
* Assistant Professor Computer Science Toc H Institute of Science and Technology, Arakunnam, Ernakulam, India,
Email: panchamam036@gmail.com

** Professor CS/IT, Research Toc H Institute of Science and Technology, Arakunnam, Ernakulam, India, Email: vp.itcusat@gmail.com

*** Professor Information Technology Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu,
Email: awahi@rediffmail.com

**** MTech Scholar Computer Science TocH Institute of Science and Technology, Ernakulam, Kerala, Email: ebinraju@gmail.com

A Fast Color based Nonlinear 8 bit
Pseudo-Random Number Generator
Enabling Diffusionfor Lightweight
Cryptographic Applications
Panchami.V*, Varghese Paul**, Amithab Wahi*** and Ebin Raju****

Abstract: Pseudo-Random number generator (PRNG) plays an important role in cryptographic applications. In
lightweight cryptographic applications and devices have various constrains such as low battery power, memory. All
pseudo-random generators consumes battery power, memory and it even slowdowns the cryptographic devices. In
this paper we designed a fast and simple nonlinear Pseudo-Random number generator, PANCH for lightweight
cryptographic applications to enable diffusion. It can produce 28 unique 8 bit nonlinear numbers without overlapping
in one seed. The seed act as the key for the PANCH and it ranges from 0 to 232. Due to its nonlinearity the sequence
is not at all predictable. We have conducted 2 statistical tests Diehard battery test and Big Crush tests for uniqueness,
randomization and find no failures and have noticed that is much faster than other PRNG used in various cryptographic
applications and will resist from all known attacks. Our algorithm has wide range of applications such it is used to
generate substitution boxes in encryption algorithms in cryptography.

General Terms: Security, lightweight Cryptography, Encryption, Decryption, Pseudo-Random number generator

Keywords: Pseudo-Random number Generator(PRNG), Nonlinear functions, Cryptography, Diffusion, ARGB

1. INTRODUCTION

Pseudo-Random Number Generators(PRNGs) are one of the basicelement in cryptographic algorithms and
security protocols for generating the sequence of random numbers. Pseudorandom number generator which
is used for cryptography be implemented in hardware device or software for computing, for generating
asequence of numbers. The initial inputs of these generators are called seeds, since our application area is
cryptography these seeds help to produce same sequence of numbers. To implement PRNG, there are two
methods, using hardware device like shift registers, clocks, Logical gates, but there many constrains such
as space to store the random values and computational overheads are high in hardware implementations. In
software implementation the memory space is not at all a problem and for reducing computational overhead
the random generators can use binary operations such as XOR, AND, NOT, circular shift. Based on the
random number generation the pseudorandom number generator are of two types linear and nonlinear. In
linear based generators the distribution of random numbers should be in a linear or in uniform manner. But
in nonlinear the distribution of random numbers is in a nonlinear pattern. Next is dependent up on the
occurrence of random numbers there are two types,True random number generatorsand unique random
number. True random generators are those which produces the random numbers having collision, that

I J C T A, 8(5), 2015, pp. 1817-1822
© International Science Press

1818 Panchami V., Varghese Paul, Amithab Wahi and Ebin Raju

means the occurrence of random numbers are more one in the sequence. But in unique random number
generators there is no collision in random sequence, there is no duplicate values of a number. The true
random number generators are more secure than the unique random number generator, because the probability
of prediction is much higher in true random number generator.If we apply nonlinearity in unique random
number generators then it will the most efficient and secure generators in producing random numbers in
cryptographic applications.

Red, Green, Blue (RGB) Color concept is used in generating the random numbers. In RGB color space
each color is represented as 8-bit, here we add an extra bit for intensity too. So each color is represented as
32 bit. For each 8 bit color we produce a random number. Our algorithm is represented as ARGB color
model, which generates 4, 8 bit random numbers. Our PANCH algorithm can be applied not only to
cryptographic application but to generate unique 4, colors too.

We designed our algorithm for lightweight cryptographic devices, these devices have many constraints
like memory, speed, power consumption and battery consumption. For constrained devices, while
usingpseudo-random number generators and standardcryptographic algorithms consumes high battery
consumption and power consumption, the device become slow too.There are various research going on the
area of lightweightcryptography studies new algorithms to overcome these problems while designing it.

In this paper section 2 explain about theliterature survey of existing pseudo-random generators, section
3 explains the notations and theoretical background of the new pseudo-random number generator, section
3 deals with proposed system PANCH, in results, test and analysis is explained in section 4 and section 5
deals with conclusion and future work.

2. LITERATURE SURVEY

A good PRNG [1] can be designed and built following a few simple guide lines. The characteristics of good
PRNG are as follows: a) Since processing power is not limited to the extent as it was a few decades ago,
PRNG algorithms [3,4] must still be short and efficient. This will allow pseudo random numbers[3,4] to be
generated in only a few clock cycles to allow the processor to continue with the main calling function or
program[4]. b) Since PRNG’s are in the form of a mathematical function [5], it is noted that they will, at some
stage, begin to repeat themselves. It is this period of a PRNG that must be as long as possible [3,4]. c) There
are statistical tests in use that can test the possibility of randomness [1] [3] with high levels of accuracy. The
sequence produced from a PRNG should be checked against these tests, and pass them[1] [3]. d) By analyzing
the outputs of a PRNG [4], it should not be possible to predict the next number that will be generated [4]. e)
A random number sequence, in its binary representation [4], must have, on average, an equal amount of 1’s
and 0’s. Furthermore, there must be no noticeable patterns in the bit string.[1] [4]. f) A PRNG must be seeded
with a value [4], and given the same value, the same sequence of numbers must be produced.

The first reliable PRNG algorithm was proposed by D. H. Lehmer in 1949 [1], called the Linear
Congruential Generator (or Linear Congruential Method, LCM). This method has been one of the most
well known and widely used methods for generating random sequences. However, this method is not
without flaws. It is well know that the sequence generated forms a lattice structure in 3-space. One of the
most famous poor PRNG was IBM’s RANDU which did not have a full period and it had some extremely
non-random characteristics [7]. Knuth described it as “really horrible”. “It is well-known that all linear
congruential generators suffer from the inherent flaw that, in 3-space1 for example, the points (Z

i
, Z

i+1
, Z

i+2
),

(Z
i+1

, Z
i+2

, Z
i+3

), (Z
i
, Z

i+3
, Z

i+3
), all fall on a finite – and possibly small – number of parallel (hyper)planes.”

[5]. The LCM is of the form of a recursive method and is as follows: x
n
 +1 = (a* x

n
 + c) mod m, where m is

the modulus; a is the multiplier; c is the increment and X0 is the starting value, or seed. If a, c and m are
chosen correctly, it is possible for the generator to have a maximum period of length m [1].

A Fast Color based Nonlinear 8 bit Pseudo-Random Number Generator... 1819

A very popular shift register generator is the Mersenne Twister2 [1], developed in 1997 by Makota
Matsumoto and Takuji Nishimura from Keio University, this algorithm produces a sequence of 219937 – 1
numbers and has 623-dimensional equidistribution (compared to the 5-dimensional equidistribution of
LCM generators). This generator is not suitable for cryptographic applications due to the fact that is it
possible to analyze the out and recognize the numbers as being non-random. The developers of this algorithm
do however advise that a secure hashing function be used with the output or a simple linear transformation
to help get around this issue. It is, however, a very good PRNG for other applications such as Monte Carlo
simulations. This PRNG is fast becoming the PRNG of choice for such application. [6] As stated earlier, all
numbers produced by a PRNG are dependent on previous numbers produced, hence the fact that they are
deterministic. The LCM and similar type PRNGs(attempt to) hide this shortfall by using the mod operator.
If one obtained a number from a random sequence and also knew the inner workings of one of these
generators, it would still be almost impossible to calculate previous numbers in the sequence. This is
because the mod operator disregards some of the seeding value. Example: Say we have a seed: xn = 1234,
a = 105, c = 0, and m = 106. By using the LCM method: x

n
 + 1 = (a* x

n
+

c) mod m, we are left with a result

of 400 000. As one can see, we are left with a result that has “lost” some of its data. There are of course
brute force methods to recover the seed [10], but with a good choice of seed, a, c and m values, this task can
be made tedious.

3. NOTATION AND THEORY

Let F
2
 = GF(2) be the finite field with two elements {0, 1}. In PANCH we use the field operations are

“exclusive or” as �, “AND” as �, “NOT” as ��and “circular shift” as <<. In binary field {0, 1}, 0 is treated
as false value and 1 is treated as true value like “ON” and “OFF” states.

Theorem In order that a nonsingular n � n binary matrix T produce all possible non-null 1 � n binary
vectors in the Sequence �, �T, �T2,for every non-null initial 1 � n binary vector �, it is necessary and
sufficient that, in the group of nonsingular n � n binary matrices, the order of T is 2n – 1.

Proof: First, the necessity: If the period of �, �T, �T2, . . . is k = 2n – 1 then for �Tk = ��every 1 � n binary
vector �, so the null space of the matrix Tk + I is the whole space, and thus Tk + I must be the zero matrix,
that is, Tk = I. If Tj = I for some j < k, then the period of �, �T, �T2, . . . would be less than 2n – 1. Then the
sufficiency: If the order of T is k = 2n – 1, then the matrices T, T2, T3 ... Tk are nonsingular and distinct, and
through the characteristic polynomial of T and Euclid’s algorithm, each of them can be represented as a
polynomial in T of degree < n. Since there are k = 2n – 1 non-null polynomials in T of degree < n, they must
be, in some order, the distinct nonsingular matrices T, T2, T3 ... Tk. In particular, if a polynomial in T is a
singular matrix, then it must reduce, through T’s characteristic polynomial, to the zero matrix. It follows
that the period of �, �T, �T2 must k = 2n – 1, because �Tj = ��for some non-null _ and j < k, would mean that
Tk + I is singular.

Proposition 3.1 Let x
0
, x

1
, x

2
, be a list of 2t-bit values, t < n, such that every value appears 2nt times,

except for 0, which appears 2n......t times, except for 0, which appears 2n......t 1 times. Then, for every fixed bit
k the associated sequence has period 2n – 1.

Proof. Suppose that there is k a and a p | 2n 1 such that the k th bit of x
0
, x

1
, x

2
, has period p (that is,

the sequence of bits associated with the k-th bit is made by (2n1)/p repetitions of the same sequence of p
bits). The k-th bit runsthrough 2n......t 1 zeroes and 2n.....1 ones (as there is a missing zero in the output sequence).
This means that, (2n1)/p | 2n.....1, too, as the same number of ones must appear in every repeating subsequence,
and since (2n1)/p is odd this implies p = 2n – 1.

Corollary 3.1 Every bit of the output of PANCH generator has full period.

1820 Panchami V., Varghese Paul, Amithab Wahi and Ebin Raju

4. PANCH

In this section we present PANCH produces 28 unique 8 bit random numbers with one seed. The input of
PANCH is the seeds which ranges from 0 to 28. So with four different seeds PANCH produces four, 8 bit
sequence of 28 unique random numbers. Since PANCH is applicable for cryptographic applications, the
basic building block of our algorithm are binarys operation such as XOR, AND, NOT and circular shift
operations. These operations gives fastness to PANCH.

4.1. PANCH Initialization

PANCH is have 4 inputs, these inputs act as seeds SEED
A
, SEED

R
, SEED

G
, SEED

B.
The range of these

seeds varies from 0 to 232 bits. Then we apply a mod function to these four seeds to get the first four random
numbers A, R, G, B which are of 8 bit. These 4 numbers A, R, G, B act as the initialization value of PANCH.

Algorithm 4.1 INTIALIZATION (SEED
A
, SEED

R
, SEED

G
, SEED

B
)

a � SEED
A
mod 28

r � SEED
R
mod 28

g � SEED
G
mod 28

b � SEED
B
mod 28

RETURN (a, r, g, b)

4.2. PANCH Algorithm

PANCH is designed for producing four unique random numbers of 8 bit numbers with four seeds SEED
A
,

SEED
R
,SEED

G
,SEED

B
. After initialization process PANCH produces the first four random numbers a, r, g,

b. These four numbers will be the input to the PANCH_ROUND_FUCTION, for the next 64 Rounds. In
our algorithm PANCH uses four functions to get random numbers with the binary operations AND, NOT,
XOR and left circular shift. These binary operations is very simple, fast and efficient, by using these operations
in PANCH ensures simplicity, fastness and efficency. PANCH is designed to use in cryptographic applications,
mainly in lightweight devices.

Algorithm 4.2 PANCH_ROUND_FUNCTION

FOR i � 2 TO 64 DO

RAND_COLOR (a, r, g, b)

a ��[(a � r) � (r � g) � (a � c)] + a << 8

r � r < 16 ��g

g � g << 4 ��d

b ��[(r � g) � (�g � b)] + r << 6

RETURN (a, r, g, b)

5. RESULT OF PANCH GENERATOR

5.1. Results of Diehard Battery Test and Big Crush Test on PANCH

The diehard tests are a battery of statistical tests for measuring the quality of a random number generator.
They were developed by George Marsaglia over several years and first published in 1995 [11].PANCH
generators have no systematic failure on both statistical tests,but only about half of the reverse generators

A Fast Color based Nonlinear 8 bit Pseudo-Random Number Generator... 1821

have no systematic failure. Moreover, thedistribution of standard generators degrades smoothly. The Table.1
shows the results of diehard test on PANCH and found no systematic failures. And the Table.2 shows the
results of Big Crush test on PANCH and it also found no systematic failures.These generators were few
enough so that we could apply both Crush and Dieharder. We have noticed that in Figure. 1 we compare
instead the two scores (Crush and Dieharder) available. The mostremarkable feature is there are no points
in the upper left corner: there is no generator thatis considered good by Crush but not by Dieharder. On the
contrary [11], Crush heavily penalizes [2](in particular because of the score on the reverse generator) a
large number of generators.The generators we will select in the end all belong to the small cloud in the
lower left corner,where the two test suite agree.

Table 1
Results of Diehard on PANCH

 Failures
Algorithm S R + W

(21, 17, 2, 243) 67 56 123 281

(155,32, 227, 181) 77 54 131 59

(110, 231,170, 60) 66 66 132 65

(217, 86,105,79) 60 75 135 89

(181,163, 4, 211) 63 74 137 155

(127, 112, 243, 59) 74 69 143 233

(204, 253, 164, 100) 86 58 144 79

(138, 27, 65, 155) 82 62 144 99

(78, 34, 145, 93) 78 69 148 275

(37, 213, 209, 196) 85 64 148 363

(71, 107, 74, 160) 65 86 152 69

(232, 39,242, 48) 84 69 154 265

88 65 157 81

77 81 160 167

82 80 162 77

85 78 163 255

92 75 167 111

Table 2
Results of Big Crush on PANCH

 Failures
Algorithm S R + W

(21, 17, 2, 243) 34 35 69 45

(155,32, 227, 181) 36 35 71 187

(110, 231,170, 60) 35 37 72 441

(217, 86,105,79) 34 39 73 103

(181,163, 4, 211) 40 34 74 567

(127, 112, 243, 59) 41 33 74 195

(204, 253, 164, 100) 39 35 77 291

43 34 79 241

42 37 80 177

38 43 81 49

1822 Panchami V., Varghese Paul, Amithab Wahi and Ebin Raju

6. CONCLUSION AND FUTURE WORK

A nonlinear Pseudo-random generator PANCH is proposed and tested on the basic we conclude that the
generator is an excellent choice for a lightweight devices in cryptographic and non cryptographic applications.
Our PANCH is based on recursion and have four seeds.The two statistical tests shows best results (in
BigCrush and in Diehard), and its period is so large and the probability of overlap-ping sequences is practically
zero. Nonetheless, thestate space is reasonably small, so that seeding it with high-quality bits is not too
expensive,and recovery from states with a large number of zeroes happens quickly. PANCH is designed
with basic logical functions such as XOR, AND, NOT etc. So it is lightweight in nature too. The generator
isalso blazingly fast (it is actually the fastest generator we tested). In PANCH we produces 64, unique
random numbers with one seed, thus with 3 seeds we produced such 64 random numbers. In future anyone
can extend this work to 255 unique, 8 bit random number with one seed which length varies from 0 to 255.

References
[1] Andrew Cronwright, “Literature Review: Pseudo Random Number Generation and Random Event Validation through

Graphical Analysis”602c2954.

[2] Leonard Marsaglia, George, 1995, The Marsaglia Random Number CDROM, with The Diehard Battery of Tests of
Randomness, produced at Florida State University under a grant from The National Science Foundation.

[3] Jansson, B., Random Number Generators, 1966.

[4] Atreya, M., RSA Security article: Intoduction to Cryptography (part 4): Pseudo Random Number Generators, November 2000

[5] Park, S. K., Miller, K. W., Random Number Generators: Good Ones Are Hard to Find, Communications of the ACM,
October 1988, Volume 31, Number 10.

[6] Matsumoto M., Nishimura T., Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number
Generator, January 1998, Keio Universit, ACM Transactions on Modelling and Computer Simulation, Volume 8, Number
1, Pages 3-30.

[7] Entacher, K., Linear Congruential Generator: LCG, Online: http://crypto.mat.sbg.ac.at/results/karl/server/node3.html, June
2000.

[8] Entacher, K., Bad Subsequences of Well_known Linear Congruential Pseudorandom Number Generators, January 1998,
University of Salzburg, ACM Transactions on Modelling and Computer Simulation, Volume 8, Number 1, Pages 61-70.

[9] Kelsey, J., Schneier, B., Ferguson, N., Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic Pseudorandom
Number Generator, Sixth Annual Workshop on Selected Areas in Cryptography, Springer Verlag, August 1999.

[10] Ferguson, N., Schneier, B., Practical Cryptography, 2003, pages 155-184.

[11] SebastianoVigna, “An experimental exploration of Marsaglia’sxorshift generators, scrambled”.

Figure 1: Comparison of Diehard test and Big Crush Test

