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Abstract. New bounds on the total variation distance between the law of
integer valued functionals of possibly non-symmetric and non-homogeneous

infinite Rademacher sequences and the Poisson distribution are established.
They are based on a combination of the Chen-Stein method and a discrete
version of Malliavin calculus. We give some applications to shifted discrete
multiple stochastic integrals.

1. Introduction

Stein’s method and the Malliavin calculus have been combined for the first time
by Nourdin and Peccati in the initial paper [9] in order to derive explicit bounds
on the error in the normal and Gamma approximation of functionals of general
Gaussian processes. This new approach to Stein’s method, also known as the
Malliavin-Stein method, has also been used to deduce quantitative central limit
theorems for functionals of general Poisson measures (see [13]) and for functionals
of infinite symmetric Rademacher sequences (see [11] and [6]). Here, the term
symmetric Rademacher sequence refers to a sequence of independent and identi-
cally distributed random variables taking the values +1 and −1 with probability
1/2 each.

The results in [11] and [6] are based on a product formula for multiple sto-
chastic integrals (see Proposition 2.9 in [11]), whose proof relies on the simplic-
ity of the underlying symmetric Rademacher sequence. The findings of [6] were
further developed in [7], where a second order Poincaré type bound on the Kol-
mogorov distance between the law of functionals of possibly non-symmetric and
non-homogeneous infinite Rademacher sequences and the standard normal distri-
bution was derived. For analogues of such second order Poincaré type inequalities
in the Gaussian and Poisson case see [10] and [8], respectively. One advantage of
the bound in [7] is that it can be further evaluated without the need of a product
formula for multiple stochastic integrals.

Poisson approximation by a combination of the Chen-Stein method and Malli-
avin calculus has first been tackled in [12], where the author computed explicit
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bounds on the total variation distance between the law of integer valued function-
als of general Poisson measures and a Poisson distribution. Furthermore, sufficient
conditions for the convergence in distribution of suitably shifted multiple stochas-
tic integrals to a Poisson random variable and rates of convergence for the Poisson
approximation of statistics associated with geometric random graphs were cov-
ered. For further works in the framework of the Chen-Stein method and Malliavin
calculus see, e.g., [3], [16] and [17].

The purpose of this paper is to combine the Chen-Stein method and a discrete
version of Malliavin calculus (as developed in [14]), and thus, to continue the work
of [6] and [7] to the case of Poisson approximation. A general bound on the total
variation distance between the law of integer valued functionals of possibly non-
symmetric and non-homogeneous infinite Rademacher sequences and the Poisson
distribution is shown (see Theorem 3.1). Applications to shifted multiple stochas-
tic integrals are considered (see Theorem 3.4 and Corollary 3.5 as well as Theorem
3.7 and Corollary 3.9). For this, a generalization of the product formula from [11]
to multiple stochastic integrals based on an underlying possibly non-symmetric
and non-homogeneous Rademacher sequence is proved (see Proposition 2.2). In
addition, using the techniques provided in [7], a second order Poincaré type in-
equality is deduced from the general bound (see Theorem 3.13).

The remainder of this paper is built up as follows. Section 2 collects the bases
of the discrete Malliavin calculus as well as the product formula for multiple sto-
chastic integrals. Furthermore, a short introduction to the Chen-Stein method
is given. Section 3 contains all of the main results and their proofs. Section 4
serves as appendix and bears the proof of the product formula and, additionally,
a standard approximation argument that is used within some of the proofs in this
paper.

The authors of [15] have also developed bounds on the total variation distance
between the law of integer valued functionals of possibly non-symmetric and non-
homogeneous infinite Rademacher sequences and the Poisson distribution by using
a generalization of the product formula for multiple stochastic integrals in [11] as
well. In particular, Theorem 3.1 and Corollary 3.3 here are related to Theorem
6.3 in [15], Theorem 3.4 and Corollary 3.5 are related to Theorem 7.1 in [15], and
Theorem 3.7 and Remark 3.8 are related to Theorem 8.2 and Proposition 8.3,
respectively, in [15]. However, the corresponding results of [15] and this paper
were worked out independently of each other and differ (see, e.g., Remark 3.6). In
addition, we contribute a second order Poincaré type bound which is not provided
in [15].

2. Preliminaries

2.1. Rademacher sequences. Let p := (pk)k∈N be a sequence of success prob-
abilities fulfilling 0 < pk < 1, for every k ∈ N, and let q := (qk)k∈N be the
corresponding sequence of failure probabilities with qk := 1− pk, for every k ∈ N.
Furthermore, let (Ω,F , P ) be a probability space with Ω := {−1,+1}N, F :=
P({−1,+1})⊗N and P :=

⊗∞
k=1(pkδ+1 + qkδ−1). Now, let X := (Xk)k∈N be a

sequence of independent random variables defined on (Ω,F , P ) by Xk(ω) := ωk,
for every k ∈ N and ω := (ωk)k∈N ∈ Ω. Here, we refer to the sequence X as
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(possibly non-symmetric and non-homogeneous) Rademacher sequence. In the
following, we will introduce discrete multiple stochastic integrals on the basis of
our Rademacher sequence. To this end, we also define the standardized sequence
Y := (Yk)k∈N with

Yk := (Xk − E[Xk])/
√
Var(Xk) = (Xk − pk + qk)/(2

√
pkqk),

for every k ∈ N.

2.2. Kernels and contractions. Let κ be the counting measure on N. We put
ℓ2(N)⊗n := L2(Nn,P(N)⊗n, κ⊗n), for every n ∈ N. In the following, we refer to
the elements of ℓ2(N)⊗n as kernels. Let ℓ2(N)◦n denote the subset of ℓ2(N)⊗n of
symmetric kernels. Furthermore, let ℓ20(N)⊗n denote the subset of kernels vanishing
on diagonals, i.e. vanishing on the complement of the set ∆n := {(i1, . . . , in) ∈
Nn : ij ̸= ik for j ̸= k}. We then put ℓ20(N)◦n := ℓ2(N)◦n ∩ ℓ20(N)⊗n. For n,m ∈ N,
take two kernels f ∈ ℓ20(N)◦n and g ∈ ℓ20(N)◦m. Now, for r = 0, . . . , n ∧ m and
ℓ = 0, . . . , r, the contraction of f and g is defined by

f ⋆ℓr g(i1, . . . , in−r, k1, . . . , kr−ℓ, j1, . . . , jm−r)

:=
∑

(a1,...,aℓ)∈∆ℓ

f(i1, . . . , in−r, k1, . . . , kr−ℓ, a1, . . . , aℓ)

× g(j1, . . . , jm−r, k1, . . . , kr−ℓ, a1, . . . , aℓ),

that is, by identifying r of the n variables of f with r of the m variables of g and
then integrating out ℓ of the r identified variables with respect to the counting
measure κ. Note that f ⋆ℓr g ∈ ℓ2(N)⊗n+m−r−ℓ, since ∥f ⋆ℓr g∥ℓ2(N)⊗n+m−r−ℓ ≤
∥f∥ℓ2(N)⊗n∥g∥ℓ2(N)⊗m (cf. Lemma 2.4 in [11]). Even though f ∈ ℓ20(N)◦n and

g ∈ ℓ20(N)◦m, the contraction f ⋆ℓr g must neither be symmetric nor be vanishing
on diagonals. Therefore, we define the canonical symmetrization of a function

f on Nn by f̃(i1, . . . , in) :=
1
n!

∑
σ f(iσ(1), . . . , iσ(n)), where the sum runs over all

permutations σ of the set {1, . . . , n}. Note that, if f ∈ ℓ2(N)⊗n, then f̃ ∈ ℓ2(N)⊗n,

since ∥f̃∥ℓ2(N)⊗n ≤ ∥f∥ℓ2(N)⊗n .

2.3. Discrete multiple stochastic integrals and chaos representation. For
n ∈ N and f ∈ ℓ20(N)◦n, we define the discrete multiple stochastic integral of order
n of f by

Jn(f) :=
∑

(i1,...,in)∈Nn

f(i1, . . . , in)Yi1 · . . . · Yin

=
∑

(i1,...,in)∈∆n

f(i1, . . . , in)Yi1 · . . . · Yin

= n!
∑

1≤i1<...<in<∞

f(i1, . . . , in)Yi1 · . . . · Yin . (2.1)

In addition, we put ℓ2(N)⊗0 := R and J0(c) := c, for every c ∈ R.
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For every n ∈ N, the subspace {Jn(f) : f ∈ ℓ20(N)◦n} of L2(Ω) is called the
Rademacher chaos of order n. Now, every square-integrable Rademacher func-
tional F ∈ L2(Ω) admits a unique decomposition of the form

F = E[F ] +

∞∑
n=1

Jn(fn) (2.2)

with fn ∈ ℓ20(N)◦n, for every n ∈ N (cf. Proposition 6.7 in [14]). We call (2.2) the
chaos representation of F , where the series converges in L2(Ω).

We will now prepare for the presentation of a product formula for discrete
stochastic integrals. The following observation is crucial to derive such a product
formula (cf. Chapter 5 in [14]).

Lemma 2.1. For every k ∈ N, Y 2
k admits the chaos representation

Y 2
k = 1 + φkYk, (2.3)

where the sequence φ := (φk)k∈N is defined by φk := (qk − pk)/
√
pkqk, for every

k ∈ N.

For n,m ∈ N, take two kernels f ∈ ℓ20(N)◦n and g ∈ ℓ20(N)◦m. Now, for
r = 1, . . . , n∧m and ℓ = 0, . . . , r− 1, we define the weighted contraction of f and
g by

φ∗r−ℓ(f ⋆ℓr g)(i1, . . . , in−r, k1, . . . , kr−ℓ, j1, . . . , jm−r)

:= φk1 · . . . · φkr−ℓ
f ⋆ℓr g(i1, . . . , in−r, k1, . . . , kr−ℓ, j1, . . . , jm−r).

Note that the indices k1, . . . , kr−ℓ of the factors in the product φk1 · . . . ·φkr−ℓ
are

the r − ℓ variables of the contraction f ⋆ℓr g that are identified but not integrated
out. For r = 0, . . . , n ∧m, we further define

φ∗0(f ⋆rr g)(i1, . . . , in−r, j1, . . . , jm−r) := f ⋆rr g(i1, . . . , in−r, j1, . . . , jm−r).

Now, the following proposition states a formula for the product of discrete
multiple stochastic integrals. Note that this is a generalization of Proposition 2.9
in [11] to the case of stochastic integrals based on a possibly non-symmetric and
non-homogeneous infinite Rademacher sequence. We refer to the appendix for a
proof of the statement. Also note that the following Proposition 2.2 corresponds
to Proposition 5.1 in [15].

Proposition 2.2 (Product formula). Let n,m ∈ N and f ∈ ℓ20(N)◦n, g ∈ ℓ20(N)◦m.

Furthermore, let ˜(φ∗r−ℓ(f ⋆ℓr g))1∆n+m−r−ℓ
∈ ℓ20(N)◦n+m−r−ℓ, for r = 1, . . . , n∧m

and ℓ = 0, . . . , r − 1. Then,

Jn(f)Jm(g) =
n∧m∑
r=0

r!

(
n

r

)(
m

r

) r∑
ℓ=0

(
r

ℓ

)
Jn+m−r−ℓ

(
˜(φ∗r−ℓ(f ⋆ℓr g))1∆n+m−r−ℓ

)
(2.4)

=
n∧m∑
r=0

r!

(
n

r

)(
m

r

)
Jn+m−2r

(
˜(f ⋆rr g)1∆n+m−2r

)
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+
n∧m∑
r=1

r!

(
n

r

)(
m

r

) r−1∑
ℓ=0

(
r

ℓ

)
Jn+m−r−ℓ

(
˜(φ∗r−ℓ(f ⋆ℓr g))1∆n+m−r−ℓ

)
, (2.5)

where we put 1∆0 := 1.

Remark 2.3.

(i) In Proposition 2.2, sufficient conditions for ˜(φ∗r−ℓ(f ⋆ℓr g))1∆n+m−r−ℓ
to be

an element of ℓ2(N)⊗n+m−r−ℓ, for every r = 1, . . . , n∧m and ℓ = 0, . . . , r− 1,
are given, e.g., if the sequence φ is either constant or fulfills ∥φ∥ℓ2(N) < ∞.

(ii) While we will use (2.4) in further applications, the representation of the prod-
uct formula in (2.5) exhibits the relation between the general case of a possibly
non-symmetric and non-homogeneous Rademacher sequence and the case of
a symmetric Rademacher sequence. In the case of a symmetric Rademacher
sequence X, i.e. pk = qk = 1/2, for every k ∈ N, the coefficients φk of the
chaos representation of Y 2

k in (2.3) vanish, for every k ∈ N, so that Proposition
2.2 reproduces Proposition 2.9 in [11].

The next corollary states an isometry formula for stochastic integrals as seen
in Proposition 4.2 in [14]. Note that this is also an immediate conclusion from
the product formula in Proposition 2.2, since, for every n ∈ N and f ∈ ℓ20(N)◦n,
E[Jn(f)] = 0.

Corollary 2.4 (Isometry formula). Let n,m ∈ N and f ∈ ℓ20(N)◦n, g ∈ ℓ20(N)◦m.
Then,

E[Jn(f)Jm(g)] =

{
n!⟨f, g⟩ℓ2(N)⊗n , if n = m,

0, if n ̸= m.
(2.6)

2.4. Discrete Malliavin calculus. We define the discrete gradient operator D.
For every ω = (ω1, ω2, . . . ) ∈ Ω and k ∈ N, let ωk

+ := (ω1, . . . , ωk−1,+1, ωk+1, . . . )

and ωk
− := (ω1, . . . , ωk−1,−1, ωk+1, . . . ). Furthermore, for every F ∈ L1(Ω), ω ∈ Ω

and k ∈ N, let F+
k (ω) := F (ωk

+) and F−
k (ω) := F (ωk

−). For F ∈ L1(Ω), the discrete
gradient operator is defined by DF := (DkF )k∈N with

DkF :=
√
pkqk(F

+
k − F−

k ), (2.7)

for every k ∈ N. Note that it immediately follows from (2.7) that, for every k ∈ N,
DkF is independent of Xk. Now, let F ∈ L2(Ω) have the chaos representation
F = E[F ] +

∑∞
n=1 Jn(fn) with kernels fn ∈ ℓ20(N)◦n, for every n ∈ N. Then, for

every k ∈ N, DkF ∈ L2(Ω) and has the chaos representation

DkF =
∞∑

n=1

nJn−1(fn( · , k)),

where, for every n ∈ N, fn( · , k) ∈ ℓ20(N)◦n−1 denotes the kernel fn with one of its
components fixed, thus as a function in only n − 1 variables (cf. Chapter 2.3 in
[7]). In addition, for F ∈ L1(Ω) and m ∈ N, the iterated discrete gradient oper-
ator of order m is defined by DmF := (Dm

k1,...,km
F )k1,...,km∈N with Dm

k1,...,km
F :=

Dkm(Dm−1
k1,...,km−1

F ), for every k1, . . . , km ∈ N, where we put D0
k1,...,k0

F := F .
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Given F ∈ L2(Ω) with chaos representation F = E[F ] +
∑∞

n=1 Jn(fn) as above
and m ∈ N, we say F ∈ dom(Dm), if

E[∥DmF∥2ℓ2(N)⊗m ] =
∞∑

n=m

n!

(n−m)!
n!∥fn∥2ℓ2(N)⊗n < ∞. (2.8)

We will now define the discrete divergence operator δ and its domain dom(δ).
For n ∈ N and fn ∈ ℓ20(N)◦n−1 ⊗ ℓ2(N) we consider the sequence u := (uk)k∈N
with uk :=

∑∞
n=1 Jn−1(fn( · , k)), for every k ∈ N. For such a sequence u, we say

u ∈ dom(δ), if
∞∑

n=1

n!∥f̃n 1∆n∥2ℓ2(N)⊗n < ∞. (2.9)

For u ∈ dom(δ), the discrete divergence operator δ is then defined by

δ(u) :=
∞∑

n=1

Jn(f̃n 1∆n).

Note that (2.9) is equivalent to E[(δ(u))2] < ∞. Now, δ is the adjoint of D (cf.
Proposition 9.2 in [14]).

Lemma 2.5. Let F ∈ dom(D) and u ∈ dom(δ). Then,

E[Fδ(u)] = E[⟨DF, u⟩ℓ2(N)]. (2.10)

Next, we define the discrete Ornstein-Uhlenbeck operator L and its (pseudo-
)inverse L−1. Given F ∈ L2(Ω), again with chaos representation F = E[F ] +∑∞

n=1 Jn(fn) as above, we say F ∈ dom(L), if
∞∑

n=1

n2n!∥fn∥2ℓ2(N)⊗n < ∞.

For F ∈ dom(L), the discrete Ornstein-Uhlenbeck operator L is then defined by

LF := −
∞∑

n=1

nJn(fn).

For centered F ∈ L2(Ω), its (pseudo-)inverse is defined by

L−1F := −
∞∑

n=1

1

n
Jn(fn).

The following lemma states the relation between the operators D, δ and L (cf.
Chapter 10 in [14]).

Lemma 2.6. It holds that

L = −δD. (2.11)

Finally, we present an integration by parts formula, which is one of the main
contributions to the discrete Malliavin-Stein method.

Lemma 2.7 (Integration by parts formula). Let F,G ∈ dom(D). Then,

E[(F − E[F ])G] = E[⟨−DL−1(F − E[F ]), DG⟩ℓ2(N)]. (2.12)
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Proof. Relation (2.11) and the adjointness of D and δ in (2.10) yield

E[(F − E[F ])G] = E[LL−1(F − E[F ])G]

= E[−δDL−1(F − E[F ])G]

= E[⟨−DL−1(F − E[F ]), DG⟩ℓ2(N)].

□

2.5. The Chen-Stein method. Stein’s method for Poisson approximation, also
known as the Chen-Stein method, has been introduced by Chen in [4]. Since
then, the method was further developed by Barbour and others, see, e.g., [1].
The starting point of the method is the following characterization of a Poisson
distribution. A random variable Z has a Poisson distribution with mean λ > 0, if
and only if, for every bounded function f : N0 := N∪{0} → R,

E[λf(Z + 1)− Zf(Z)] = 0.

Now, the main idea is to set the total variation distance between the law of a given
random variable and a Poisson distribution in relation to the characterization
above. The link to do so is given by the Chen-Stein equation. To state the
equation, let Po(λ) be a Poisson random variable with mean λ > 0. Then, for
every A ⊆ N0 and k ∈ N0, the Chen-Stein equation is given by

λf(k + 1)− kf(k) = 1{k∈A} −P (Po(λ) ∈ A). (2.13)

For k ∈ N, (2.13) has a unique and bounded solution fλ,A : N → R with

fλ,A(k) :=
(k − 1)!

λk

k−1∑
j=0

(1{j∈A} −P (Po(λ) ∈ A))
λj

j!
. (2.14)

Since, for k = 0, the value of f(0) does not contribute to (2.13), we conventionally
put fλ,A(0) = 0. Given a function f : N0 → R, we define the forward difference
of f by ∆f(k) := f(k + 1) − f(k), for every k ∈ N0. Furthermore, we define
the iterated forward difference of f by ∆2f(k) := ∆(∆f(k)), for every k ∈ N0.
Moreover, the supremum norm of f is given by ∥f∥∞ := supk∈N0

|f(k)|. The
following bounds hold for the solution of the Chen-Stein equation in (2.14) (cf.
Lemma 1.1.1 and Remark 1.1.2 in [1]):

∥fλ,A∥∞ ≤ 1 ∧
√

2

eλ
, ∥∆fλ,A∥∞ ≤ 1− e−λ

λ
. (2.15)

In addition, the relation ∥∆2fλ,A∥∞ ≤ 2∥∆fλ,A∥∞ gives the obvious bound

∥∆2fλ,A∥∞ ≤ 2(1− e−λ)

λ
. (2.16)

Note that the bound ∥∆2fλ,A∥∞ ≤ 2(1− e−λ)/λ2 does not follow from Theorem
1.3 in [5] as stated in [12] and [15]. However, Theorem 1.3 in [5] does lead to a
bound ∥∆2fλ,A∥∞ ≤ 2/λ.



202 KAI KROKOWSKI

3. Main Results

In the following, we will deduce a bound on the error in the Poisson approxi-
mation of general integer valued functionals of possibly non-symmetric and non-
homogeneous infinite Rademacher sequences with respect to the total variation
distance. The total variation distance between the distributions of two random
variables X and Y with values in N0 is defined by

dTV (X,Y ) := sup
A⊆N0

|P (X ∈ A)− P (Y ∈ A)|.

For a corresponding bound on the error in the Poisson approximation of integer
valued functionals of general Poisson measures see Theorem 3.1 in [12]. Again,
note that the following Theorem 3.1 and Corollary 3.3 are related to Theorem 6.3
in [15]

Theorem 3.1. Let F ∈ dom(D) with values in N0 and let Po(λ) be a Poisson
random variable with mean λ > 0. Then,

dTV (F,Po(λ))

≤
(
1 ∧

√
2

eλ

)
|λ− E[F ]|+ 1− e−λ

λ
E[|λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N)|]

+
1− e−λ

λ
E
[⟨ 1

√
pq

DF (DF +
√
pqX), |−DL−1(F − E[F ])|

⟩
ℓ2(N)

]
. (3.1)

Proof. By the Chen-Stein equation in (2.13) and the integration by parts formula
in (2.12), we have, for every A ⊆ N0,

P (F ∈ A)− P (Po(λ) ∈ A) = E[λfλ,A(F + 1)]− E[Ffλ,A(F )]

= E[λ(fλ,A(F + 1)− fλ,A(F ))]− E[(F − E[F ])fλ,A(F )]− E[(E[F ]− λ)fλ,A(F )]

= E[λ∆fλ,A(F )]− E[⟨Dfλ,A(F ),−DL−1(F − E[F ])⟩ℓ2(N)]
− E[(E[F ]− λ)fλ,A(F )]. (3.2)

We will now further deduce Dfλ,A(F ). For every k ∈ N, we have

Dkfλ,A(F ) =
√
pkqk(fλ,A(F

+
k )− fλ,A(F

−
k ))

= ∆fλ,A(F ) ·DkF +
√
pkqk(fλ,A(F

+
k )− fλ,A(F

−
k )−∆fλ,A(F )(F+

k − F−
k ))

= ∆fλ,A(F ) ·DkF +Rk(F ) (3.3)

with

Rk(F ) :=
√
pkqk(fλ,A(F

+
k )− fλ,A(F

−
k )−∆fλ,A(F )(F+

k − F−
k )).

Now, let a, k ∈ N0 with k ≥ a+ 2. Then,

fλ,A(k)− fλ,A(a)−∆fλ,A(a)(k − a) =

k−a−1∑
j=1

j ·∆2fλ,A(k − j − 1).

Similarly, for every a, k ∈ N0 with k ≤ a− 1, one gets

fλ,A(k)− fλ,A(a)−∆fλ,A(a)(k − a) =
a−k∑
j=1

j ·∆2fλ,A(k + j − 1).
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Moreover, for every a ∈ N0 and k ∈ {a, a+ 1}, it holds that
fλ,A(k)− fλ,A(a)−∆fλ,A(a)(k − a) = 0.

Thus, for every a, k ∈ N0,

|fλ,A(k)− fλ,A(a)−∆fλ,A(a)(k − a)| ≤ ∥∆2fλ,A∥∞
2

(k − a)(k − a− 1). (3.4)

We will now use (3.4) to further estimate the error term Rk(F ) in the chain rule
at (3.3). Note that, for every k ∈ N, we have

Rk(F ) =
√
pkqk(fλ,A(F

+
k )− fλ,A(F

−
k )−∆fλ,A(F

−
k )(F+

k − F−
k ))1{Xk=−1}

−√
pkqk(fλ,A(F

−
k )− fλ,A(F

+
k )−∆fλ,A(F

+
k )(F−

k − F+
k ))1{Xk=+1} .

It then follows by (3.4) that, for every k ∈ N,

|fλ,A(F+
k )− fλ,A(F

−
k )−∆fλ,A(F

−
k )(F+

k − F−
k )|

≤ ∥∆2fλ,A∥∞
2

(F+
k − F−

k )(F+
k − F−

k − 1)

and

|fλ,A(F−
k )− fλ,A(F

+
k )−∆fλ,A(F

+
k )(F−

k − F+
k )|

≤ ∥∆2fλ,A∥∞
2

(F+
k − F−

k )(F+
k − F−

k + 1).

Thus, for every k ∈ N,

|Rk(F )| ≤ ∥∆2fλ,A∥∞
2

√
pkqk(F

+
k − F−

k )(F+
k − F−

k − 1)1{Xk=−1}

+
∥∆2fλ,A∥∞

2

√
pkqk(F

+
k − F−

k )(F+
k − F−

k + 1)1{Xk=+1}

=
∥∆2fλ,A∥∞

2

√
pkqk(F

+
k − F−

k )(F+
k − F−

k +Xk)

= ∥∆2fλ,A∥∞
1

2
√
pkqk

DkF (DkF +
√
pkqkXk). (3.5)

Putting R(F ) := (Rk(F ))k∈N, we then deduce from (3.2) by (3.3) and (3.5) that,
for every A ⊆ N0,

|P (F ∈ A)− P (Po(λ) ∈ A)|

= |E[∆fλ,A(F )(λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N)]
−E[⟨R(F ),−DL−1(F − E[F ])⟩ℓ2(N))]− E[(E[F ]− λ)fλ,A(F )]|

≤ ∥∆fλ,A∥∞ E[|λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N)|]

+ ∥∆2fλ,A∥∞ E
[⟨ 1

2
√
pq

DF (DF +
√
pqX), |−DL−1(F − E[F ])|

⟩
ℓ2(N)

]
+ ∥fλ,A∥∞|λ− E[F ]|.

(3.1) now follows by (2.15) and (2.16). □
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Remark 3.2. Note that the arguments used in the proof of Theorem 3.1 are not
restricted to the choice of the total variation distance to measure the distance
between the laws of F and Po(λ). Indeed, choosing any arbitrary class H of
bounded test functions h : N0 → R would lead to a bound

sup
h∈H

|E[h(F )]− E[h(Po(λ))]|

≤ ∥fh∥∞|λ− E[F ]|+ ∥∆fh∥∞ E[|λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N)|]

+ ∥∆2fh∥∞ E
[⟨ 1

2
√
pq

DF (DF +
√
pqX), |−DL−1(F − E[F ])|

⟩
ℓ2(N)

]
,

where fh denotes the solution to the corresponding Chen-Stein equation. Taking,
e.g., H as the set of all Lipschitz functions on N0 with Lipschitz constant not
greater than 1 yields the following bound on the Wasserstein distance:

dW (F,Po(λ))

≤ |λ− E[F ]|+
(
1 ∧ 8

3
√
2eλ

)
E[|λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N)|]

+
(4
3
∧ 2

λ

)
E
[⟨ 1

2
√
pq

DF (DF +
√
pqX), |−DL−1(F − E[F ])|

⟩
ℓ2(N)

]
,

where we took the bounds for ∥fh∥∞, ∥∆fh∥∞ and ∥∆2fh∥∞ from Theorem 1.1
in [2].

The following corollary shows that we can rewrite the bound in (3.1) without
resorting to the Rademacher sequence X. In this way, our bound here gets a
representation closer to the one of the bound in Theorem 3.1 in [12].

Corollary 3.3. Let F ∈ dom(D) with values in N0 and let Po(λ) be a Poisson
random variable with mean λ > 0. Then,

dTV (F,Po(λ))

≤
(
1 ∧

√
2

eλ

)
|λ− E[F ]|+ 1− e−λ

λ
E[|λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N)|]

+
1− e−λ

λ

∞∑
k=1

1
√
pkqk

E[DkF (DkF +
√
pkqk(pk − qk)) · |−DkL

−1(F − E[F ])|].

Proof. We only have to consider the last summand of the bound in (3.1) sepa-
rately. Since, for every k ∈ N, DkF (DkF +

√
pkqkXk) ≥ 0 by (3.5) and DkF is

independent of Xk for every F ∈ L1(Ω), we get

E
[⟨ 1

√
pq

DF (DF +
√
pqX), |−DL−1(F − E[F ])|

⟩
ℓ2(N)

]
=

∞∑
k=1

1
√
pkqk

E[DkF (DkF +
√
pkqkXk) · |−DkL

−1(F − E[F ])|]

=

∞∑
k=1

1
√
pkqk

E[DkF (DkF +
√
pkqk(pk − qk)) · |−DkL

−1(F − E[F ])|].
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Plugging this into (3.1) concludes the proof. □

In the following, we will deduce explicit bounds on the error in the Poisson
approximation of suitably shifted discrete multiple stochastic integrals of fixed
order with respect to the total variation distance. We start with suitably shifted
discrete multiple stochastic integrals of order 1. Again, note that the following
Theorem 3.4 and Corollary 3.5 are related to Theorem 7.1 in [15].

Theorem 3.4. Let F = E[F ] + J1(f) with values in N0 and f ∈ ℓ2(N). Further-
more, let Po(λ) be a Poisson random variable with mean λ > 0. Then,

dTV (F,Po(λ))

≤
(
1 ∧

√
2

eλ

)
|λ− E[F ]|+ 1− e−λ

λ
|λ− ∥f∥2ℓ2(N)|

+
1− e−λ

λ

∞∑
k=1

1
√
pkqk

(|f3(k)|+√
pkqk(pk − qk)f

2(k)) (3.6)

=
(
1 ∧

√
2

eλ

)
|λ− E[F ]|+ 1− e−λ

λ
|λ−Var(F )|

+
1− e−λ

λ

∞∑
k=1

1
√
pkqk

(f2(k) +
√
pkqk(pk − qk)f(k)) · |f(k)|. (3.7)

Proof. In order to show (3.6) and (3.7), we have to evaluate the last two summands
of the bound in (3.1). By virtue of Corollary 3.3, we thus have to compute the
quantities

A1 := E[|λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N)|]

and

A2 :=

∞∑
k=1

1
√
pkqk

E[DkF (DkF +
√
pkqk(pk − qk)) · |−DkL

−1(F − E[F ])|].

Now, for every k ∈ N, we have that

DkF = −DkL
−1(F − E[F ]) = f(k).

This yields

⟨DF,−DL−1(F − E[F ])⟩ℓ2(N) =
∞∑
k=1

f2(k) = ∥f∥2ℓ2(N).

In addition, by the isometry formula in (2.6), it follows that

Var(F ) = ∥f∥2ℓ2(N).

Thus,

A1 = |λ− ∥f∥2ℓ2(N)| = |λ−Var(F )|.
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Furthermore, we have

A2 =
∞∑
k=1

1
√
pkqk

(f2(k) +
√
pkqk(pk − qk)f(k)) · |f(k)|.

This concludes the proof. □

Now, the following corollary is a first application of Theorem 3.4 and serves as
an insight into the quality of our main bound in Theorem 3.1.

Corollary 3.5. Let (Bk)k∈N be a sequence of independent Bernoulli random
variables with P (Bk = 1) = pk and P (Bk = 0) = qk, for every k ∈ N, and∑∞

k=1 pk < ∞. Furthermore, let F =
∑∞

k=1 Bk and let Po(λ) be a Poisson ran-
dom variable with mean λ > 0. Then,

dTV (F,Po(λ))

≤
(
1 ∧

√
2

eλ

)∣∣∣λ−
∞∑
k=1

pk

∣∣∣+ 1− e−λ

λ

∣∣∣λ−
∞∑
k=1

pkqk

∣∣∣+ 2(1− e−λ)

λ

∞∑
k=1

p2kqk.

Proof. Since, for every k ∈ N,

Bk
d
=

Xk + 1

2
,

F has a representation of the form F
d
= E[F ] + J1(f) with f ∈ ℓ2(N). More

precisely, we have

F
d
=

∞∑
k=1

Xk + 1

2
=

∞∑
k=1

pk +
∞∑
k=1

√
pkqk

Xk + 1− 2pk
2
√
pkqk

= E[F ] + J1(f)

with f(k) :=
√
pkqk, for every k ∈ N. Note that f ∈ ℓ2(N), since

∞∑
k=1

f2(k) =

∞∑
k=1

pkqk ≤
∞∑
k=1

pk < ∞.

According to Theorem 3.4, we thus have to evaluate the quantities

A1 := |λ− E[F ]|, A2 := |λ−Var(F )|

and

A3 :=

∞∑
k=1

1
√
pkqk

(f2(k) +
√
pkqk(pk − qk)f(k)) · |f(k)|.

Now,

E[F ] =

∞∑
k=1

pk, Var(F ) =

∞∑
k=1

pkqk.

Thus,

A1 =
∣∣∣λ−

∞∑
k=1

pk

∣∣∣, A2 =
∣∣∣λ−

∞∑
k=1

pkqk

∣∣∣.
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In addition,

A3 =
∞∑
k=1

pkqk(1 + pk − qk) = 2
∞∑
k=1

p2kqk.

This concludes the proof. □

Remark 3.6. Note that, for λ :=
∑∞

k=1 pk, the bound in Corollary 3.5 yields

dTV (F,Po(λ)) ≤
1− e−λ

λ

∞∑
k=1

p2k +
2(1− e−λ)

λ

∞∑
k=1

p2kqk ≤ 3(1− e−λ)

λ

∞∑
k=1

p2k,

and thus, is (up to the constant) of the quality of the classical result

dTV

( n∑
k=1

Bk,Po(λ)
)
≤ 1− e−λ

λ

n∑
k=1

p2k

as discussed in Chapter 1 in [1]. However, Corollary 7.1 in [15] does lead to a
suboptimal result (cf. Chapter 7 in [15]).

We will now turn to suitably shifted discrete stochastic integrals of order m ≥ 2.
Here, we will have to fully make use of the generalized product formula in Propo-
sition 2.2. For a corresponding result on the Poisson approximation of perturbed
functionals of general Poisson measures inside a fixed chaos see Theorem 4.10 in
[12]. Again, note that the following Theorem 3.7 and Remark 3.8 are related to
Theorem 8.2 and Proposition 8.3, respectively, in [15].

Theorem 3.7. Let m ≥ 2 be an integer, F = E[F ] + Jm(f) with values in N0

and f ∈ ℓ20(N)◦m fulfilling ˜(φ∗r−ℓ(f ⋆ℓr f))1∆n+m−r−ℓ
∈ ℓ20(N)◦n+m−r−ℓ, for every

r = 1, . . . , n∧m and ℓ = 0, . . . , r−1. Furthermore, let Po(λ) be a Poisson random
variable with mean λ > 0. Then,

dTV (F,Po(λ))

≤
(
1 ∧

√
2

eλ

)
|λ− E[F ]|+ 1− e−λ

λ
|λ−Var(F )|

+
1− e−λ

λ

(
m2

2(m−1)∑
s=1

s!
∥∥∥ m∑

r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f ⋆ℓr f))1∆2m−r−ℓ

∥∥∥2
ℓ2(N)⊗s

)1/2

+
1− e−λ

λ

√
Var(F )

(
m3

∞∑
k=1

1

pkqk
((m− 1)!∥f( · , k)∥2ℓ2(N)⊗m−1)2

+m3
∞∑
k=1

1

pkqk

2(m−1)∑
s=1

s ̸=m−1

s!
∥∥∥ m∑

r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)
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× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

∥∥∥2
ℓ2(N)⊗s

+m3
∞∑
k=1

1

pkqk
(m− 1)!

∥∥∥ m∑
r=1

r∑
ℓ=1

1{2m−r−ℓ=m−1}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

+
1

m

√
pkqk(pk − qk)f( · , k)

∥∥∥2
ℓ2(N)⊗m−1

)1/2

. (3.8)

Proof. It suffices to prove (3.8) for kernels f ∈ ℓ20(N)◦m with finite support only.
The general case then follows by considering the sequence of truncated kernels
(fk)k∈N with fk := f 1{1,...,k}n , for every k ∈ N, and the approximation arguments
further discussed in Lemma 4.1 and Corollary 4.3 in the appendix. Again, we
make use of Corollary 3.3 and compute the quantities

A2 := E[|λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N)|]
and

A3 :=

∞∑
k=1

1
√
pkqk

E[DkF (DkF +
√
pkqk(pk − qk)) · |−DkL

−1(F − E[F ])|].

Now, for every k ∈ N, we have

DkF = mJm−1(f( · , k)). (3.9)

By the product formula in (2.4), it then follows that, for every k ∈ N,
(DkF )2 = m2(Jm−1(f( · , k)))2

= m2
m−1∑
r=0

r!

(
m− 1

r

)2 r∑
ℓ=0

(
r

ℓ

)

× J2(m−1)−r−ℓ

(
( ˜φ∗r−ℓ(f( · , k) ⋆ℓr f( · , k)))1∆2(m−1)−r−ℓ

)
= m2

m∑
r=1

(r − 1)!

(
m− 1

r − 1

)2 r∑
ℓ=1

(
r − 1

ℓ− 1

)

× J2m−r−ℓ

(
( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1

r−1 f( · , k)))1∆2m−r−ℓ

)
. (3.10)

Thus,
∞∑
k=1

(DkF )2 = m2
m∑
r=1

(r − 1)!

(
m− 1

r − 1

)2 r∑
ℓ=1

(
r − 1

ℓ− 1

)

× J2m−r−ℓ

(
( ˜φ∗r−ℓ(f ⋆ℓr f))1∆2m−r−ℓ

)
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= m2

2(m−1)∑
s=0

Js

( m∑
r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f ⋆ℓr f))1∆2m−r−ℓ

)
= m ·m!∥f∥2ℓ2(N)⊗m

+m2

2(m−1)∑
s=1

Js

( m∑
r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f ⋆ℓr f))1∆2m−r−ℓ

)
. (3.11)

Furthermore, for every k ∈ N, we have

−DkL
−1(F − E[F ]) = Jm−1(f( · , k)) =

1

m
DkF, (3.12)

and therefore, by (3.11)

⟨DF,−DL−1(F − E[F ])⟩ℓ2(N) =
1

m

∞∑
k=1

(DkF )2

= m!∥f∥2ℓ2(N)⊗m +m

2(m−1)∑
s=1

Js

( m∑
r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f ⋆ℓr f))1∆2m−r−ℓ

)
.

By the Cauchy-Schwarz inequality and the isometry formula in (2.6), we then get

A2 ≤ (E[(λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N))2])1/2

≤ |λ−m!∥f∥2ℓ2(N)⊗m |

+
(
m2

2(m−1)∑
s=1

s!
∥∥∥ m∑

r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f ⋆ℓr f))1∆2m−r−ℓ

∥∥∥2
ℓ2(N)⊗s

)1/2

.

Using (3.12), the Cauchy-Schwarz inequality and (3.11), we further deduce

A3 =
1

m

∞∑
k=1

1
√
pkqk

E[((DkF )2 +
√
pkqk(pk − qk)DkF ) · |DkF |]

≤ 1

m

( ∞∑
k=1

1

pkqk
E[((DkF )2 +

√
pkqk(pk − qk)DkF )2]

)1/2( ∞∑
k=1

E[(DkF )2]
)1/2
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= (m!∥f∥2ℓ2(N)⊗m)1/2
( 1

m

∞∑
k=1

1

pkqk
E[((DkF )2 +

√
pkqk(pk − qk)DkF )2]

)1/2

.

Now, by (3.10) and (3.9), we have

(DkF )2 +
√
pkqk(pk − qk)DkF

= m2
m∑
r=1

(r − 1)!

(
m− 1

r − 1

)2 r∑
ℓ=1

(
r − 1

ℓ− 1

)

× J2m−r−ℓ

(
( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1

r−1 f( · , k)))1∆2m−r−ℓ

)
+m

√
pkqk(pk − qk)Jm−1(f( · , k))

= m2

2(m−1)∑
s=0

s ̸=m−1

Js

( m∑
r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

)

+m2Jm−1

( m∑
r=1

r∑
ℓ=1

1{2m−r−ℓ=m−1}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

+
1

m

√
pkqk(pk − qk)f( · , k)

)

= m2(m− 1)!∥f( · , k)∥2ℓ2(N)⊗m−1

+m2

2(m−1)∑
s=1

s ̸=m−1

Js

( m∑
r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

)

+m2Jm−1

( m∑
r=1

r∑
ℓ=1

1{2m−r−ℓ=m−1}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

+
1

m

√
pkqk(pk − qk)f( · , k)

)
.
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Thus, by the isometry formula in (2.6),

E[((DkF )2 +
√
pkqk(pk − qk)DkF )2]

= m4((m− 1)!∥f( · , k)∥2ℓ2(N)⊗m−1)2

+m4

2(m−1)∑
s=1

s ̸=m−1

s!
∥∥∥ m∑

r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

∥∥∥2
ℓ2(N)⊗s

+m4(m− 1)!
∥∥∥ m∑

r=1

r∑
ℓ=1

1{2m−r−ℓ=m−1}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

+
1

m

√
pkqk(pk − qk)f( · , k)

∥∥∥2
ℓ2(N)⊗m−1

,

and therefore,

A3 ≤ (m!∥f∥2ℓ2(N)⊗m)1/2

×
(
m3

∞∑
k=1

1

pkqk
((m− 1)!∥f( · , k)∥2ℓ2(N)⊗m−1)2

+m3
∞∑
k=1

1

pkqk

2(m−1)∑
s=1

s ̸=m−1

s!
∥∥∥ m∑

r=1

r∑
ℓ=1

1{2m−r−ℓ=s}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

∥∥∥2
ℓ2(N)⊗s

+m3
∞∑
k=1

1

pkqk
(m− 1)!

∥∥∥ m∑
r=1

r∑
ℓ=1

1{2m−r−ℓ=m−1}(r − 1)!

(
m− 1

r − 1

)2(
r − 1

ℓ− 1

)

× ( ˜φ∗r−ℓ(f( · , k) ⋆ℓ−1
r−1 f( · , k)))1∆2m−r−ℓ

+
1

m

√
pkqk(pk − qk)f( · , k)

∥∥∥2
ℓ2(N)⊗m−1

)1/2

.

The result now follows by a final application of the isometry formula in (2.6) to
deduce

Var(F ) = m!∥f∥2ℓ2(N)⊗m .

□
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Remark 3.8. Resorting, e.g., to the case m = 2 in Theorem 3.7 yields the bound

dTV (F,Po(λ))

≤
(
1 ∧

√
2

eλ

)
|λ− E[F ]|+ 1− e−λ

λ
|λ−Var(F )|

+
1− e−λ

λ
(4∥φ∗1(f ⋆12 f)∥2ℓ2(N) + 8∥(f ⋆11 f)1∆2∥2ℓ2(N)⊗2)1/2

+
1− e−λ

λ

√
Var(F )

×
(
8

∞∑
k=1

1

pkqk
∥f( · , k)∥4ℓ2(N) + 16

∞∑
k=1

1

pkqk
∥(f( · , k) ⋆00 f( · , k))1∆2∥2ℓ2(N)⊗2

+ 8
∞∑
k=1

1

pkqk
∥φ∗1(f( · , k) ⋆01 f( · , k)) +

1

2

√
pkqk(pk − qk)f( · , k)∥2ℓ2(N)

)1/2

.

Thus, the weak convergence of the law of Fn = E[Fn] + J2(fn) with fn ∈ ℓ20(N)◦2,
for every n ∈ N, to a Poisson distribution is implied by the convergence of the first
two moments of Fn and by the vanishing of the quantities

∥φ∗1(fn ⋆12 fn)∥2ℓ2(N), ∥(fn ⋆11 fn)1∆2∥2ℓ2(N)⊗2 ,

∞∑
k=1

1

pkqk
∥fn( · , k)∥4ℓ2(N),

∞∑
k=1

1

pkqk
∥(fn( · , k) ⋆00 fn( · , k))1∆2∥2ℓ2(N)⊗2

and

∞∑
k=1

1

pkqk
∥φ∗1(fn( · , k) ⋆01 fn( · , k)) +

1

2

√
pkqk(pk − qk)fn( · , k)∥2ℓ2(N),

as n → ∞.

Corollary 3.9. Let n ≥ 2 be an integer, pk = 1− qk := 1
n , for every k ∈ N, and

Fn := J2(fn) with fn ∈ ℓ20(N)◦2 given by

fn(i, j) :=

{
n−1
2n2 , if (i, j) ∈ {(1, 2), (2, 1), . . . , (1, n), (n, 1)},
0, otherwise.

Furthermore, let Po(λn) be a Poisson random variable with mean λn := Var(Fn).
Then,

dTV (Fn,Po(λn)) ≤
C√
n

with C := 5
2 +

√
2.

Proof. First note that Fn fulfills the assumptions of Theorem 3.7. To see that
Fn only takes values in N0, let (Bk)k∈N be a sequence of independent Bernoulli
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random variables with P (Bk = 1) = 1
n and P (Bk = 0) = 1 − 1

n , for every k ∈ N.
Then, Yk

d
= Bk−pk√

pkqk
= nBk−1√

n−1
, for every k ∈ N, and thus,

Fn =
n∑

i,j=1

fn(i, j)YiYj =
n− 1

n2
Y1

n∑
i=2

Yi
d
= (B1 − n)

n∑
i=2

(Bi − n). (3.13)

Now, since n ≥ 2, we have that Bi − n is a strictly negative integer, for every
i = 1, . . . , n. Therefore, it follows from (3.13) that Fn is a strictly positive integer.
Let us come to the proof of the assertion. According to Remark 3.8, we have to
further compute the quantities

A1(n) := |λn − E[Fn]|, A2(n) := |λn −Var(Fn)|, A3(n) := ∥φ∗1(fn ⋆12 fn)∥2ℓ2(N),

A4(n) := ∥(fn ⋆11 fn)1∆2∥2ℓ2(N)⊗2 , A5(n) :=

∞∑
k=1

1

pkqk
∥fn( · , k)∥4ℓ2(N),

A6(n) :=
∞∑
k=1

1

pkqk
∥(fn( · , k) ⋆00 fn( · , k))1∆2∥2ℓ2(N)⊗2

and

A7(n) :=

∞∑
k=1

1

pkqk
∥φ∗1(fn( · , k) ⋆01 fn( · , k)) +

1

2

√
pkqk(pk − qk)fn( · , k)∥2ℓ2(N).

First of, since λn = Var(Fn) = 2∥fn∥2ℓ2(N)⊗2 = (n−1)3

n4 , we have that A1(n) =
(n−1)3

n4 ≤ 1
n and A2(n) = 0. Considering A3(n), for every i ∈ N, we get

fn ⋆12 fn(i) =
n∑

j=1

f2
n(i, j) = f2

n(i, 1) +
n∑

j=2

f2
n(i, j)

=
(n− 1)2

4n4

(
1{i=2,...,n} +(n− 1)1{i=1}

)
,

and hence, with φ2
k = (qk−pk)

2

pkqk
= (n−2)2

n−1 , for every k ∈ N,

A3(n) =
(n− 1)3(n− 2)2

16n8

n∑
i=1

(
1{i=2,...,n} +(n− 1)2 1{i=1}

)
=

(n− 1)4(n− 2)2

16n7
≤ 1

16n
.

Turning to A4(n), for every i, j ∈ N, we have

(fn ⋆11 fn)1∆2(i, j) =
n∑

k=1

fn(i, k)fn(j, k)1∆2(i, j)

= fn(i, 1)fn(j, 1)1∆2(i, j) +

n∑
k=2

fn(i, k)fn(j, k)1∆2(i, j) =
(n− 1)2

4n4
1{2≤i̸=j≤n},
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and thus,

A4(n) =
(n− 1)5(n− 2)

16n8
≤ 1

16n2
.

To compute A5(n), note that, for every k ∈ N,

∥fn( · , k)∥4ℓ2(N) =
(
f2
n(1, k) +

n∑
j=2

f2
n(j, k)

)2

=
(n− 1)4

16n8

(
1{k=2,...,n} +(n− 1)2 1{k=1}

)
,

and therefore, with 1
pkqk

= n2

n−1 , for every k ∈ N,

A5(n) =
(n− 1)3

16n6

n∑
k=1

(
1{k=2,...,n} +(n− 1)2 1{k=1}

)
=

(n− 1)4

16n5
≤ 1

16n
.

For A6(n), it shows that, for every i, j, k ∈ N,

(fn( · , k) ⋆00 fn( · , k))1∆2(i, j) = fn(i, k)fn(j, k)1∆2(i, j)

=
(n− 1)2

4n4
1{2≤i̸=j≤n} 1{k=1} .

Furthermore, for every k ∈ N,

∥(fn( · , k) ⋆00 fn( · , k))1∆2∥2ℓ2(N)⊗2 =
(n− 1)5(n− 2)

16n8
1{k=1},

so that, again with 1
pkqk

= n2

n−1 , for every k ∈ N,

A6(n) =
(n− 1)4(n− 2)

16n6
≤ 1

16n
.

Finally, considering A7(n), for every k ∈ N, it holds that

∥φ∗1(fn( · , k) ⋆01 fn( · , k)) +
1

2

√
pkqk(pk − qk)fn( · , k)∥2ℓ2(N)

=
n∑

j=1

( n− 2√
n− 1

f2
n(j, k)−

√
n− 1(n− 2)

2n2
fn(j, k)

)2

=
( (n− 1)3/2(n− 2)

4n4
− (n− 1)3/2(n− 2)

4n4

)2(
1{k=2,...,n} +(n− 1)1{k=1}

)
= 0,

where we used that φk = n−2√
n−1

and
√
pkqk(pk − qk) = −

√
n−1(n−2)

n2 , for every

k ∈ N. We thus conclude that A7(n) = 0. Now, it follows from Remark 3.8 that

dTV (Fn,Po(λn)) ≤ A1(n) + 2
√

A3(n) + 2
√

2A4(n) + 2
√
2A5(n) + 4

√
A6(n),

where we used that, for every n ≥ 2,
(
1∧

√
2

eλn

)
= 1, 1−e−λn

λn
≤ 1 and

√
Var(Fn) ≤

1. This yields the assertion. □
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Remark 3.10. Note here that the Rademacher functional in Corollary 3.9 is of the
same spirit as the one considered in the example that follows Proposition 8.3 in [15].
For a sequence of success probabilities p = (pk)k∈N as in Corollary 3.9, the authors
of [15] compare a suitably shifted stochastic double integral Fn = λn + J2(fn) to
a Poisson random variable Po(λn), where λn ≥ 4n is an integer and fn ∈ ℓ20(N)◦2
is given by

fn(i, j) :=

{
n−1
n , if (i, j) ∈ {(1, 2), (2, 1), . . . , (1, n), (n, 1)},

0, otherwise.

However, for this particular choice our bound in Remark 3.8 as well as the corre-
sponding bound in Proposition 8.3 in [15] does not vanish, as n → ∞, since the
involved norms of contractions do not tend to zero. For example, we have

2∥fn∥2ℓ2(N)⊗2 =
4(n− 1)3

n2
and ∥fn ⋆11 fn∥2ℓ2(N)⊗2 =

2(n− 1)6

n4
,

so that the quantities 1−e−λn

λn
|λn − 2∥fn∥2ℓ2(N)⊗2 | and 1−e−λn

λn
∥fn ⋆11 fn∥2ℓ2(N)⊗2 in

the bound of Proposition 8.3 in [15] never vanish at the same time, no matter of
the choice of λn.

We will now turn to our final result, a second order Poincaré type bound for
the Poisson approximation of Rademacher functionals. One advantage of such a
bound is that it can be further evaluated without the use of a product formula
for multiple stochastic integrals or even a specification of the chaos representation
of the Rademacher functional of interest as in (2.2). See, e.g., Theorem 1.1 in [7]
for an efficient application of a corresponding second order Poincaré type bound
for the normal approximation of Rademacher functionals. Before we come to the
statement, we collect some tools from [7].

Lemma 3.11 (cf. Proposition 3.3 in [7]). For m ∈ N, let k1, . . . , km ∈ N and
F ∈ dom(Dm). Then, for every real α ≥ 1,

E[|Dm
k1,...,km

L−1(F − E[F ])|α] ≤ E[|Dm
k1,...,km

F |α].

Lemma 3.12 (cf. Proposition 3.4 and Remark 3.1 in [7]). Let F ∈ L1(Ω). Then,

Var(F ) ≤ E[∥DF∥2ℓ2(N)].

Theorem 3.13. Let F ∈ dom(D2) with values in N0 and let Po(λ) be a Poisson
random variable with mean λ > 0. Then,

dTV (F,Po(λ))

≤
(
1 ∧

√
2

eλ

)
|λ− E[F ]|+ 1− e−λ

λ
|λ−Var(F )|

+
1− e−λ

λ

(15
4

∞∑
j,k,ℓ=1

(E[(DjF )2(DkF )2])1/2(E[(DℓDjF )2(DℓDkF )2])1/2
)1/2

+
1− e−λ

λ

(3
4

∞∑
j,k,ℓ=1

1

pℓqℓ
E[(DℓDjF )2(DℓDkF )2]

)1/2
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+
1− e−λ

λ

∞∑
k=1

1
√
pkqk

(E[(DkF )2(DkF +
√
pkqk(pk − qk))

2])1/2(E[(DkF )2])1/2.

(3.14)

Proof. We build on Corollary 3.3 by further estimating the quantities

A1 := E[|λ− ⟨DF,−DL−1(F − E[F ])⟩ℓ2(N)|]

and

A2 :=
∞∑
k=1

1
√
pkqk

E[DkF (DkF +
√
pkqk(pk − qk)) · |−DkL

−1(F − E[F ])|].

Starting with A1, by means of the triangle and the Cauchy-Schwarz inequality, we
get

A1 ≤ E[|λ−Var(F )|] + E[|Var(F )− ⟨DF,DL−1(F − E[F ])⟩ℓ2(N)|]

≤ E[|λ−Var(F )|] + (E[(Var(F )− ⟨DF,DL−1(F − E[F ])⟩ℓ2(N))2])1/2. (3.15)

Note that, by choosing G = F −E[F ] in the integration by parts formula in (2.12),
we have

Var(F ) = E[⟨DF,DL−1(F − E[F ])⟩ℓ2(N))2],

and thus,

E[(Var(F )− ⟨DF,DL−1(F − E[F ])⟩ℓ2(N))2] = Var(⟨DF,DL−1(F − E[F ])⟩ℓ2(N)).

Hence, the second summand on the right hand side of (3.15) can be further esti-
mated by Lemma 3.12 and Lemma 3.11 as shown in the proof of Theorem 4.1 in
[7], which leads to

A1 ≤ E[|λ−Var(F )|]

+
(15
4

∞∑
j,k,ℓ=1

(E[(DjF )2(DkF )2])1/2(E[(DℓDjF )2(DℓDkF )2])1/2
)1/2

+
(3
4

∞∑
j,k,ℓ=1

1

pℓqℓ
E[(DℓDjF )2(DℓDkF )2]

)1/2

.

Furthermore, by virtue of the Cauchy-Schwarz inequality and Lemma 3.11, we get

A2 ≤
∞∑
k=1

1
√
pkqk

(E[(DkF )2(DkF +
√
pkqk(pk − qk))

2])1/2

× (E[(DkL
−1(F − E[F ]))2])1/2

≤
∞∑
k=1

1
√
pkqk

(E[(DkF )2(DkF +
√
pkqk(pk − qk))

2])1/2(E[(DkF )2])1/2.

This concludes the proof. □
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Remark 3.14. To give a first application and an insight into the quality of the
bound in Theorem 3.13, we consider the Poisson approximation of infinite sums
of Bernoulli random variables once more. For this, let (Bk)k∈N be a sequence of
independent Bernoulli random variables with P (Bk = 1) = pk and P (Bk = 0) =
qk, for every k ∈ N, and

∑∞
k=1 pk < ∞, and let F :=

∑∞
k=1 Bk. Recall from the

proof of Corollary 3.5 that

F
d
=

∞∑
k=1

Xk + 1

2
.

Now, for every k ∈ N, we have that

F+
k

d
= 1 +

∞∑
ℓ=1
ℓ ̸=k

Xℓ + 1

2
and F−

k
d
=

∞∑
ℓ=1
ℓ ̸=k

Xℓ + 1

2
,

and therefore, for every k, ℓ ∈ N, we get

DkF =
√
pkqk(F

+
k − F−

k ) =
√
pkqk and DℓDkF = 0,

P -almost surely. Hence, F ∈ dom(D2) by (2.8) and all assumptions of Theorem
3.13 are fulfilled. According to this, we have to further compute the quantities

A1 := |λ− E[F ]|, A2 := |λ−Var(F )|,

A3 :=
( ∞∑

j,k,ℓ=1

(E[(DjF )2(DkF )2])1/2(E[(DℓDjF )2(DℓDkF )2])1/2
)1/2

,

A4 :=
( ∞∑

j,k,ℓ=1

1

pℓqℓ
E[(DℓDjF )2(DℓDkF )2]

)1/2

and

A5 :=
∞∑
k=1

1
√
pkqk

(E[(DkF )2(DkF +
√
pkqk(pk − qk))

2])1/2(E[(DkF )2])1/2

from the bound in (3.14). Recall from the proof of Corollary 3.5 that

A1 =
∣∣∣λ−

∞∑
k=1

pk

∣∣∣ and A2 =
∣∣∣λ−

∞∑
k=1

pkqk

∣∣∣.
Furthermore, A3 = A4 = 0 and

A5 =
∞∑
k=1

pkqk(1 + pk − qk) = 2
∞∑
k=1

p2kqk.

This leads to the exact same bound

dTV (F,Po(λ)) ≤
(
1 ∧

√
2

eλ

)∣∣∣λ−
∞∑
k=1

pk

∣∣∣+ 1− e−λ

λ

∣∣∣λ−
∞∑
k=1

pkqk

∣∣∣
+

2(1− e−λ)

λ

∞∑
k=1

p2kqk
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that we have deduced directly from Theorem 3.1 in Corollary 3.5.

4. Appendix

The purpose of this appendix is to prove Proposition 2.2. We start by collecting
some arguments that will be used within the proof. Note that Lemma 4.1 is a slight
generalization of Lemma 2.6 in [11], while Lemma 4.2 is known as Lemma 4.6 in
[14].

Lemma 4.1. Fix n,m ∈ N. Furthermore, let (fk)k∈N and (gk)k∈N be two se-
quences of kernels with fk ∈ ℓ20(N)◦n and gk ∈ ℓ20(N)◦m, for every k ∈ N. Then, if
(fk)k∈N converges to a kernel f in ℓ20(N)◦n and (gk)k∈N converges to a kernel g in
ℓ20(N)◦m, it holds that, for every r = 0, . . . , n∧m and ℓ = 0, . . . , r, the sequence of
contractions (fk ⋆ℓr gk)k∈N converges to f ⋆ℓr g in ℓ2(N)⊗n+m−r−ℓ.

Proof. Using the triangle inequality as well as Lemma 2.4 in [11], we see that

∥fk ⋆ℓr gk − f ⋆ℓr g∥ℓ2(N)⊗n+m−r−ℓ

= ∥fk ⋆ℓr (gk − g + g)− (f − fk + fk) ⋆
ℓ
r g∥ℓ2(N)⊗n+m−r−ℓ

= ∥fk ⋆ℓr (gk − g) + (fk − f) ⋆ℓr g∥ℓ2(N)⊗n+m−r−ℓ

≤ ∥fk ⋆ℓr (gk − g)∥ℓ2(N)⊗m+n−r−ℓ + ∥(fk − f) ⋆ℓr g∥ℓ2(N)⊗m+n−r−ℓ

≤ ∥fk∥ℓ2(N)⊗n∥gk − g∥ℓ2(N)⊗m + ∥fk − f∥ℓ2(N)⊗n∥g∥ℓ2(N)⊗m .

The statement now follows immediately by taking the limit k → ∞. □

Lemma 4.2. Let n ∈ N and f ∈ ℓ20(N)◦n. Consider the sequence of truncated
kernels (fk)k∈N with fk := f 1{1,...,k}n , for every k ∈ N. Then, for every k ∈ N,

Jn(fk) = E[Jn(f)|Fk],

where (Fk)k∈N denotes the canonical filtration given by Fk := σ(X1, . . . , Xk), for
every k ∈ N.

Corollary 4.3. Let n ∈ N and f ∈ ℓ20(N)◦n. Consider the sequence of truncated
kernels (fk)k∈N with fk := f 1{1,...,k}n , for every k ∈ N. Then, the sequence

(Jn(fk))k∈N convergences to Jn(f) in L2(Ω).

Proof. By virtue of Lemma 4.2, (Jn(fk))k∈N is a martingale with respect to the
filtration (Fk)k∈N. Thus, the convergence of (Jn(fk))k∈N to Jn(f) in L2(Ω) im-
mediately follows by the martingale convergence theorem. □

Proof of Proposition 2.2. Fix d ∈ N. We start by proving (2.4) for stochastic
integrals of kernels f ∈ ℓ20(N)◦n and g ∈ ℓ20(N)◦m with finite supports supp(f) ⊆
{1, . . . , d}n and supp(g) ⊆ {1, . . . , d}m. We put ∆d

n := ∆n ∩ {1, . . . , d}n and
deduce from (2.1) that

Jn(f)Jm(g)

=
∑

(i1,...,in,j1,...,jm)∈∆d
n×∆d

m

f(i1, . . . , in)g(j1, . . . , jm)Yi1 · . . . · YinYj1 · . . . · Yjm .

(4.1)
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We will now count the pairs of equal random variables in the products Yi1 · . . . ·
YinYj1 · . . . ·Yjm in (4.1). Since (i1, . . . , in) ∈ ∆d

n and (j1, . . . , jm) ∈ ∆d
m, each pos-

sible pair can only consist of one random variable taken from the set {Yi1 , . . . , Yin}
and one random variable taken from the set {Yj1 , . . . , Yjm}. Thus, each product
Yi1 · . . . · YinYj1 · . . . · Yjm can contain r = 0, . . . , n ∧ m pairs. Now, there are
r!
(
n
r

)(
m
r

)
different ways to build r pairs as described above. (There are

(
n
r

)
dif-

ferent ways to pick r random variables from {Yi1 , . . . , Yin},
(
m
r

)
different ways

to pick r random variables from {Yj1 , . . . , Yjm} and finally r! different ways to
group pairs from the two developed r-sets.) By the symmetry of the summands
f(i1, . . . , in)g(j1, . . . , jm)Yi1 · . . . · YinYj1 · . . . · Yjm in i1, . . . , in and j1, . . . , jm, re-
spectively, the sum in (4.1) can be rewritten in terms of summands containing r
pairs of random variables

Jn(f)Jm(g) =

n∧m∑
r=0

r!

(
n

r

)(
m

r

) ∑
(in−r,jm−r,kr)∈∆d

n+m−r

f(in−r,kr)g(jm−r,kr)

× Yi1 · . . . · Yin−rYj1 · . . . · Yjm−rY
2
k1

· . . . · Y 2
kr

(4.2)

with in−r := (i1, . . . , in−r), jm−r := (j1, . . . , jm−r) and kr := (k1, . . . , kr). We
will now further compute the product Y 2

k1
· . . . · Y 2

kr
in (4.2). By (2.3) it follows

that

r∏
ℓ=1

Y 2
kℓ

=
r∏

ℓ=1

(1 + φkℓ
Ykℓ

) = 1 +
r∑

s=1

∑
1≤ℓ1<...<ℓs≤r

φkℓ1
· . . . · φkℓs

Ykℓ1
· . . . · Ykℓs

.

Thus, the inner sum in (4.2) can be rewritten as the sum of the two quantities∑
(in−r,jm−r,kr)∈∆d

n+m−r

f(in−r,kr)g(jm−r,kr)Yi1 · . . . · Yin−rYj1 · . . . · Yjm−r (4.3)

and ∑
(in−r,jm−r,kr)∈∆d

n+m−r

r∑
s=1

∑
1≤ℓ1<...<ℓs≤r

φkℓ1
· . . . · φkℓs

f(in−r,kr)g(jm−r,kr)

× Yi1 · . . . · Yin−rYj1 · . . . · Yjm−rYkℓ1
· . . . · Ykℓs

. (4.4)

Using the fact that f and g vanish on diagonals as well as the symmetry of the
product measure µ⊗n+m−2r

(Y,d) defined by µ⊗n+m−2r
(Y,d) (A) :=

∑
(i1,...,in+m−2r)∈A Yi1 ·

. . . · Yin+m−2r , for every A ∈ {1, . . . , d}n+m−2r, (4.3) can be further deduced as∑
(in−r,jm−r,kr)∈∆d

n+m−r

f(in−r,kr)g(jm−r,kr)Yi1 · . . . · Yin−rYj1 · . . . · Yjm−r

=
∑

(in−r,jm−r)∈∆d
n+m−2r

∑
kr∈∆d

r

f(in−r,kr)g(jm−r,kr)Yi1 · . . . · Yin−rYj1 · . . . · Yjm−r
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=
∑

(in−r,jm−r)∈∆d
n+m−2r

f ⋆rr g(in−r, jm−r)Yi1 · . . . · Yin−rYj1 · . . . · Yjm−r

=
∑

(in−r,jm−r)∈∆d
n+m−2r

˜(f ⋆rr g)(in−r, jm−r)Yi1 · . . . · Yin−rYj1 · . . . · Yjm−r

= Jn+m−2r

(
˜(f ⋆rr g)1∆d

n+m−2r

)
. (4.5)

To further compute (4.4), note that, due to the symmetry of f and g, the sum-
mands

φkℓ1
· . . . · φkℓs

f(in−r,kr)g(jm−r,kr)Yi1 · . . . · Yin−rYj1 · . . . · Yjm−rYkℓ1
· . . . · Ykℓs

are symmetric in k1, . . . , kr. Thus, we get that, for r = 1, . . . , n ∧m,∑
kr∈∆d

r

∑
1≤ℓ1<...<ℓs≤r

φkℓ1
· . . . · φkℓs

f(in−r,kr)g(jm−r,kr)

× Yi1 · . . . · Yin−rYj1 · . . . · Yjm−rYkℓ1
· . . . · Ykℓs

=

(
r

s

) ∑
ks∈∆d

s

φk1 · . . . · φksf ⋆r−s
r g(in−r,ks, jm−r)

× Yi1 · . . . · Yin−rYj1 · . . . · Yjm−rYk1 · . . . · Yks

=

(
r

s

) ∑
ks∈∆d

s

φ∗s(f ⋆r−s
r g)(in−r,ks, jm−r)

× Yi1 · . . . · Yin−rYj1 · . . . · Yjm−rYk1 · . . . · Yks .

Therefore, by using the same arguments as in (4.5), we obtain for (4.4) that, if
r = 1, . . . n ∧m,∑
(in−r,jm−r,kr)∈∆d

n+m−r

r∑
s=1

∑
1≤ℓ1<...<ℓs≤r

φkℓ1
· . . . · φkℓs

f(in−r,kr)g(jm−r,kr)

× Yi1 · . . . · Yin−rYj1 · . . . · Yjm−rYkℓ1
· . . . · Ykℓs

=
r∑

s=1

(
r

s

) ∑
(in−r,jm−r,ks)∈∆d

n+m−2r+s

φ∗s(f ⋆r−s
r g)(in−r,ks, jm−r)

× Yi1 · . . . · Yin−rYj1 · . . . · Yjm−rYk1 · . . . · Yks

=
r∑

s=1

(
r

s

) ∑
(in−r,jm−r,ks)∈∆d

n+m−2r+s

˜(φ∗s(f ⋆r−s
r g))(in−r,ks, jm−r)
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× Yi1 · . . . · Yin−rYj1 · . . . · Yjm−rYk1 · . . . · Yks

=
r∑

s=1

(
r

s

)
Jn+m−2r+s

(
˜(φ∗s(f ⋆r−s

r g))1∆d
n+m−2r+s

)
, (4.6)

and, if r = 0,∑
(in−r,jm−r,kr)∈∆d

n+m−r

r∑
s=1

∑
1≤ℓ1<...<ℓs≤r

φkℓ1
· . . . · φkℓs

f(in−r,kr)g(jm−r,kr) = 0.

(4.7)

Plugging (4.5), (4.6) and (4.7) into (4.2) finally yields

Jn(f)Jm(g)

=
n∧m∑
r=0

r!

(
n

r

)(
m

r

)
Jn+m−2r

(
˜(f ⋆rr g)1∆d

n+m−2r

)
+

n∧m∑
r=1

r!

(
n

r

)(
m

r

) r∑
s=1

(
r

s

)
Jn+m−2r+s

(
˜(φ∗s(f ⋆r−s

r g))1∆d
n+m−2r+s

)

=
n∧m∑
r=0

r!

(
n

r

)(
m

r

)
Jn+m−2r

(
˜(f ⋆rr g)1∆d

n+m−2r

)
+

n∧m∑
r=1

r!

(
n

r

)(
m

r

) r−1∑
ℓ=0

(
r

ℓ

)
Jn+m−r−ℓ

(
˜(φ∗r−ℓ(f ⋆ℓr g))1∆d

n+m−r−ℓ

)

=
n∧m∑
r=0

r!

(
n

r

)(
m

r

) r∑
ℓ=0

(
r

ℓ

)
Jn+m−r−ℓ

(
˜(φ∗r−ℓ(f ⋆ℓr g))1∆d

n+m−r−ℓ

)
for stochastic integrals of kernels f and g with finite supports supp(f) ⊆ {1, . . . , d}n
and and supp(g) ⊆ {1, . . . , d}m. For the general case consider the sequences of
truncated kernels (fd)d∈N and (gd)d∈N with fd := f 1{1,...,d}n and gd := g 1{1,...,d}m ,

for every d ∈ N. Now, fd ∈ ℓ20(N)◦n with supp(fd) ⊆ {1, . . . , d}n and gd ∈ ℓ20(N)◦m
with supp(gd) ⊆ {1, . . . , d}m, for every d ∈ N. According to Lemma 4.1 and Corol-
lary 4.3, the statement now follows from the discussion above by taking the limit
d → ∞. □

Acknowledgment. I would like to thank Peter Eichelsbacher for insightful dis-
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