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Abstract. We show that for a finite state space Markov chain, the occupa-
tion-time matrix up to a strong stationary time coincides with fundamental
matrix of Kemeny and Snell, when each matrix is viewed as operating on
functions with mean zero with respect to the stationary distribution.

1. Introduction

My aim in this short note is to point out a connection between two well-studied
objects in the theory of Markov chains that appears to have gone unnoticed. I will
confine my attention to discrete-time Markov chains with finite state space, but
there is little doubt that the analogous results hold for Markov chains in continuous
time with countable state spaces.

Throughout, X = (Xn) will be a discrete-time Markov chain with finite state
space E = {1, 2, . . . , N} and one-step transition matrix P . We assume that X is
irreducible and aperiodic. Let π denote the unique stationary distribution for X .
That is, πP = π and π · 1 = 1. (Here 1 is an N × 1 column of 1s. Measures on
E are row vectors; function are column vectors.) As is well known, limn P

n = Π,
the matrix with all rows equal to π.

The law of X started at x ∈ E is Px, on the sample space Ω of all E-valued
sequences ω = (ωn)n≥0. The symbol Px will also be used for the associated
expectation, and if µ is a probability measure on E then Pµ :=

∑

x∈E µ(x)Px

denotes the law (or expectation) of X under the initial distribution µ.

2. Fundamental Matrix

The fundamental matrix Z associated with X and P was introduced in [2]
and generalized in [3]. We provide a bit of detail on the construction of Z for
completeness.

Proposition 2.1. (a) The matrix I−P +Π is invertible, and Z := (I−P +Π)−1

denotes its inverse.

(b) πZ = π.
(c) Z1 = 1.
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Proof. (a) Let f : E → R (viewed as a column vector) be such that (I−P +Π)f =
0. Clearly Πf = c1, where c = π(f) :=

∑

i∈E πifi. Consequently,

f − Pf + c1 = 0. (2.1)

Applying P on the left in (2.1) we obtain

Pf − P 2f + c1 = 0, (2.2)

and then, adding (2.1) to (2.2),

f − P 2f + 2c1 = 0.

Proceeding recursively we find that

f − Pnf + nc1 = 0, (2.3)

for n = 1, 2, . . .. Because the entries of Pnf remain bounded as n → ∞, it must
be that c = 0. In particular, (2.3) now tells us that Pnf = f for all n ≥ 1. But
the only P -invariant functions are the constants, so

fi = π(f) = c = 0, ∀i ∈ E, (2.4)

which means that f is the zero function. This proves that I − P +Π is invertible.
(b) Define ν := πZ. Then ν(I − P +Π) = π; that is (writing c̃ for

∑

i∈E νi)

ν − νP + c̃π = π,

and so

ν − νP = (1 − c̃)π. (2.5)

Multiply (2.5) on the right by 1 to see that

c̃− c̃ = (1− c̃),

and so c̃ = 1. This yields νP = ν, and finally ν = π.
(c) The proof that Z1 = 1 follows the pattern of the proof of part (a) and is

therefore omitted. �

3. Poisson Equation

In potential theoretic terms, the fundamental matrix Z is a recurrent potential
operator for X , yielding solutions of the Poisson equation. More precisely, let
f : E → R be given. We seek a function u : E → R such that u − Pu = f .
Observe that a necessary condition for this equation to have a solution is that
π(f) = 0. Moreover, if u is a solution, then so is u+ b1 for any real constant b.

Given f : E → R define u := Zf . Then u − Pu + c1 = f (where c := π(u)),
and then recursively

u− Pnu =
n−1
∑

k=0

(

P kf − c1
)

, n ≥ 1,

so that

u− π(u)1 =
∞
∑

k=0

(

P kf − c1
)

.
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As is well known, the entries of P kf converge to π(f), at a geometric rate. It
follows that π(u) = c = π(f). Consequently,

u− π(u)1 =

∞
∑

k=0

(

P kf − π(f)1
)

.

In particular, if π(f) = 0, then

u =

∞
∑

k=0

P kf, (3.1)

the series in (3.1) converging absolutely. Thus u = f + P (
∑∞

k=0 P
kf) = f + Pu,

so u is a solution of the Poisson equation. Finally, the most general solution of
the Poisson equation is uc := Zf + c1, where c = π(uc).

4. Strong Stationary Time

Fix an initial state x ∈ E. From the work of Aldous and Diaconis [1] we know
that there are (randomized) stopping times S, so-called strong stationary times,
such that

Px[XS = i, S = k] = πi ·P
x[S = k], i ∈ E, k = 0, 1, 2, . . . .

That is, under Px, XS has law π and is independent of S, at least on {S < ∞}.
This last caveat is rendered moot if we assume, as we may, that Px[S] < ∞.
(Our chain X admits such strong stationary times, and only such times will be
of interest here.) Strong stationary times play a crucial role in bounding the
separation distance sx(n) between π and Px[Xn = · ]:

sx(n) := max
i

(1−Px[Xn = i]/πi) , n = 0, 1, 2, . . . .

To wit,

sx(n) ≤ Px[S > n], n = 0, 1, 2, . . . , (4.1)

provided S is a strong stationary time (under Px). See [1] (3.2); especially note
that this bound is sharp in the sense that there is a strong stationary time for
which equality holds in (4.1) for all n ≥ 0. For more on these matters see [4, 5]
and for the extension to continuous time see [6, 7].

Let’s now suppose that a Px-strong stationary time Sx has been chosen for each
x ∈ E. Define S(ω) := SX0(ω)(ω), ω ∈ Ω. Let µ be any initial distribution for X .
Then

Pµ[XS = i, S = k] =
∑

x∈E

Px[XSx
= i, Sx = k]µ(x)

=
∑

x∈E

π(i)Px[Sx = k]µ(x)

= π(i)Pµ[S = k].

In other words, S is strongly stationary for each initial distribution. Moreover,

Pµ[S] =
∑

x∈E

Px[Sx]µ(x) ≤ max
x∈E

Px[Sx] < ∞.
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In what follows S will always be such a “universal” strongly stationary time with
finite expectation.

5. The Connection

Fix S as at the end of section 4, and define an operator W = WS (“mean
occupation measure”) by

Wf(x) := Px

S−1
∑

k=0

f(Xk).

Clearly |Wf(x)| ≤ ‖f‖∞ · Px[S] for each x. Moreover, W1(x) = Px[S]. The
crucial observation is that by the simple Markov property, W (Pf)(x) = Wf(x)−
f(x) +Px[f(XS)] = Wf(x)− f(x) + π(f). Here is our main result.

Theorem 5.1. If π(f) = 0 then Wf(x) = Zf(x) for all x ∈ E.

Proof. Define V0 := {f ∈ RE : π(f) = 0}, and note that I −P : V0 → V0. In view
of the discussion in section 3, Z : V0 → V0 and (I − P )Z = I on V0. Also, by the
computation preceding the statement of the theorem, W (I −P ) = I on V0. (This
is true even without the independence of XS and S.) Now fix α > 0, and write
Uα :=

∑∞

k=0 e
−kαP k for the α-potential operator associated with P . We have, by

the strong Markov property at time S, the independence of XS and S, and the
fact that XS has law π,

Uαf(x) = Wαf(x) +Px[e−αS ]π(Uαf), (5.1)

where

Wαf(x) := Px

S−1
∑

k=0

e−αkf(Xk).

But π is invariant, so πUα = (1 − e−α)−1π, and therefore π(Uαf) = 0 provided
f ∈ V0. It now follows from (5.1) that π(Wαf) = 0 for each α > 0. Sending α ↓ 0
we find that π(Wf) = 0 provided π(f) = 0. That is, W : V0 → V0 as well. We
have identified left and right inverses of the restriction of I − P to V0. It follows
that this restriction is invertible and of course the left and right inverses coincide.
That is, W = Z on V0. �

Corollary 5.2. (a) With S as above, but now for general f : E → R,

Wf(x) = Zf(x) + π(f) · [Px[S]− 1], ∀x ∈ E.

(b) If R is a second strong stationary time, then

WSf(x)−WRf(x) = π(f) · [Px[S]−Px[R]].

It may be worth noting that if R and S are strong stationary times, then so is
their concatenation R+ S◦θR.
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