
max {0, R(q)—1}; q > 0, iR(vj) >-—1,R(y)>0and q € (0, 1) U N, then the solution of the

fractional kinetic equation:

N() = NoJ (D (@) = =d"o DN () (29)

is given by following formula

@gnf vn+1)  (—avVe)™
jzll'(ljn+v1-+1) n!

N() = NoZi-o Eyynir (—d t") (30)

Theorem 3 [fd > 0, v>0; meN, A, v, y qeC(j=1,....,m) such that L, R(4;) > max

{0; R(q)-1}; ¢>0, Dfi(vj) >—1,R(y)>0and q € (0,1) UN, then the solution of the fractional
kinetic equation:

N(1)= N, J2" (1) = —d} D" N(t) (31)

(Vj ym,q
is given by following formula

N, Tn+l) (="

N(@)=NX"
=N,y ., TAn+v,+1) n!

Ev,v11+l(_dvtv)l‘ (32)

Proof. The proof of the Theorem 2 and 3 are similar as that of Theorem 1, therefore we
omit the details.

3. SPECIAL CASES
If we choose m = 1, then all the Theorems 1, 2 and 3 are reduces to the following form

involving the generalized Bessel-Maitland function J Vx 7 () (see Pathak [15]):
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Corollary 1: Ifa>0,d > 0,v> 0; a=d; A, v, 3, g eCsuch that 94 2)>max{0; 24 q)-1};
qg>0 9v)> -1, Hy)>0and q (0,1) U N, then the solution of the fractional kinetic
equation:

N() = NoJ 0 (d"e¥) = —a¥oD; VN (1), (33)

is given by the following formula

)gnl (vn+1) (—dvVe")™
r(An+v+1) n!

N(t) = Ny Xn—o

Ev,vn+1(_avtv)- (34)

Corollary 2: Ifd > 0,v > 0; A, v, 3, g € Csuch that 94 1) > max{0; 9 q)-1}; g>0, Hn)
>—1, Hy)>0and q (0, 1) U N, then the solution of the fractional kinetic equation:

N(t) = NoJ§I7(d"e") = —d¥ oD VN () (395)

is given by following formula

@¥)gnlT(vn+1) (=avVe¥)"
r(An+v+1) n!

N(t) = Ny Xn=o

Ev,vn+1(_dvtv)l- (36)

Corollary 3: Ifd>0, v>0; 4, v, 3, g eCsuch that 2 1)>max{0; I q)-1}; g>0, H(v)>-
1, 9% y)>0 and q £(0,1) U N, then the solution of the fractional kinetic equation:

N(£) = NoJ i (£) = =d" oDV N (£) (37)

is given by following formula

V)gnT(vn+1) (=tV)"

w Vv
N(t) = Ny Xn=o T(n+v+1) oy Ev,vn+1(_d t )l- (38)

If we choose m = 1, then v is replaced by v—1 and z by —z then generalized Bessel-

Maitland function reduces to well known Mittag-Leffler functioni.e. j** 1a(=2) = E};1(2).

Using this concept all the Theorem 1, 2 and 3 reduces to new one involving generalized
Mittag-Leffler function.

4. CONCLUSION

In this paper, we give a new fractional generalization of the standard kinetic equation and
derived solution for the same. From the close relationship of the generalized Bessel-Maitland
function with many special functions, we can easily construct various known and new
fractional kinetic equations. From the graphical presentation, we conclude that N(#) > O for
different values of the parameters and in different intervals of ¢.
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