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Abstract: In this Paper, active stabilization of stall instabilities in axial flow 
compressors is pursued using a combination of bifurcation analysis and nonlinear 
control. A low order discretization of a PDE compressor modep is found to exhibit 
a stationary (pitchfork) bifurcation at the inception of stall. Using throttle opening 
as a control, analysis of the linearized System at stall shows that the critical mode 
(zero eigenvalue) is unaffected by linear feedback. Hence, nonlinear stabilization 
techniques are necessary. A nonlinear (quadratic) feedback control of the first 
mode amplitude is proposed based on the lower-order model and is found to 
eliminate or reduce the hysteresis for both the low order and high order 
discretizations. This improves the nonlinear stability of the compression system 
near the stall limit. Furthermore, the issue of designing non smooth feedback 
control laws is addressed. the merits of employing no smooth feedback are 
illustrated by bifurcation analysis of both the low order and high order and high 
order discretizations. A possible mechanism for the no smooth feedback is 
suggested. 

Keywords: Hopf bifurcation, Galerkin's method, Moore Greitzer model, 
Bifurcation phenomena 

1. INTRODUCTION 

Recent Years have witnessed an increasing interest in axial flow compressor dy 
namics , both in terms of analysis of stall phenomena and their control. This interest 
is due to the increased performance that is potentially achievable in modern gas 
turbine jet engines by operation near the maximum pressure rise. The increased 
performance comes at the price of a significantly reduced stability margin, since the 
steady, spatially uniform gas flow loses stability when the system is operated near 
peak pressure-rise conditions. The resulting post-instability behavior leads to 
decreased operation performance of the compressor and to mechanical damage of 
the compression system. 
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In general there are two fundamentally different post-instability behaviours: 
surging flow and rotating stall compressor surge occurs when the plenum gas 
pressure exceeds the compressor pressure rise and so low frequency (in time) 
oscillations of the mean gas flow rate develop. Rotating stall is a local aerody namic 
phenomenon that occurs when the gas passing through the rotor disen gages from 
the blade surface, reducing the local gas flow rate. In this case, the bulk gas flow 
remains constant in time, but flow measurements taken along the circumferential 
coordinate (0 of Fig. 6.1) of the compressor rotor will reveal spatial variations of 
the local gas flow. This means the local gas velocity takes the form of a traveling 
wave, rotating about the compressor annulus.  

Greitzer developed a nondimensional fourth-order compression system model 
and introduced a nondimensional parameter, B, which he found to be a determinant 
of the nature of post-instability behavior. A global bifurcation of periodic solutions 
and other bifurcations were found for this mode, and were used to explain the 
observed dependence of the dynamical behavior on the B parameter. Moore and 
Geritzer introduced a refined model to describe stall phenomena in axial flow 
compression systems. This model accounts for nonaxisymmetric flow patterns, 
whereas the model of Greitzer had no means of explicitly describing spatial effects. 

Our work begins with a modification to the 2-dimensional partial differential 
equation model of moore and Geritzer to include viscous dissipative forces is the 
unsteady performance of a compressor blade row. The resulting compression 
system model, while somewhat more complicated that the original Moore-Greitzer 
model, is still amenable to formal local stability and bifurcation analysis. Detailed 
studies about the transition from steady, spatially-uniform flow to nonuniform and 
time-dependent gas axial velocity profiles in this modified model are presented. It 
is found that the first stalled-flow solution is born through a subcritical bifurcation, 
meaning the bifurcating solution is born unstable. The practical importance of the 
subcritical stall bifurcation, however, is that when the uniform-flow operating point 
is subject to perturbations, the system will jump to large amplitude, fully developed 
stall call. Subcritical bifurcations also imply hysteresis, and so returning the throttle 
to its original position may not bring the system out of stall. 

Several techniques have been proposed for active control of stall instabilities in 
axial flow compressors. From an analytical point of view, these methods employ 
linear control for avoiding or delaying the occurrence of stall. Of course the physical 
mechanisms of a proposed control implementation differ among the proposed active 
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control schemes. The present work and that of however, begin with the recognition 
of the importance of local bifurcations as determinants of the nature of post-
instability behavior of axial flow compression systems. In a nonlinear state 
feedback law was proposed for the Moore and Greitze model simplified to three 
ordinary differential equations with a low-order Galerkin discretization. The control 
philosophy of this work and that is similar to that of abed and fu. This entails 
determining feedback control laws which ensure the stationary bifurcation result is 
only stable bifurcated solutions. Thus, even though the nominal equilibrium is not 
stabilizable within the framework of linear theory, it may be possible to stabilize a 
neighborhood of the nominal solution for a range of parameter values including the 
stall value of the throuttle opening parameter, to finite amplitude perturbations. The 
control law is designed analytically based on the low-order discretization and is 
applied to both the low-order and high-order spectral discretizations of the full 
system Bifurcation analysis of a high-order discretization is used to assess the 
effectiveness of the controller. 

In addition to the smooth feedback control design, it is found that some 
nonsmooth feedback controllers render surprisingly superior performance over 
smooth feedback designs. The merits of the nonsmooth feedback controllers are 
judged by difurcation studies though theoretically bifurcation analysis of 
nonsmooth systems is still a largely open area; the results revealed in this study 
appear to point out a new avenue in terms of control of bifurcating systems and 
critical system stabilization. 

The chapter proceeds as follows. In Section 6.2, Modification of the moore 
Geritzer model is presented. In Section 6.3 analytical computations useful in the 
analysis of stationary bifurcations are reviewed. These results are applied to study 
the stability of a low order discretization of the axial flow compressing system in 
the vicinity of the stall point. The low order model is obtained by  

Figure 6.1: A schematic of the compressor geometry 
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applying Galerkin's method to the full PDE model. A Pitchfork-type stationary 
bifurcation is observed in the model at the stall point. In Section 6.4, a throttle 
opening control law is given. This nonlinear control law circumvents the 
uncontrollability of the zero eigenvalue of the linearized model at stall. A purely 
quadratic state feedback using measurement of the asymmetric flow disturbance 
amplitude is given, and found to result in local stabilization of the bifurcation 
leading to stall not only in the low order model, but also in high-order discretizations 
of the compression system model. In Section 6.5, the use of nonsmooth feedback is 
discussed. 

an, bn, An mode amplitude coefficients 

Nomenclature 

B Plenum/compressor volume 

c wave speed 

f axisymmetric compressor characteristic 

fo  Shut- off head 

F throttle characteristic 

H Pressure rise scaling factor 

k controller gain 

le overall compressor length 

m exit duct length factor 

n mode number 

u control input 

v axial velocity perturbation 

vo perturbation at T| = 0 

V mean axial velocity 

Vioc total local axial velocity 

w mean velocity scaling factor 

a internal compressor lag 

Y throuttle opening 

Yo nominal throttle opening 

�p plenum-atmosphere pressure rise 
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n axial coordinate 

� circumferential coordinate 

�n n th eigenvalue 

� viscosity 

T time 

2. MODIFICATION OF THE MOORE-GREITZER MODEL 

The model is based on Moore and Greitzer's model, but a term which accounts for 
momentum transfer in the compressor section by viscous transport is also included. 
A local momentum b alance describing the two-dimensional flow in the compressor 
and its associated ducting gives the partial differential equation: 

 
2

0 0 0
2

1
2

2

o

p
V V VdV

f V vo lc m vdn
dr r a r

 (6.1) 

Note the our notation differs considerably from the original notation of moore and 
Greitzer: V denotes the annulus-averaged (mean) gas axial velocity; v0 is the axial 

velocity perturbation evaluated at x = 0 (the inlet face of the compressor); �p is the 

plenum-to- atmosphere pressure rise; x, � are the axial and angular coordinates, 

respectively; and � is the gas viscosity. 

The compressor pressure rise F(Vioc) is particular to each compressor and is 
obtained from experiments in the stable operating range and estimated in the non-
uniform-flow range. Following Moore and Greitzer (72) we use a cubic equation in 
axial velocity 

 ������� � �� � ��1 � �
����

�
� 1� � �

����

�
� 1��1�

�
�
� � (6.2) 

Where Voic =V+vo (the total local axial flow) and the characteristic parameters 
used throughout this work are given in Table 6.1, with le fixed at a representative 
value [72, 73]. If there are no spatial variations of gas density and pressure is the 
plenum, an overall material balance on the gas over the plenum gives: 

 ��
�∆�

��
�

�

���
����� � ����∆��� (6.3) 

Where the throttle characteristic is given by the orifice equation 

 ����∆�� � ��∆�.  (6.4) 

(
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The parameter / is proportional to the throttle opening. 

Parameter Value Description 

∝ 1/3.5 Internal Compressor lag. 

�� 8.0 Overall compress or length 

� 1.74 Exit duct length Feature 

� 0.18 Compressor characteristic height Featur 

� 0.25 Compressor characteristic Width factur. 

�� 0.3 Shut-off Head 

� 0.01 Fluid Viscosity 

Table 6.1: Values of Compressor Parameters 

3. STABILITY ANALYSIS 

In the section we first recall some bifurcation-theoretic result on stability of one-
parameter families of nonlinear systems. They then will be applied to study the 
dynamic behavior of axial flow compression systems. 

3.1 Bifurcation Formulae 

Consider a one-parameter family of nonlinear autonomous systems 

 
x� � �����,

  (6.5) 

with J����, ��= 0, where � � ��/ pis a real-valued parameter, J� is sufficiently 

smooth in x and �, and �e, � is the nominal equilibrium point of the system as a 
function of the parameter � Suppose the following Hypothesis holds: 

(S) The Jacobian matrix of system (6.5) at the equilibrium �e, � possesses a 
simple eigenvalue �(�) with �(0) = 0, , � (0)=/= 0, with the remaining eigen-values, 
X2(0), ..., ���0� lie in the open left-half complex plane for � within a neighborhood 

of �c = 0. 

Theorem 2.1 asserts that hypothesis (s) leads to a stationary bifurcation from 

��, � at � = 0 for Eq (6.5). That is, new equilibrium points bifurcate from Xe,o at � 
= 0. Recall that near the point (��, �, 0� of the (� +1)-dimensional (�, �)-space, 

there exists a parameter e and a locally unique curve of critical points (����, ����), 
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distinct from ��, � and passing throuth (Xe,o 0), such that for all sufficiently small 
[e], X(t) is an equilibrium point of (6.5) when �=�(t). 

The parameter t may be chosen so that x(e), � (t) are smooth. The series 
expansion of x(t), �(�) can be written as 

 ���� � �� ∈ ��� ∈� … (6.6) 

 ���� � ��,� � �� ∈ ��� ∈�� ⋯ (6.7) 

If �� � 0, the system undergoes a transcritical bifurcation from ��, l, at � = 0. 
That is, there is a second equilibrium point besides ��, � for both positive and 

negative values of ll with |lll small. If �� � 0 and �� = 0, the system undergoes a 
pitchfork bifurcation for |lll sufficiently small. That is, there are two new 
equilibrium points for either positive or negative values of ll with |�| small. The new 
equilibrium points have an eigenvalue /3 which vanishes at ll=0. The series 
expansion of /3 in E is given by 

 ���� � ��� � ���� � ⋯  (6.8) 

With 

 �� � � �� �′�0�,  (6.9) 

and, in case /31 = 0, {32 is given by 

 �� � � 2�� �′�0�,  (6.10) 

Thus, the system exhibits an exchange of stabilities at the bifurcation point 

 ��, ���� � � 0�. 

The stability coefficients �� and �� can be determined solely by eigenvector 
computations and the coefficients of the series expansion of the vector field. System 
(6.5) can be rewritten in the series form 

 ��� �  ���� �  �� ���, ��� � �����, ��� � ⋯ 

 = ���� � ��� �� � ������ � ⋯ 

+ �����, ��� �  ������, ��� � ⋯ 

 + �����, ��, ��� � ⋯ (6.11) 

Here, �� ∶� � � ��,�, ��,��, ��, �� are � � � matrices, ����, ��, ����, ��, 

 ����, �� are vector-valued quadratic forms generated by symmetric bilinear forms, 
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and ����, �, ��, ����, �, �� are vector-valued cubic forms generated by symmetric 

trilinear forms.  

By assumption, the Jacobian matrix �� ��� ���� one simple zero eigenvalue 
with the remaining eigenvalues stable. Denote by l and r and left (row) and right 
(column) eigenvectors of the matrix �� corresponding to the simple zero 
eigenvalue, respectively, where the first component of r is set to l and the left 
eigenvectr � is chosen such that �� � 1. It is easy to check [51, 65] that 

 ���0� � ���� (6.12) 

Stability criteria for system (6.11) can be summarized in the following two lemmas. 
For details, see [3]. 

Lemma 3.1 The bifurcated solutions of (6.11) for � near 0, which appear only for 

� � 0�����. � � 0� when ���� � 0 ����� � ���� � 0�, are asymptotically  

Stable if �� � 0 ��� �� � 0, and are unstable if �� � 0 ��� �� � 0. ����, 

 �� �  1����, ��  (6.13) 

and  �� � 2� �2����, ��� � ����, �, ��� (6.14) 

With �� satisfying the following equation: 

 ���� � �����, ��. (6.15) 

Lemma 3.2 Suppose the value of �� given in (6.13) above is negative.Then the 
bifurcated solution occurring for � > 0 (resp. � < 0) is asymptotically stable when 

���� � 0�����. ���� � 0�. 

The criterion given in Lemma 3.1 corresponds to the pitchfork (stationary) 
bifurcation, while the one in Lemma 3.2 is for the transcritical (stationary) 
bifurcation. Examples of these bifurcation diagrams can be found in many books 
on bifurcation theory. 

3.2 Stability Analysis of Rotating Stall 

The rotating stall equilibria born at the stall birurcation point are spatial waves of 
local axial velocity, rotating at a constant speed around the annulus. Rather than 
computing these traveling wave solution as limit cycles in the Fourier coefficient 
space, a more efficient method is to introduce a fotating coordinate frame � → � �
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�� so that amplitude coefficients of the traveling waves can be bound as fixed 
points. Making this coordinate change affects the PDE (6.1) only: 

∆�� �� � ��� � ��

��

��
� � � ��

��

��
�

��

��
� ��

�

��

 

 �
�
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�2�
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��
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���

��
�
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��
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����

��� �  (6.16) 

Near the bifurcation point , the amplitude of the bifurcating mode will dominate 
the shape of the stall cell. Thus, in the neighborhood of the bifurcation point we can 
approximate u by the eigenfunction associated with the critical eigenvalue  

��  

 � � exp���� ��� cos���� � ����������  (6.17) 

(and so �� � �� cos� ��� � �� sin�����, substitute (6.17) into (6.16) to form 
the residual, use Galerkin's method to determine the amplitude coefficients, and 
constrain the Fourier coefficients by the relationship 

 ��
� � ��

� � ��
�,  (6.18) 

we obtain the greatly simplified, third-roder set of ODEs (c.f.eqns of Moore and 
Greitzer (1986) 
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 ��
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���
�3� � �� �
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���
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� ,  (6.20) 

 ��
�∆�

��
�

�

��� �� �⋎ �∆�
 (6.21) 

Our control design will be carried out based on the stability analysis of system 
(6.19)-(6.12) for the case n = 1 (the first harmonic of the flow disturbance). The 
controller, however, will be applied to a high-order discretization in the ensuing 
numerical analysis. To solve for an equilibrium point of (6.19)-(6.21), it is easy to 

see that �� � 0 �� always a solution of 
��

��
=0 for the right hand side of Eq. (6.19). 

However, �� � 0 may not be the necessary condition for the existence of 

equilibrium point for (6.19)-(6.21). Denote �� � �0, ��, Δ�
��T as an equilibrium point 

for (6.19)-(6-21) at ⋎�⋎�, ��  and Δ�
� should then satisfy the relationships �� �⋎
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�Δ�� ��� Δ�
� � �����. Under the assumption �� � 0, �� denotes a uniform flow 

equiblbrium point for the axial flow compression model (6.19)-(6.21), which 

depends on the throttle control parameter ⋎�. In the following, we consider the 
stability conditions for the uniform flow equilibrium �� and treat ⋎ as a bifurcation 

parameter to seek possible bifurcating stalled-flow solutions emanating from �� such 
that �� � 0. 

Let X = ���, ��, ���� denote the state variation of the third order model above 

near the uniform flow equilibrium point ��, where ��,��, �� � � � ����� ��  �

∆� � ∆� �. The linearization of (6.19)-(6.21) at �� for ⋎�⋎� is  

 
��

��
� ���,  (6.22) 
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 (6.23) 

Form (6.23), the linearization of (6.19)-6.21) has one zero eigenvalue 

when
����

���
�2� � ��� �  

�

��
. This implies a stationary bifurcation may occur from the 

equilibrium point �� for some value of ⋎ �. The bifurcation calculations of the 
preceding subsection will now be applied to derive the conditions for existence and 
stability of such a bifurcation. 

Let �� be the equilibrium point at which 
����

���
�2� � �� � �

�

��
��� � � ��. Taking 

the Taylor series expansion of (6.19)-(6.21) at the point (��, ��), we have  
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��
�  ��� � ����, �� � ����, �, �� � �� � ������ � ⋯ (6.24) 

where �� �� as in (6.23) and 
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 (6.25) 
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Choose � � �1,0,0���� � � �� �� The left and right eigenvectors 
corresponding to the zero eigenvalue of ��. The dynamical behavior of (6.19)-6.21_ 

with respect to variation of � near the unstalled point �� is obtained as folows. The 
transversality condition ���� � 0 is obtained as 

 ���� �  
�

����

��

��
�� � ���

���

��
� 0,  (6.28) 

and the bifurcation stability coefficients are calcuolated, using Eqs. (6.13) and 
(6.14), as 

 �� � 1����, �� � 0 (6.29) 

�� � 2��2����, ��� � ����, �, ��� 

 �
�

����
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���
�8�� � ���� � 1� (6.30) 

Where  
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Note that at � � �� 

 �  
����

��� � 2� � ��� �
�

��
 (6.33) 

The next result follows readily from Lemma 6.1 and the discussions above. 

Theorem 6.3 (Stability) Suppose the quantily ���� given in (6.28) is nonzero as is 

the stability coeffcient �� given in (6.30). Then system (6.19)-(6.21) exhibits a 
pitchfork-type stationary bifuracation withrespect to the small variation of � at the 

point (��, ���, where Eq.(6.33) holds. Moreover, if �� � 0 (resp. �� � 0� the local 
bifurcated solutions near �� will be asymptotically stable (resp. unstable). 

The uniform-flow equilibrium point becomes unstable after the parameter � 

crosses the critical value ��, the stall bifurcation point. Moreover, according to 
Theorem 6.3 the local bifurcated solutions, near the stall point, may not be stable. 
If such a condition occurs, the compression system will exhibit a jump from the 

stable nominal equilibrium when the parameter � crosses the critical value ��. Also 
the subcritical nature of the stall bifurcation along with secondary limit-point 
bifurcations leads to operating conditions featuring multistability: conditions where 
the locally stable uniform flow solution coexists with a locally stable fully 
developed stall cell. This results in a hysteresis loop of the stable equilibria with 

respect to the parameter � near the stall point. Practically this means that the system 
will jump from the uniform-flow operationg point to a fully developed stall cell 
under perturbations in the range of multistability.  

Solutions outside the range of validity of the local analysis. The results are 
shown in Fig. 6.2. In Fig. 6.2, a solid curve represents a locus of locally 
asymptotically stable equilibrium points, while dashed curves correspond to 
unstable branches. There are two pitchfork stationary bifurcations, one stable and 
the other unstable. The numerical analysis vividly demonstrates the large magnitude 
of the jump resulting from the hysteresis loop associated with the unstbale 
bifurcation point. It is not possible to observe the pitchfork bifurcation phenomena 
in Figs. 6.2 (b), 6.2 (c), and 6.2 (d) since the stalled  -flow solutions 

(��, �� , ∆��� Possess the symmetry ������ � ������� ��� ∆� ����� � ∆� ������. 
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Numerical bifurcation analysis was carried out to verify the predicted 
compression system behavior and to study the bifurcation behavior of the stalled-
flow 

Figure 6.2: Subcritical pitchfork stationary bifurcations in the open  
loop axial flow compression system 

4. STABILIZATION OF ROTATIONG STALL  
USING SMOOTH FEEDBACK 

In this section, we seek possible feedback control laws based on regulating the 
throttle setting which improve the operability near the stall point by eliminating the 
hysteresis loop and preventing the jump behavior associated with the unstable stall 

bifurcation. So � � �� � � is substituted into the plenum mass balance (6.3). This 
type of control appears to be simpler to implement than those techniques depending 
on directly affecting the flow field in the compress inlet duct. Moreover, successful 
experimental results have been reported. 

4.1 Low-Order Model 

Denote (��, ��) as the stall point and let �≔�� � �, where u is the control imput. We 
then can rewrite systerm (6.19)-(6.21) as a throttle control system given by  
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�� � ����

� ,  (6.35) 

 ��
�∆�

��
�

�

���
�� � ��� � ���∆��.  (6.36) 

We observed from (6.34) that �� � 0 is an invariant submanifold of (6.34)-
(6.36) is uncontrollable. Moreover, it is not difficult to check that system (6.34)-
(6.36) unaffected by the value of control input u, which implies that (6.34)-(6.36) 
possesses an uncontrollable zero eigenvalue at the stall point. This means that we 
can not extend the range � where the uniform-Flow solution is locally 
asymptotically stable with any type of state feedback in (6.34)-(6.36).  

Next, we consider the design of a control law which guarantees stability of the 
local bifurcated solutions near the stall point. From the property of the exchange of 
stability, the system will not jump from the stable uniform-flow equilibrium near 
the stall point, if the local bifurcated solutions are stable. In the following, for 
simplicity, we consider the control input u to be a purely nonlinear feedback of the 
state variations as given by  

 � � ����
� � ������ � ������ � ����

� � ������ � ����
� � ������, ��� (6.37) 

Where U is a high order function. Using formulae (6.13) and (6.14) to calculate 

the stability coefficients ��
∗ and ��

∗ for the controlled model (6.34)-(6.36) at ��, we 
obtain  

 ��
∗ � �� � 0 (6.38) 

 ��
∗ � �� � 4

�

����

��

��
�� � ���

��

�

�∆��

���

��

� 2�∆�� 

 � �� � ��� (6.39) 

Where �� and �� are the stability coefficients of the uncontrolled version of 
(6.34)-(6.36). It is observed from the expression of ��

∗ that only the quadratic 

feedback ����
� contributes to the determination of system stability. we have the 

following result 



ACTIVE CONTROL OF STALL IN AXIAL FLOW COMPRESSORS 305 

Theorem 6.4 Stabilization) The stationary bifurcation of (6.34)-(6.36) at the point 

(��, ��) can be guaranteed to be a supercritical pitchfork bifurcation by a purely 

quadratic feedback control if C�0. The feedback control is of the form � � ����
�. 

The numerical results for the controlled case are given in Fig. 6.3. By theorem 
6.4, we find that purely quadratic feedback control laws will stabilize bifurcation-  

Figure 6.3: Supercritical pitchfork bifurcations in the  
closed-loop axial flow compression system 

cated equilibrium solutions. The control input is given by 

 � � ����
� (6.40) 

with ��=0.5. It is not difficult to see that the hysteresis loops of the stable system 
equilibria shown in Fig. 6.2 no longer exist in Fig. 6.3. 

4.2 High-Order Models 

We have designed the control law based on a highly truncated discretization of the 
flow field perturbation. To test the controller in a more realistic manner, the gas 
axial velocity perturbation u is approximated by 
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 � � ∑ exp���� ��� cos���� � �� ������
��� ����  (6.41) 

and, as before, the axial velocity profile at the inlet guide vanes is denoted 
��� �� � � 0�. Substituting the Fourier expansion into the local momentum balance 
PDE and using Galerkin's method to determine the amplitude coefficients, we 
obtain  

 �
�

�
�

�

�
� �� � �

�

�
 � � cos ���

��

�
� �� �

���

��
�� �

�

��
 �� (6.42) 

 �
�

�
�

�

�
� ��

� �
�

�
 � � ��� ���

��

�
� �� �

���

��
�� �

�

��
 �� (6.43) 

Along with the ODEs 

 ��
��

��
� �∆� �

�

��
� � �� 

��

�
 (6.44) 

 ��
��

��
�

�

���
����� � ����∆��� (6.45) 

The only nonlinearities in the ODEs above are the throttle and compressor 
performance characteristics. One of the advantages of using the cubic compressor 
characteristic is that the integrals can be evaluated explicitly. These results are 
discussed in detail by Adomaitis and are given in Appendix 6.A. Thus, we obtain a 
large set of ordinary differential equations in time describing the dynamics of the 
Fourier mode amplitude coefficients. 

Figure 6.4: Bifurcation diagram of open loop high-order system  
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Denoting �� as the nominal stall point of the throttle opening parameter and 

letting �≔ �� � �, where � is the control input, we consider feedback of only the 
amplitude of the first Fourier mode of the flow disturbance in the controller: 

 � � ����
� � ��

��.  (6.46) 

Using the same numerical bifurcation analysis techniques discussed in the 
previous section and extensive simulation studies, we find controller (6.46) is 
effective in eliminating the hysteresis loop in the vicinity of stall point for high-
order discretizations (large N in (6.41)). Thus the occurrences of jump behavior of 
the stable system equilibria are prevented. 

For the result reported in this work, we take N=2. See [14] for representative 
results on N=6. Figure 6.4 is a bifurcation diagram of the open-loop system. Note 
that the stall bifurcation is a subcritical Hopf bifurcation. The bifurcated solution 
becomes stable through a cyclic fold bifurcation, resulting a hysteresis loop near the 
stall point. Since the Hopf bifurcation is linearly uncontrollable, results, from 
section 3.3.2, especially Theorem 3.2 show that only quadratic terms in the 
feedback control can influence the value of stability coefficient ��. Thus control 
function (6.46), is a logical choice. 

To see the effect of the nonlinear controller (6.46), bifurcation analysis of the 
high-order discretization under control is carried out. In Fig.6.5 a bifurcation 

Figure 6.5: Bifurcation diagram of closed-loop high-order system (k=2.5) 
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Figure 6.6: Bifurcation diagram of closed-loop high-order system (k=5.0) 

Diagram of the closed-loop system with k=2.5 is shown. Locally the stall 
bifurcation is now a supercritical Hopf bifurcation. However, the bifurcating stalled 
flow solution becomes unstable giving rise to a hysteresis loop. Even with increased 
controller gain (fig. 6.6 k=5), the hysteresis loop still persists (not discernible from 
Fig. 6.6, but can be seen if the region near the stall point is magnified) but with a 
reduced range in parameter space. While hysteresis is not completely eliminated in 
this case, the stability of the system to finite sized perturbation in the axial velocity 
profile is still improved and the range of the hysteresis is also reduced under this 
control. 

5. STABILIZATION OF ROTATING STALL USING  
NON-SMOOTH FEEDBACK 

As shown in the last section, the hysteresis can not be completely eliminated by the 
controller (6.46) with even a rather large gain. So far in this dissertation, we have 
only considered smooth feedback, Our theory results in a quadratic controller. The 

topological characteristic of the controller of the form � � ��� is (See Fig. 6.7) 

� Symmetric in � 

� Monotone in | � |. 
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Based on this observation, we conjecture that any controller having these two 
properties at least locally around �=0 would locally stabilize the stall bifurcation.  

Figure 6.7: Qualitative characteristic of control functions 

5.1 Low-Order Model  

The conjecture above is supported by the bifurcation analysis of low-order system 
under the following nonsmooth feedback control:  

 � � �|��| (6.47) 

and 

 � � ��|��| (6.48) 

Figure 6.8 illustrates the effect of such nonsmooth controllers. It can be clearly 
seen that the use of such nonsmooth controllers has significant advantages. With 
less control energy, the nonsmooth controllers effectively eliminate the hysteresis 
loop. More significantly, the pressure rise can be kept at a high level beyond the 
stall point. 

We remark that the two controllers above are just a subset of a family of 
controllers that will show such advantages over the smooth feedback design. For 
example any controller of the form belongs to such a family. Next we consider the 
use of nonsmooth feedback in the high-order discretization models. 

 � � �|��|��/�� �� � ��  (6.49) 
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Figure 6.8: Bifurcation diagrams in low-order model:  
smooth vs. nonsmooth feedback (k=1.0) 

5.2 High-Order Models 

Two representative controllers are applied to the high-order model: 

 � � ����
� � ��

� (6.50) 

and 

 � � ����
� � ��

��
�

� (6.51) 

Figure 6.9 the illustrates the effect of the two controllers above vs. the open-
loop case and that of smooth feedback. The nonsmooth controllers can completely 
eliminate the hysteresis loop with less control energy than smooth feedback. Also 
the pressure rise is kept at a high level beyond the stall point.  

This brings up the natural question, presently under investigation, of the 
bifurcation mechanisms associated with nons-mooth systems. General theory no 
bifurcation of non-smooth systems is in general an open area. Some case studies 
[76] exist in the literature. In terms of controllers (6.48) and (6.51) etc., The 
common feature is that the derivatives of the control function at the origin are 
infinity (see Fig. 6.7 and 6.10). This indicates "infinite local stabilizing power." In 
this regard, there is a strong resemblance to the terminal attractor theory. In the case 
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of controllers (6.47) and (6.50), though the local stabilizing power is not infinite, it 
is still larger than those of controllers (6.40) and (6.46). The use of non-smooth 
feedback in bifurcation control theory or even the general control theory is a worthy 
new avenue. 

Figure 6.9: Bifurcation diagrams in high-order model (N=2):  
smooth vs. nonsmooth feedback (k=2.5) 

Figure 6.10: Plot of f(x,y)=(�� � ���
�

� 

Controllers such as (6.46), (6.47), (6.50) have been successful implemented in 
experiments.  
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6. CONCLUDING REMARKS 

Investigated the design of stabilizing feedback control laws for rotating stall in axial 
flow gas compressors. The proposed approach begins with recognizing the 
importance of local bifurcations in determining the nature of post-instability 
behavior of axial flow compression systems. The controllers are (analytically) 
designed based on a highly-truncated discretization of a compressor model, and 
then are applied to borty the low-order model and high-order discretizations. 
Although the results are obtained using a particular dynamical model, the 
bifurcation based control approach appears to be a viable technique for control of 
these systems. 
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