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Abstract : Word prediction refers to predict the most probable next word which is intended to be typed
afterward. So, it enables the user to compose a word without completely typing all the characters of it. Hence
it is facilitated to save the number of required keystrokes. However, development of an efficient word prediction
system is very much obstructed due to the data sparsity in training data. The paper will be going to address the
negative effect of the data sparsity on word prediction. The performance of traditional statistical word prediction
techniques like unigram bigram, n-gram etc., are bounded due the to data sparseness. That can be resolved by
any advance data cleaning techniques like smoothing, filtering etc. Here in this paper we use collaborative
filtering technique to address the issue of data sparsity and enhance word prediction quality. The proposed
approach is established through critically evaluated with the different considered metrics like percentage of
key strokes required to predict the intended word, percentage of key strokes save by using the prediction
engine, and percentage of accuracy of our word prediction model. The empirical evaluation has been proven
that the proposed approach is superior than the traditional statistical word prediction technique.
Keywords : Word  Prediction, Data Sparseness, Smoothing, Collaborative filtering, Pearson correlation
coefficient.
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1. INTRODUCTION

Word prediction mechanism is one of the foremost text entry rate enhancement strategy which is implemented
through predicting most the probable next word which a user is going to be typed. During the typing, the prediction
system monitors each input or typed character one by one and a list of most probable words based on the
previously typed sequence is created. The list of the probable words is updated whenever a character is added or
removed from the typed sequence. When the list shows the required intended word, it is selected and inserted into
the text which is under composition. Some of the advantages of any generic word prediction system are listed in the
following section.

1. Improvement of text entry rate : The word prediction system eliminates the need to type a complete
textual chunk and thus improving or enhancing the text entry rate.

2. Reducing effort : The word prediction system saves the keystrokes required to compose a complete
text, as it predicts the whole word after typing a few characters and thus the effort requires for typing is
reduced.

3. Spell checking : The word prediction system is identified the intended word after typing first few characters
of that word. It can predict the correct one, even if there may also be some misspelled characters in the
typed sequence. So, it helps to write the correct spelling of the entire word.
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The advantage of the word prediction system is not only restricted on the previously pointed list. It is also
advantageous for the persons with language impairments and physical disabilities. This can be done by improving
the quality of the message composition by providing orthographic and grammatical cues for effective word prediction.

By exploiting the current sentence context using the statistical techniques, a prediction system can provide
more appropriate word choices to the user. The statistical information employed in any traditional word prediction
system is mostly n-gram language models [1]. The n-gram word prediction model can be used to calculate the
word frequency from the text corpus in unigram, bigram and trigram approaches in order to suggest the most
probable next word. It also to be noted that in the case of unigram word prediction system, words are predicted
by matching with the prefix of the current word entered so far only [2]. On the contraction bigram and trigram
word prediction systems are taken consideration of one and two previous words along with the word prefix
entered so far respectively [2]. It is also reported that trigram model gives better result in comparison of unigram
and bigram [3].

However, the trigram model generally required massive amount of text corpus in compare with the unigram
and bigram model [4]. As a consequence it slows down the prediction process due to searching the useful clues
from the larger data set. Moreover, it is also quite possible that many of the trigram sequences may never occur
even with the excessive amount of training data set [5], [6]. Here, in this research work we address this issue by
using the popular recommender algorithm, collaborative filtering technique [7]. The collaborative filtering
algorithm is implemented with the Pearson correlation coefficient (PCC) [8] to find the word similarity and the
word similarities are used to predict the missing bigram frequencies. The approach is tested with different evaluation
matrices like - percentage of key strokes required to predict the intended word, percentage of key strokes save by
using the prediction engine, percentage of accuracy of our word prediction model. It is found that the  propose
model takes 15:2% and 17:4% less keystrokes in compare with the bigram predictor in respect to in-domain and
out-domain data. The proposed model saves around 57% and the bigram model saves 41:8% key strokes for in-
domain data. Similarly, for out-domain data the save percentage is 51:9 and 34:5 respectively. Around 93% and
91% of the words of the in-domain and out-domain data are accurately predicted by using the proposed system.
However, on the same data set the bigram predictor accurately predicted around 87% band 83% of the word.

The rest of the paper is organized as follows. Section II discusses the prominent related works reported so
far on the literatures. The proposed methodology is explained in Section III. The results and analysis of the
proposed approach is presented in the Section IV. Finally, the paper is concluded with direction is future work
in the Section V.

2. RELATED WORK
In recent section, we are going to discussed on several prominent works on word prediction strategies. It

should be mention the scope of this section is bounded to the statistical word prediction only.
The statistical prediction systems mostly use n-gram (uni-gram, bigram and trigram) language models

[1]. This model predicts the word on the basis of condition probability with the previous word. However, the
unigram model uses only the word frequency information without including the previous word frequency. This
is a very basic model generally used in the earlier word prediction system [2]. The advancement over the
unigram is done by using bigram and trigram model. Both of the models are word frequency information
along with the previous word frequency. The performance of trigram model generally better than the bigram
model [9]. It is also to be mention that trigram model is usually considered as the baseline model in word
prediction context [9]. However, the data sparseness is one of the major drawbacks of the trigram model
[10], which can be address through smoothing. In spite of that another significant pitfall is the requirement of
huge training data set to run the prediction system. Several popular works have done using the n gram language
model which are discussed in the following.

Trnka et al. [4] compares three different text entry methods namely no prediction, basic word prediction and
advanced word prediction. Word frequency model and trigram model is used in basic and advanced word prediction
mechanism respectively. The experiment concludes that advanced word prediction can lead to higher text entry
rates than basic and no prediction.
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Arnott et al. have developed Predictive Adaptive Lexicon (PAL) [11] system. This is designed by considering
the word frequency information and subtext which is being entered so far only without including the previous word.
To enhance the word prediction capability, PAL system adds the new words automatically.

Carlberger et al. [12] have designed a statistical and adaptive system for predicting the next word in Swedish
language known as Profet. The system uses the bigram probability to predict the probable word after completion
of the current word and this current word is completed with the help of unigram probability. Profet II [13], the
improved version of Profet includes syntactic and semantic information and to consider the previous last two
words it used Markov models.

The Reactive Keyboard has been developed by Darragh et al. [14] for physically disable people. To predict
the nth character, the system uses the (n – 1) previously typed characters. This model stores the data using a tree
structure and the context is reduced by one character if a match is not found.

Anson et al. [15] have been done one interesting empirical study on whether the word prediction or completion
mechanisms would increase the typing speed for transcription based typing with an on-screen keyboard. Further,
typing speed get more increased by integrating the word prediction technique over both the on-screen keyboard
alone and the on-screen keyboard with word completion.

However, all the above mention works are not pay much attention of data sparseness. In this work we are
given the most weatage on these aspects. As a consequence apart from n-gram model, we are using the collaborative
filtering approach to provide the efficient prediction result over the previously used tradition approaches.

3. PROPOSED METHODOLOGY

It is established from the discussion of the previous section that the data sparsity is one of the major obstacle
in the tradition word prediction mechanism (n-gram model). Here we propose an algorithm to overcome the
effect of data sparsity in word prediction technique. In this approach we use item based collaborative filtering
to estimate bigram frequency. This provides an alternate of data smoothing step in word prediction technique.
The detail discussion is given in the following section.

Here, we take the Wikipedia english text [16] as the benchmark texts to train our system. It is also to be
mention that the corpus have around 1:5 million of total words. The word-word matrix is created by removing the
stop words from the considered corpus. So, the cell (i; j) of this matrix contains the frequency of the word  j in the
corpus which are occurred just after the word i. It is need to be mention that, around 20% of the cells contains null
value due to data sparsity in the corpus. After calculating the word-word matrix, Pearson Correlation Coefficient
(PCC) [8], [17] is employed to find similarity [18] between each ith and j th word by using Eqn 1. In Eqn 1, Sim
(i; j) and W represents the similarity between  ith and jth word and the subset of words which occurred with  ith and
jth respectively. Here, the frequency of word W with words i and the average frequency of word i are denoted by

f(w, i) and 1f  respectively..
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However PCC will overestimate the similarities between words who happen to have occurred with very few
items in few contexts, but may not have similar in all contexts. To overcome this unexpected situation, we use the
Significance Weighting approach proposed by Herlocker et al. [19], [20] over the previously used PCC approach.
The Significance Weighting approach is defined in the Eqn 2, where |Wi  �   Wj| is the number of words who
have same frequencies with the ith and jth word and the threshold ä belongs to [0, 1]. In our experiment, we select
0.2 as the value of ä according to cross validation. This algorithm generate a set S(w) of similar words for missing
bigram frequency  f(w, i)according to Eqn 2 .

Sim� (i, j) =
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. Sim ( , )i j i j
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Prediction of the missing frequencies is based on the similar words. Here we use Similar Neighbors Selection
algorithm [21] with threshold (�) ranges in [0; 1]. In our selected dataset the � is 0.07 on the basis of cross
validation. This algorithm generate a set of similar words S(w) for missing frequency f(w, i) according to the Eqn. 3.

S(w) = wa |Sim� (wa, w) < �, wa � w (3)
The missing frequency can be estimated as illustrated in the Eqn. 4.
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After the implementation of Similar Neighbors Selection algorithm, the approach is shifted towards the
bigram predictor to predicting the intended word. The bigram predictor considers the just previous word along
with the prefix of the word which is currently bening entered. The system first compares the existing prefix of the
current word with all the words of the vocabulary and then it checks the bigram probability for each probable
word which is calculated as P(Wn | W(n – 1)),  where  Wn is the probable or current word and  W(n – 1) is the
previous word. It can be calculated for each probable word as shown in the Eqn 5, where C is the number of count
of that particular word sequence.

P(Wn | W(n – 1)) =
( 1)

( 1)
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n
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4. RESULTS AND ANALYSIS

The above mention approach is implemented with the “tm” and “recommederlab” packages of R statistical
tool on the above mention training data (Section III). The implemented system is tested on the selected testing
modules which are different from training set. Here, we select both in-domain and out-domain testing data set with
reference to training data. Three different in-domain data set are taken from the same source from where the
training data are taken. However, each training set is contained the data set that are different from training set.
Similarly, we have selected three different out-domain testing data set, which are taken from the selected portion of
the English magazine India Today and the story book The Da Vinci Code written by Dan Brown. It also needs to
be mention that each testing set have on an average around 100 words.

Here, we are going to evaluate the proposed system with reference of the following metrics - percentage of
key strokes required to predict the intended word, percentage of key strokes save by using the prediction engine,
percentage of accuracy of our word prediction model. To compare the efficacy of the proposed system, another
similar bigram predictor is implemented with the same training data set. The both systems are evaluated on the
same testing data with the same set of matrices as mention in the beginning of the current section.

Prior to discuss on the proposed system performance, we need to define the metrics on the basis of these the
system performance will be evaluated. Number of keystroke required can refer the number of strokes on the keys
of a keyboard are required to type the intended word. Let consider any word (W) has n number of characters. So,
it requires n number of keystrokes to type W, while the system does not has any prediction mechanism. It is also
to be mention that we are not considered any typographical or other error occurred during the typing. Otherwise
it may require more than n number of keystrokes. On the other hand, if the system integrated with prediction
mechanism, then it is required m number of keystrokes to type the same word W . Here, the m is less than or equal
to n. More specially, if any character of the word W is predictable by the prediction engine, then m is less than n.
Otherwise, m is equal to n. Suppose, the testing set contains x number of words each has n1, n2, n3 ... nx number
of characters respectively. The the total number of keystrokes required without incorporation of prediction model
is n1 + n2 + n3 ... + nx. Hence, the original average required keystroke to type a word by the system which is not

integrated with the prediction mechanism acdeb –( )req oriks  can be define as shown in the Eqn 6. On the contradiction,
required total keystrokes due to the prediction model can be calculated as m1 + m2 + m3 + ... mx,  where each m
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is less than or equal to each respective n. So, the average required keystroke to type a word by the system

incorporated with prediction model –( )req preks  is define in the Eqn 7.
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The percentage of key stroke required (Per – ksreq) can be calculated by dividing –( )req preks   by the –( )req oriks
and multiplying it with hundred as shown in Eqn 8.

Per – ksreq = 100req pre

req ori
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�
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Fig. 1. Percentage of keystrokes required for proposed system and bigram predictor

The Fig. 1 is illustrated the percentage of keystroke is required to predict the intended word both for our
proposed system as well as the bigram predictor, which is calculated by using the Eqn 8. The figure conveys that
both of the considered systems are required less number of keystroke to type the intended word, for in-domain
data in comparison with out domain-data. The proposed system is required on an average 5:1% less number of
keystroke while typing in-domain data in compare with the out-domain data. Similarly, the bigram system takes
around 7:3% less number of keystroke for in-domain data in reference without-domain data typing. It is also
conveying that our proposed system takes on an average 15:2% and 17:4% less keystroke than normal bigram
predictor in respect to in-domain and out-domain data correspondingly.

The  above discussed experimental result can easily define the another considered matric, percentage of key
stroke (Per – kssave) save It can be define by subtracting the percentage of key stroke required  (Per – ksreq)
matric from hundred as shown in Eqn. 9. The Fig. IV is illustrated the percentage of key stroke save over the
bigram predictor due to use of our system. It shown that around 57% and 41:8% percentages of key strokes
save in proposed and bigram predictor for in-domain

Similarly, for the out domain data the system are saved on an average 51.9% and 34.5% of key stroke.
Per – kssave = 100 – Avg – ksreq (9)
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Fig. 2.  Percentage of keystrokes saves on proposed system and bigram predictor

Here the metric percentage of accuracy is referred to whether any particular intended word is predicted
before it typed completely. Hence, the number of keystrokes are required are less for typed any particular word
using the prediction system in compare to without of that. On the contradiction, if it requires equal number of
keystrokes than the word is unpredictable. Suppose, the testing set consists of p number of words and the system
able to predict q number of words of that set. Then, the percentage of accurately predictable word  (Pre – predic)
is calculated by dividing q by p and multiplying it by hundred as shown in 10. So, the percentage of inaccurately
predicted or unpredictable word can be calculated by subtracting  (Pre – predic) the from hundred as shown in the
Eqn. 11. The same matric can also be calculated by divide the subtract q from p by p and multiplied it by 100 as
shown in the Eqn. 12.

Per – acc = (q/ p) × 100 (10)
Per – acc = 100 – Per – predic (11)
Per – acc = (p – q)/p × 100 (12)

Fig. 3.  Percentage of accurately predictable word in proposed system and bigram predictor
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The test result obtained from our experimental setup in the basis of and  matrices detected the Fig. 3. It is
conveyed that around 93% and 91% of the words of the in-domain and out-domain data set are accurately
predictable by our system. So, obviously unpredictable word percentage is 7% and 9% respectively on the same
data set. However, it is shown that around 87% and 83% of words are accurately predictable, if we use bigram
predictor for the same test scenario. Hence, the percentage of unpredictable word is 13% and 17% of in-domain
and out-domain data set respectively.

5. CONCLUSION

Predicting the most probable next word is one of the foremost way out to enhance the text entry rate which is
driven through saving the number of required keystrokes. However, the performance of the word prediction
systems developed by using the traditional approaches is mainly confined due the data sparsity in their training set.
To overcome this data sparsity problem, we develop a word prediction system using collaborative filtering
approach which is initially implemented by Pearson correlation coefficient (PCC). However, it is overestimated
the similarity between words. This unexpected situation is taken care by Significance Weighting approach over
the PCC method. Nevertheless, Significance Weighting approach suffers from missing frequencies problem
which is resolved by employing Similar Neighbors Selection algorithm. Finally, the data sparsity problem is
resolved by following all this previous mention approaches. After that the approach is shifted towards the bigram
predictor to develop the final system. The develop system is critically evaluated through different considered
matrices in reference with both for in-domain and out-domain testing data. The experimental outcome established
that our develop word prediction system is outperformed than the simple bigram predictor. However, here we
only restrict up to bigram predictor only. In future this limitation would be overcome with the trigram predictor
integrated with collaborative filtering approach.
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