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A Novel Asymmetric Hyperchaotic System 
and its Circuit Validation
J. P. Singh* and B. K. Roy 

Abstract: The Objective of the paper is to develop a new asymmetric hyperchaotic system with more complexity. 
The system has two dissimilar equilibrium points. Non-uniform contraction and expansion of volume in phase space 
is also an important property of the proposed system. A hyperchaotic system with above characteristics is first time 
reported here. Details theoretical and numerical analyses of the proposed hyperchaotic system are presented. The 
hyperchaotic system is analyzed using phase portrait, Poincare Map, waveform, frequency spectrum. Lyapunov 
spectrum analyses depict that system has large range of parameter for chaos and hyperchaos. The system has 
comparatively more frequency spectrum and is applicable for secure communication. Circuit design of the system 
is also presented. 
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1.	 INTRODUCTION 
Now a days requirement of more complex behaviour in the field of chaos leads to the development of new 
hyperchaotic systems. Because of more random and unpredictable behaviour, application of hyperchaotic 
systems are explored in many fields like electronics, Information theory, computer science, security 
(Banerjee et al. 2011). So, constructing a new hyperchaotic system is the motivation of this paper. 

In the last two decades, many hyperchaotic systems have been reported. But construction of more 
complex and unpredictable hyperchaotic system is still a challenging problem [3]. Chaotic systems with 
asymmetric nature and non-similar equilibrium points are more complex than symmetrical and similar 
equilibrium points chaotic systems. Most of the reported hyperchaotic systems have symmetric have 
symmetric nature like hyperchaotic Liu [4], hyperchaotic Chen [5], hyperchaotic Bao [6], hyperchaotic 
Lorenz [7], hyperchaotic Lorenz [8, 9], hyperchaotic Lu [10], hyperchaotic Qi [11], Hyperchaotic Xu [12], 
Modified Lu [13], etc. Very few hyperchaotic systems have asymmetric behaviour like Rossler system [1] 
etc. Thus, forming a asymmetry hyperchaotic system is a new problem. 

In this paper a new 4-D, twelve terms hyperchaotic system with asymmetric property, non-similar 
equilibrium point is reported. Detailed theoretical and numerical analyses of the system are presented. 
Attractor, Poincare map, frequency spectrum, waveform, Lyapunov spectrum, are the tools used to analyze 
the system. The novelty of the proposed hyperchaotic system is validated using the following points:

1.	 The proposed hyperchaotic system has non-uniform contraction and expansion of volume in phase 
space, which is not in the case in earlier reported systems like in [5-16].

2.	 The proposed system is not symmetric about its axis, plane, and space. But the reported systems 
like in [5-14, 16] have symmetrical nature of attractor.
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3.	 The novel system has dissimilar and asymmetric equilibria whereas many earlier reported 
hyperchaotic systems have similar and symmetrical equilibria like [3, 5, 6, 9, 10].

4.	 The proposed system is comparatively more complex with above three properties compared to the 
systems in [5, 6, 9, 10, 16].

5.	  The proposed system has relatively larger bandwidth compared to the systems like in [1, 5, 8, 9].

Section 2 describes the dynamics of the proposed hyperchaotic system. Theoretical analyses and 
description of the proposed hyperchaotic system are presented in Section 3. Section 4 describes the 
numerical analyses and discussions of the proposed hyperchaotic system; finally conclusions are given in 
Section 5.

2.	 DYNAMICS OF THE PROPOSED HYPERCHAOTIC SYSTEM
Considering the conditions for hyperchaotic systems (dynamical system must be of 4-D, it must have two 
positive Lyapunov exponents), a new system with hyperchaotic behaviour is described as: 
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the system has non-uniform shrinking and expansion of volume in phase space. This 
property also increases the complexity of the system.  
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where x1, x2, x3, x4, are the state variables and a, b, d, r are the positive parameters of the system (1) and 
c R p∈ = −, 4 . Range and value of the parameters are founded using Lyapunov spectrum which is discussed 
in Section 4.4. When d = 33, r = 46.6, a = 4, b = 10, c = 11, p = – 4 Lyapunov exponents of the system 
are Li = 1.8599, 0.13314, –0.00088, –42.067 and Lyapunov dimension is LD = 3.046. Detailed theoretical 
description of the system are given in the upcoming section.

3.	 THEORETICAL DESCRIPTION OF THE PROPOSED SYSTEM
This section describes some common basic properties of the system (1) using theoretical analyses.

3.1	 Equilibrium Point and their Behaviour 
Equilibrium points of the system are given as: E0 = (0,0,0,0), 
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Eigenvalues corresponding to each

equilibrium point is given in Table 1.

Table 1 
Eigen value of the system (1) with

Sl. no  E0 = (0, 0, 0, 0) E1 = (9.66, 0 – 319, –31287.133
1. λ1 = –57.7492  λ1 = –321.00
2. λ2 = 27.5870  λ2 = 259.238
3. λ3 = 0.0808  λ3 = –4.5725
4. λ4 = –9. –185  λ4 = –0.0029

It is clear from Table 1 that all the equilibrium points are unstable and dissimilar and hence increases 
unpredictability of the system. Both equilibria of the system have saddle node behaviour. 
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3.2	 Asymmetry Property 
The proposed system (1) is asymmetric about its principle axis and plane. Asymmetric nature of the 
system can be easily verified by changing the sign of each state variable. Asymmetry increases random 
and complex property of a system. 

3.3	 Dissipativity 
The proposed system (1) is a dissipative hyperchaotic system. Dissipative nature of the system is evaluated 
by calculating divergence of the vector field V(x) on R4 as:
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For, x1(t) = 0, DV < 0, since d = 33, a = 4, b = 10. So, volume in phase space contract exponentially 
and system exhibits dissipative hyperchaotic system. For x1(t) = 0,  and the system has non-uniform 
shrinking and expansion of volume in phase space. This property also increases the complexity of the 
system. 

4.	 NUMERICAL ANALYSES OF THE PROPOSED SYSTEM
This section deals with the numerical analyses and discussions of the system (1).

4.1	 Hyperchaotic Attractor 
Fig. 1 (a-d) shows the hyperchaotic attractors of the system (1). The following observations can be made 
from Fig.1:

System has attractors similar to Lorenz type hyperchaotic system double scrolls, butterfly shape. But 
the attractors of the proposed system are different because of asymmetric nature. Attractors of the system 
are more complex and dense. Complexity of the system increases because of non-uniform contraction and 
expansion of volume.
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Figure 1:  Orbits of the system (1) with � � ��� � � ��. �� � � �� � � ��� � � ��� � � ��	(a) on �� ���	plane, (b) on �� � ��	plane, (c) on �� � ��	plane, (d) in �� � �� � ��	space.

Figure 2: (a) Poincare map in �� � �� plane for 	�� � � (b) Poincare map in �� �	��	plane for	�� � � and (c) 
waveform of system (1), with	� � ��� � � ��. �� � � �� � � ��� � � ��� � � ��.

Figure: 3 Normalized frequency spectra of the system (1) for	� � ��� � � ��. �� � � �� � � ��� � �
��� � � ��.

Figure 4: Lyapunov spectrum of the system (1) with	� � �� � � ��. �� � � ��� � � ��� � � �� and � �
���� ���; (a) Lyapunov exponents ��� ��� �� and (b) Lyapunov exponent	��.

Figure 5: Lyapunov spectrum of the system (1) with	� � �� � � ��� � � ��� � � ��� � � �� and	� � ���� ���;
(a) Lyapunov exponents ��� ��� �� and (b) Lyapunov exponent	��.

Figure 6: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � ��� � � �� and	� � ��� ���; (a) 
Lyapunov exponents ��� ��� �� and (b) Lyapunov exponent	��.

Figure 7: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � ��� � � �� � � �� and � � ��� ���;
(a) Lyapunov exponents ��� ��� �� and (b) Lyapunov exponent	��.

Figure 8: Lyapunov spectrum of the system (1) with	� � ��� � � ��. �� � � ��� � � �� � � �� in region 
of	� � ����� ���; (a) Lyapunov exponents ��� ��� �� and (b) Lyapunov exponent	��.

Figure 9: (a) Circuit design; attractor of the system (1) (b) on �� � �� plane, (c) on �� � �� plane. 
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4.2	 Poincare Maps and Waveform 
The dynamics of the system (1) are also analysed with Poincare map. Fig. 2 (a, b) shows the Poincare 
map of the system (1) in different planes. It is observed from the figure that several sheet of attractors are 
separated asymmetrically and folded. Waveform plot is given in Fig. 2 (c). Results show that the system 
has complex and dense structure. 

4.3	 Frequency Spectrum 
Normalized frequency spectrum of x2(t) signal of the system (1) is shown in Fig. 3. One can see from 
Fig. 3 that system has large bandwidth. Therefore, the signal of the system (4) may be better for secure 
communication. The system has [0-13] Hz bandwidth with 0.1 normalized spectral value as cut-off. 
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4.4	 Lyapunov Spectrum Analysis 
Lyapunov spectrum of the system (1) is obtained by fixing five parameters and varying one parameter. 

4.4.1 Fix Parameters r = 45, a= 4, b = 10, c = 11, p – 4 and Vary Parameter 4
Fig. 4 (a, b) shows the Lyapunov spectrum (LS) of the system (1) with variation of parameter d. It is 
observed from Fig. 4 that the system produces hyperchaotic, periodic, and chaotic behaviour. Table 2 (a) 
shows the summary of behaviour of the system (1) for diferent values of d.

Table 2 (a) 
Behaviour of the proposed system (1) with variation of parameter

Range of parameter Behaviour Range of parameter Behaviour
0 < d < 15 Periodic 47.7 ≤ d < 49.1 Periodic
15 ≤ d ≤ 45.5 Hyperchaotic 49.2 ≤ d ≤ 55 Chaotic but some periodic window
45.6 < d ≤ 47.6 Chaotic 55.1 ≤ d ≤ 60 Periodic	

4.4.2	 Fix Parameters d = 33, a= 4, b = 10, c = 11, p = – 4 and Vary Parameter r
Fig. 5 (a, b) shows the LS of the system (1) for variation of parameter. Fig. 5 depicts that the system 
produces hyperchaotic orbits, chaotic orbits and periodic orbits. Table 2 (b) summarizes of dynamical 
behaviour of the proposed system (1) with variation of parameter.

Table 2 (b) 
Different dynamics of the system (1) with variation of parameter

Range of parameter Behaviour Range of parameter Behaviour
20 < r ≤ 31.6 Chaotic 77.2 ≤ r ≤ 77.6 Chaotic
31.7 < r < 34.8 Chaotic; but some periodic window 77.7 ≤ r ≤ 79.6 Periodic
34.9 ≤ r ≤ 77.2 Hyperchaotic 80 ≤ r ≤ 90 Different behaviour

4.4.3	 Fix Parameters r = 45.6, d = 33, b = 10, c = 11, p – 4 and Vary Parameter a
Fig. 6 (a, b) shows the LS of the dynamic (1) with variation of parameter. It is observed from Fig. 6 that 
the system produces different behaviours. Table 2 (c) shows the summary of dynamical behaviour of the 
proposed system (1).

Table 2 (c)  
Dynamical behaviour of the proposed system (1) with variation of parameter

Range of parameter Behaviour Range of parameter Behaviour
0 < a < 0.2 Chaotic 6 < a < 15 Chaos with some periodic window
0.23 < a < 0.8 Periodic 15 < a < 25 Periodic
0.9 < a < 6 Hyperchaotic

4.4.4	 Fix Parameters r = 45.6, d= 33, a = 4, c = 11, p = – 4 and Vary Parameter b
Fig. 7 (a, b) shows the LS of the proposed system (1) with variation of parameter. It is observed from Fig. 7 
that the system produces periodic orbits, and chaotic orbits, and hyperchaotic behaviour. Table 2 (d) shows 
the summary of performance of the system (1) with varying parameter.
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Table 2 (d) 
Dynamical performance of the system (1) with variation of parameter

Range of parameter Behaviour Range of parameter Behaviour
0 < b < 0.2 Stable 5.05 < b < 5.6 Periodic
0.2 < b < 1.6 Periodic 5.6 < b < 13.5 Hyperchaotic
1.6 ≤ b < 5.05 Hyperchaotic 13.5 < b < 20 Periodic

4.4.5	 Fix Parameters r = 45.6, d = 33, a = 4, b = 10, p = – 4 and Vary Parameter c
Fig. 8 (a, b) shows the LS of the system (1) with variation of parameter c. Table 2(e) shows the summary 
of behaviour of the proposed system (1) with variation of parameter c.

Table 2 (e) 
Dynamical performance of the system (1) with variation of parameter

Range of parameter Behavior Range of parameter Behaviour
– 20 < c < –8 Periodic – 6 ≤ c ≤ 45.2 Hyperchaotic
– 8 ≤ c ≤ –7.7 Chaotic 45.3 ≤ c < 54 Chaotic with some periodic window
– 7.8 ≤ ≤ –7 Periodic 54 ≤ c < 60 Periodic
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5.	 CIRCUIT DESIGN OF THE PROPOSED SYSTEM
Circuit design for implementation of the system (1) is shown in Fig. 9 (a). Three multipliers, many 
resistors, capacitors, and seven amplifiers are used to design the circuit. Resistors, capacitors values are 
shown in circuit itself. Attractors are shown in Fig. 9 (b-c) which matches with the MATALB simulation 
results. 

Figure 9: (a) Circuit design; attractor of the system (1) (b) on x1–x3 plane, (c) on x2–x3 plane.

6.	 CONCLUSIONS
A new hyperchaotic system is proposed in this paper. Asymmetry and non-similar equilibrium points are the 
important properties of the proposed system. Non-uniform contraction and expansion of volume in phase 
space is also another important property of the system. The complex nature of the systems is highlighted 
using attractor and time series plot. Poincare map validates the asymmetrical hyperchaotic nature of the 
systems. Bandwidth of the system is shown using frequency spectrum. Lyapunov spectrum is used to 
highlight the parameter range for different behaviours (hyperchaotic, chaotic, periodic, stable nature). The 
proposed system may be used for secure communication. Circuit simulation results of the system validating 
the numerical simulation results are also presented. 
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