

## International Journal of Control Theory and Applications

ISSN: 0974-5572

© International Science Press

Volume 9 • Number 42 • 2016

# **Dynamic Economic Dispatch Scenario using Harmony Search Technique**

# Arun Ku Sahoo<sup>a</sup> Aurobindo Behera<sup>a</sup> Tapas Kumar Panigrahi<sup>b</sup> Prakash Ku. Ray<sup>b</sup> and Jagannath Paramguru<sup>c</sup>

<sup>a</sup>Research Scholar, Department of Electrical Engineering, International Institute of Information Technology Bhubaneswar (IIIT, BBSR, INDIA)

E-mail: C116003@iiit-bh.ac.in, C115002@iiit-bh.ac.in

<sup>b</sup>Asst. Prof., Department of Electrical Engineering, International Institute of Information Technology Bhubaneswar (IIIT, BBSR, INDIA)

E-mail: tapas@iiit-bh.ac.in, prakash@iiit-bh.ac.in

<sup>c</sup>Research Scholar, School of Electrical Engineering, KIIT University, Bhubaneswar, India

E-mail: j\_paramguru1987@yahoo.co.in

*Abstract*: In the recent era the demand of the power system is highly stochastic in nature and the demand is increasing day by day for which cost of generation is to be controlled according to the demand around all the hours in a day. Maintaining least cost for generated power is the responsibility of the power utility and it must match the demand. Hence, cost-effective operation of system depends on the total demand being applicably pooled amid generating units with concern to curtail the gross generation cost. Dynamic Economic dispatch being constrained optimization, optimal tool plays an important role to control the cost and governs optimal setup of power demands over a definite period of time. This method is used to minimize the cost function and optimal settings of generator units with projected load demand over a certain interval of time. The major objective is to maintain economical operation of power system, within its constraint. In this paper a random search technique known as Harmony search algorithm is used to optimize the generating cost of an IEEE 10 unit generating system. The system is studied for 24 hours on hourly basis for dynamic load dispatch.

Keywords: Dynamic Economic Dispatch (DED), Sysytem Constraint, Harmony Search (HS).

### 1. INTRODUCTION

The financial plan of power provider, the prime practical setup and planning of electrical power generation system is vital to the power production [1]. With gigantic interconnected power system, the mash of vitality and persistent increment in costs, it is required to minimize operational charges of energy provided. Reducing the fuel cost for connected units can decrease operational expense. Financial aspects of load to be dispatched by the connected units are divided to accomplish ideal operational cost. The ideal working expense is to be acquired by considering the limitation on system operation to affirm the system constraints, accordingly maintaining a

strategic reserve from the breakdown of system subjected to unexpected problems. The issue addressed in the paper is the test of the right allotment of load to the accessible units to achieve the ideal load adjusts [2]. The capacity of cost for individual units has been described by quadratic capacity ignoring the valve point impacts in the DED. DED situation considering valve direct impact leads toward non-smooth advancement issue having complex qualities.

Dynamic economic dispatch (DED) works by on-line planning of generators by finding the prime era, there by accomplishing requested supply adjust over a given interim of time with ideal working expense in various system considering different constraints of operation. Ramp rate limitations may influence the operational choice on hourly basis. Heuristic technique approaches [3] are simple to apply with faster computational performance at optimum price [4]. Different upgrading strategy is utilized to make a solution of the DED issue, such as Particle Swarm Optimization (PSO) [5], Gravitational Search Algorithm (GSA) [6], Genetic Algorithms (GA) [7], Simulated Annealing (SA) [8] and so forth. However, the performance of these techniques is significantly influenced by the parameters. This paper shows an optimum solution by applying the HS technique than some other technique.

#### 2. PROBLEM FORMULATION

The DED is formulated as a nonlinear and complex optimization problem considering several constraints for the IEEE 10 unit generator system.

Let Ci be the charge of generating energy by a unit. Therefore, cost for the i units be

$$C = \sum_{i=1}^{N}$$
(1)

$$\operatorname{Min} C(\mathbf{P}_{a}) = \sum_{i=1}^{\mathrm{NT}} \sum_{i=1}^{\mathrm{NG}} C(\mathbf{P}_{it})$$
(2)

Where,

$$C(P_{it}) = a_i P_{it}^2 + b_i P_{it} + c_{it}$$
(3)

NT = Total time period, *ai*, *bi* & *ci* are the co-efficient,

NG = No. of generated unit Demand Load Balancing Constraint

$$\mathbf{P}_{\mathrm{D}} = \sum_{i=1}^{N} \mathbf{P}_{gi} + \mathbf{P}_{\mathrm{L}} \tag{4}$$

 $P_{\rm D}$  = Load Demand,

 $P_{gi}$  = Total Generated load at different time,

$$P_L = Transmission Loss$$

$$P_{L} = \sum_{j=1}^{n} \sum_{i=1}^{n} P_{it} B_{ij} P_{it} + \sum_{i=1}^{n} B_{10} P_{it} + B_{00}$$
(5)

Generator Constraint The output power of the generator maintained within the upper and lower bound [3].

$$Pmin < P < P max$$
(6)

The online action for generating units is constrained by Ramp rate bounds. These bounds have an impact on the operational decisions. The current scheduling may disturb the future scheduling as generation increases due to ramp rate bounds.

$$\begin{cases} P_{i,t} - P_{i,t-1} \leq UR_i \\ P_{i,t-1} - P_{i,t} \leq DR_i \end{cases}$$
  
$$i = 1, 2, 3 ..., N.$$
  
$$t = 2, 3, ....T$$

138

#### 3. HARMONY SEARCH ALGORITHM

Currently, Geem et al. proposed a music inspired HS meta-heuristic algorithm for searching actual process of harmony. Harmony in music is analogous to the optimization process and the process of improving the harmony. HS algorithm improvises the process to optimize the global and local systems. The lot of a meta heuristically algorithm proposed base on population such as evolutionary algorithms which contains Genetic algorithm, Evolutionary Strategies, DE algorithm, HS algorithm, etc. And the algorithms based on swarm which contains, Particle Swarm Optimization, Bees Algorithms, Ant Colony Optimization, etc. over the last period. The opening values for the decision variables are not required in this algorithm. This algorithmic process uses a stochastic based search process on the memory of the harmony considering rate and adjusting rate of the pitch to overlook derived information [9, 10]. Processes and performances on music require a ideal state of harmony and strong minded by artistic estimation and optimization procedures produce the finest state, determined by objective function value. Harmony search makes the process as the following [11]

- 1. Each decision variable is referred from each musician.
- 2. Decision variable's value range is referred from Musical instrument's pitch.
- 3. The solution vector at certain iteration is referred from harmony of music at a certain time,
- 4. The objective function is referred from Audience's aesthetics.

#### 3.1. Harmony Search Technique steps

1. Initialization of Harmony Memory (HM): HM created [11] by considering solution matrix with dimensions as that in HMS. All the elements in harmony memory matrix signify one solution. Here the solutions are stochastically created and again arranged by ordering in a reverse way to HM, constructed on their values depending upon the objective function. like

$$f(a_{1}) \leq f(a_{2}) \leq f(a_{3}) \dots \leq f(a_{HMS})$$
$$HM = \begin{bmatrix} a_{1}^{1} & a_{2}^{1} \cdots & a_{N}^{1} \\ a_{1}^{2} & a_{2}^{2} \ddots & a_{N}^{2} \\ a_{1}^{HMS} & a_{2}^{HMS} & a_{N}^{HMS} \end{bmatrix}$$

2. Improvise New Harmony : New Harmony vector is improvised by HS process,

$$a'_i = a'_1, a'_2, a'_3, \dots, a'_N$$

Initialization of HMCR, PARmax, and PARmin is processed and determine whether in the limit. The new value is updated,

$$a'_{i} \leftarrow \begin{cases} a'_{i} \in \{a^{1}_{i}, a^{2}_{i}, a^{3}_{i}, \dots, a^{\text{HMS}}_{i}\} w.p \text{ HMCR} \\ a'_{i} \in \text{A}i & w.p (1 - \text{HMCR}) \end{cases}$$

By tuning the entire decision variable, a search process is added to the New Harmony vector.

$$a'_i = a'_1, a'_2, a'_3, \dots, \dots, a'_N$$
 from HM taking PAR operator.

 $a'_i \leftarrow \begin{cases} \text{Pitch adjusted } w.p \text{ PAR} \\ \text{No change } w.p (1 - \text{PAR}) \end{cases}$ 

Any produced arbitrary number  $rd \in [0, 1]$  is inside possibility limit of PAR, a new assessment variable  $(a_i)$  is attuned on the given equation:

$$a_i' = (a_i' + rd()) \times bw$$

Here, *b* is a random bandwidth of the distance.

- 3. Updating the harmony memory: The HM was updated by the new vector created  $a'_i = a'_1, a'_2, a'_3, \dots, a'_N$ , and each objective function is considered for New Harmony vector f(a). If the objective function value of new vector is good than the previous harmony vector, then it stored in HM Otherwise, this new vector is overlooked.
- **4.** Checking the stopping condition: The process of iteration in the above steps is finished when the extreme number of iteration is touched. Lastly, the harmony memory vector with best value is selected and is considered as finest solution to the problem.

Figure 1: Shown below is the flowchart of the harmony search algorithm

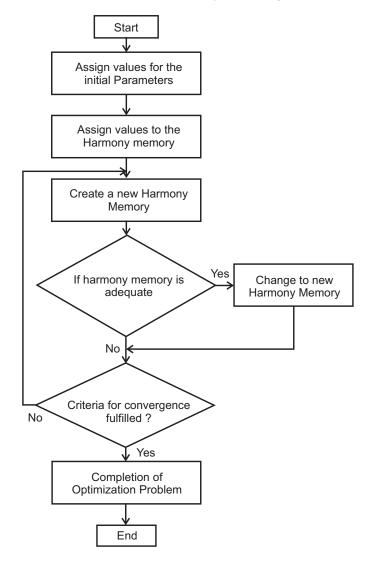



Figure 1: Flow chart for Harmony search

#### 4. RESULT AND ANALYSIS

The dynamic load dispatch with load variation in a dynamic sequence is analysed by some optimization technique for the IEEE 10 unit system. The output power for the hourly dispatched corresponding to the demand for the Harmony search technique and Invasive weed optimisation technique was shown in the Table I and Table II respectively. The Harmony Search technique is applied for the System and the total cost based on hourly load dispatch is obtained and is presented in Table III. After the dynamic load dispatch was obtained with an implementation of HS technique the economics of the solution dispatch obtained is economic than the other technique applied to the system [12, 13]. Fig .2 shows the convergence curve by applying the Harmony Search Technique and Invasive weed optimization technique with the iteration taken. It was identified that harmony search technique is giving optimum value with a faster converging time.

| Hour | P1, MW  | P2, MW  | P3, MW  | P4, MW  | P5, MW  | P6, MW  | P7, MW  | P8, MW  | P9, MW | P10, MW |
|------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|
| 1    | 227.444 | 226.031 | 86.345  | 63.195  | 126.547 | 125.824 | 56.535  | 47.478  | 21.596 | 55      |
| 2    | 225.933 | 222.307 | 81.775  | 60.011  | 122.429 | 123.839 | 91.646  | 82.802  | 44.253 | 55      |
| 3    | 224.225 | 221.919 | 186.515 | 120.077 | 125.776 | 125.218 | 93.285  | 84.543  | 21.437 | 55      |
| 4    | 303.279 | 223.313 | 188.512 | 125.101 | 126.721 | 124.767 | 127.190 | 85.607  | 46.503 | 55      |
| 5    | 300.986 | 310.446 | 194.098 | 117.248 | 122.721 | 120.394 | 126.929 | 84.385  | 47.788 | 55      |
| 6    | 304.733 | 309.812 | 306.866 | 123.575 | 171.021 | 124.087 | 125.255 | 75.815  | 31.831 | 55      |
| 7    | 380.970 | 310.699 | 292.707 | 120.731 | 173.736 | 124.389 | 128.660 | 85.174  | 29.929 | 55      |
| 8    | 381.429 | 399.268 | 293.122 | 122.102 | 172.895 | 121.820 | 118.877 | 85.250  | 26.231 | 55      |
| 9    | 456.292 | 397.083 | 300.316 | 180.742 | 171.907 | 125.194 | 127.247 | 85.043  | 25.173 | 55      |
| 10   | 456.263 | 396.408 | 296.789 | 244.523 | 221.341 | 132.542 | 128.673 | 116.336 | 24.121 | 55      |
| 11   | 460.113 | 457.939 | 315.184 | 241.171 | 225.722 | 128.276 | 127.948 | 86.739  | 47.902 | 55      |
| 12   | 457.327 | 458.344 | 322.677 | 295.167 | 220.151 | 150.428 | 128.747 | 86.850  | 45.304 | 55      |
| 13   | 457.327 | 458.344 | 322.677 | 295.167 | 220.151 | 150.428 | 128.747 | 86.850  | 45.304 | 55      |
| 14   | 381.476 | 395.872 | 292.044 | 239.156 | 174.386 | 122.460 | 128.16  | 84.158  | 51.281 | 55      |
| 15   | 377.881 | 314.454 | 293.415 | 240.036 | 147.092 | 121.778 | 92.983  | 85.586  | 47.769 | 55      |
| 16   | 302.172 | 308.528 | 182.893 | 182.058 | 173.728 | 120.070 | 93.541  | 84.508  | 51.497 | 55      |
| 17   | 301.913 | 308.456 | 182.201 | 179.520 | 121.145 | 104.660 | 95.683  | 85.055  | 46.362 | 55      |
| 18   | 305.061 | 308.827 | 290.814 | 177.358 | 172.472 | 122.029 | 125.901 | 48.740  | 21.794 | 55      |
| 19   | 379.640 | 309.029 | 307.666 | 240.756 | 127.491 | 124.644 | 118.192 | 84.796  | 28.782 | 55      |
| 20   | 457.245 | 459.938 | 338.439 | 169.950 | 221.770 | 130.392 | 129.257 | 86.585  | 23.421 | 55      |
| 21   | 454.199 | 396.598 | 296.088 | 121.651 | 215.812 | 122.257 | 128.324 | 84.518  | 49.549 | 55      |
| 22   | 379.515 | 396.723 | 194.246 | 118.165 | 171.137 | 110.843 | 92.429  | 84.574  | 25.363 | 55      |
| 23   | 303.133 | 311.017 | 191.319 | 119.540 | 124.157 | 58.024  | 92.048  | 47.786  | 29.971 | 55      |
| 24   | 227.495 | 309.460 | 87.074  | 61.621  | 119.431 | 114.732 | 91.575  | 83.735  | 33.874 | 55      |

 Table 1

 Generator schedule for 24 hours Using HS Technique (Hourly Load Dispatch)

International Journal of Control Theory and Applications

| Hour | P1, MW | P2, MW | P3, MW | P4, MW | P5, MW | P6, MW | P7, MW | P8, MW | P9, MW | P10, MW |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 1    | 226.63 | 135.86 | 186.94 | 72.91  | 73.12  | 123.37 | 56.86  | 85.31  | 20.00  | 55      |
| 2    | 226.62 | 135.00 | 167.54 | 118.74 | 122.82 | 122.44 | 56.53  | 85.31  | 20.00  | 55      |
| 3    | 226.62 | 215.00 | 152.27 | 118.39 | 172.68 | 156.20 | 56.53  | 85.31  | 20.00  | 55      |
| 4    | 303.25 | 222.27 | 202.44 | 163.90 | 172.89 | 124.40 | 56.53  | 85.31  | 20.00  | 55      |
| 5    | 303.25 | 285.15 | 177.30 | 178.55 | 222.60 | 96.31  | 56.53  | 85.31  | 20.00  | 55      |
| 6    | 379.87 | 313.19 | 192.64 | 176.10 | 172.71 | 122.45 | 56.53  | 114.92 | 44.60  | 55      |
| 7    | 303.25 | 393.19 | 224.83 | 226.10 | 174.27 | 131.61 | 58.30  | 115.45 | 20.00  | 55      |
| 8    | 303.25 | 396.80 | 261.62 | 241.17 | 172.73 | 122.38 | 88.30  | 85.45  | 49.31  | 55      |
| 9    | 379.87 | 396.80 | 304.68 | 241.25 | 222.60 | 122.45 | 93.06  | 88.27  | 20.01  | 55      |
| 10   | 379.87 | 460.00 | 303.86 | 256.50 | 224.97 | 123.64 | 99.87  | 118.27 | 50.01  | 55      |
| 11   | 456.50 | 396.80 | 306.98 | 300.00 | 228.90 | 132.20 | 129.61 | 120.00 | 20.03  | 55      |
| 12   | 456.50 | 459.81 | 308.26 | 299.62 | 222.60 | 122.45 | 129.59 | 116.14 | 50.03  | 55      |
| 13   | 379.87 | 460.00 | 313.03 | 296.56 | 172.73 | 127.01 | 129.59 | 86.14  | 52.06  | 55      |
| 14   | 379.87 | 396.80 | 321.70 | 246.56 | 128.55 | 128.46 | 129.69 | 115.31 | 22.06  | 55      |
| 15   | 303.25 | 340.52 | 312.59 | 230.76 | 172.75 | 126.23 | 129.59 | 85.31  | 20.00  | 55      |
| 16   | 303.17 | 309.41 | 258.22 | 180.76 | 122.81 | 122.28 | 127.03 | 55.31  | 20.00  | 55      |
| 17   | 303.25 | 309.69 | 187.29 | 180.83 | 126.29 | 123.61 | 97.03  | 47.00  | 50.00  | 55      |
| 18   | 379.87 | 316.80 | 189.49 | 185.98 | 172.73 | 136.72 | 93.06  | 47.00  | 51.33  | 55      |
| 19   | 379.87 | 396.80 | 243.97 | 235.98 | 172.77 | 123.06 | 100.21 | 47.00  | 21.33  | 55      |
| 20   | 456.79 | 399.39 | 301.27 | 254.01 | 222.63 | 125.99 | 129.70 | 77.00  | 50.22  | 55      |
| 21   | 456.50 | 388.42 | 253.54 | 229.14 | 222.57 | 122.02 | 129.59 | 47.00  | 20.22  | 55      |
| 22   | 379.87 | 308.43 | 185.62 | 180.26 | 172.73 | 122.45 | 129.51 | 47.00  | 47.13  | 55      |
| 23   | 303.25 | 228.43 | 142.35 | 169.86 | 122.87 | 111.68 | 99.51  | 47.00  | 52.05  | 55      |
| 24   | 303.25 | 171.23 | 191.31 | 120.71 | 88.31  | 61.68  | 93.45  | 47.00  | 52.06  | 55      |

Table 2 Generator schedule for 24 hours Using IWE Technique (Hourly Load Dispatch)

Table 1 and Table 2 is presenting the generation of power at different hour of a day to match the demand considering the various constraint by Harmony search technique and Invasive weed optimisation technique respectively. Comparing the cost of dynamically economic dispatch same numbers of iterations Harmony search technique is giving the optimum cost for the generation considering the constraint is shown in Table 3.

| Cost Comparison |                                          |                  |  |  |  |  |  |
|-----------------|------------------------------------------|------------------|--|--|--|--|--|
| S.No.           | Methods                                  | <i>Cost</i> (\$) |  |  |  |  |  |
| 1.              | Harmony Search Technique                 | 1020273.682345   |  |  |  |  |  |
| 2.              | Modified Invasive Weed Optimization [12] | 1035630.223367   |  |  |  |  |  |
| 3.              | Invasive Weed Optimization               | 1039743.254276   |  |  |  |  |  |
| 4.              | Deterministically guided PSO [13]        | 1049167.000000   |  |  |  |  |  |

Table 3

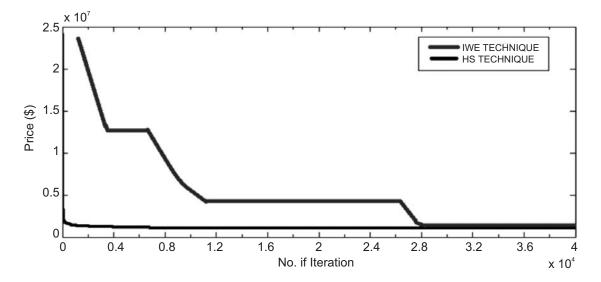



Figure 2: Convergence curve for the HS technique

#### 5. CONCLUSION

Using Harmony Search technique in Dynamic Economic Dispatch the result is optimized and the result is also satisfying all the constraints. The main focus of this paper is to survey and summarize the applications of HS for solving the DED problems. It was found to converge to the optimum result at a faster rate. The method requires primitive mathematical operators, so is computationally inexpensive in terms of both memory requirements and speed. In the Harmony search technique, the optimal solution is obtained by successive iteration. In Table III the total cost based on hourly load dispatch is obtained for the variation in load demand using HS algorithm. By comparing HS to the pre-used algorithms in reference [12, 13] it can be observed from the Table III that the optimization process provides a better solution for a DED problem.

#### REFERENCES

- [1] J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control. New York, NY, USA: Wiley, 2012.
- [2] D. P. Kothari, J. S. Dhillon, *Power System Optimization*, SecondEdition, PHI Learning Private Limited 2011.
- [3] M. F. Zaman, S. M. Elsayed, T. Ray, R. A. Sarker, "Evolutionary Algorithms For Dynamic Economic Dispatch Problems" IEEE Transactions On Power Systems, Vol. 31, No. 2, March 2016
- [4] D.C. Walters, G.B. Sheble, "Genetic algorithm solution of economic dispatch with valve point loadings." *IEEE Transactions* on *Power System* 1993; 8(3):1325–31.
- [5] A. I. Selvakumar and K. Thanushkodi, "A new particle swarm optimization solution to nonconvex economic dispatch problems," *IEEE Transactions On Power Systems*, vol. 22, no. 1, pp. 42–51, Feb. 2007
- [6] R. K Swain., K. C. Meher, and U. C. Mishra. "Dynamic economic dispatch using hybrid gravitational search algorithm." *Power, Control and Embedded Systems (ICPCES)*, 2012 2nd International Conference on. IEEE, 2012.
- [7] C. Chao-Lung, "Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels," *IEEE Transactions On Power Systems*, vol. 20, no. 4, pp. 1690–1699, Nov. 2005.
- [8] D. N. Simopoulos, S. D. Kavatza, and C. D. Vournas, "Unit commitment by an enhanced simulated annealing algorithm," *IEEE Transactions On Power Systems*, vol. 21, no. 1, pp. 68–76, Feb. 2006.
- [9] X.S. Yang, "Harmony Search as a Metaheuristic Algorithm", in: Music-Inspired Harmony Search Algorithm: Theory and Applications (Editor Z. W. Geem), *Studies in Computational Intelligence, Springer* Berlin, vol. 191, pp. 1-14 2009.

143

- [10] Md.A. Osama, R.Mandava, "The variants of the harmony search algorithm: an Overview", Artif Intell Rev, Springer Science Business Media B.V. 2011, 36:49–68.
- [11] K.S.Lee, Z.W.Geem. "A new structural optimization method based on the harmony search algorithm" *Comput Struct* 2004;82, 781–98.
- [12] R. Sharma ,N. Nayak, K.R Krishnananda and P.K.Rout, "Modified Invasive Weed Optimisation With Dual Mutation Technique For DynamicEconomic Dispatch" Published 2011 IEEE .
- [13] T. Aruldos, A. Victoirea, A. E.B. Jeyakumar, "Deterministically guided PSO for Dynamic Dispatch Considering valve-point effect" *IEEE transaction on power system* 25 November 2004.