On the Stability of the Quadratic Functional Equation of Pexider Type in Non-Archimedean Spaces

M. Alimohammady¹, Z. Bagheri² and C. Tunc³

Abstract: In this article, we prove the generalized Hyers-Ulam-Rassias stability of the pexiderial functional equation f(ax + 2ay) + f(ax - 2ay) = 2ag(x) + 4ag(2y) - 8g(ay)

in non-Archimedean normed spaces.

Keywords: Hyers-Ulam-Rassias stability, Non-Archimedean space, pexiderial functional equation.

MSC: 39B82, 46S10, 12J25.

1. INTRODUCTION

In 1940 S. Ulam originally raised the stability problem of functional equation. He had posed the following question. Let (*G*.) be a group and (*B*,.,*d*) be a metric group given >0 does there exist a δ > 0 such that if a function $f: G \rightarrow B$ satisfies the inequality $d(f(xy), f(x) f(y)) \leq \delta$ for all $x, y \in G$ there exists a homomorphism $g: G \rightarrow B$ such that $d(f(x), g(x)) \leq \epsilon$ for all $x \in G$. In 1941, D.H. Hyers[8] solved this question in the context of Banach spaces. This was the first step towards more studies in this domain of research. In 1978, T.M. Rassias [19] has generalized the Hyers theorem by considering an unbounded Cauchy difference.

Theorem 1.1. Let $f : E \to F$ be a mapping from a norm vector space E into a Banach space F subject to the inequality $||f(x + y) - f(x) - f(y)|| \le \epsilon(||x||^p + ||y||^p)$ For all $x, y \in E$, where and p are constants with $\epsilon > 0$ and p < 1. Then there exists a unique additive mapping $T : E \to F$ such that

$$||f(x) - T(x)|| \le \frac{2\epsilon}{2-2^p} ||x||^p$$
, For all $x \in E$. If $p < 0$ then inequality $f(xy) = f(x) + f(y)$ holds for all $x, y_0 = f(x) + f(y)$ holds for all $x, y_0 = f(x) + f(y)$ holds for all $x, y_0 = f(x) + f(y)$ holds for all $x, y_0 = f(x) + f(y)$ holds for all $x, y_0 = f(x) + f(y)$ holds for all $x, y_0 = f(x) + f(y)$ holds for all $x, y_0 = f(x) + f(y)$ holds for all $x, y_0 = f(x) + f(y)$ holds for all $x \in E$.

0. During the last decade many mathematicians investigated several stability problems of functional equations.

In 1897, Hensel [7] has introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications (see [4], [8], [9], [15]).

The Hyers- Ulam stability of the functional equation

$$f(ax + 2ay) + f(ax - 2ay) = 2af(x) + 4af(2y) - 8f(ay)$$

was proved by G. ZamaniEskandani, H. Vaezi and Y. N. Dehghan [22] for mappings $f: X \to Y$, where X is a non-Archimedean Banach modules and Y is a unital Banach algebra. In this paper, we consider the following Pexider functional equation

$$f(ax + 2ay) + f(ax - 2ay) = 2ag(x) + 4ag(2y) - 8g(ay).$$

^{1,2} Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran

³ Department of Mathematics, Faculty of Sciences, university of YuzuncuYil, Kampus Van, Turkey

E-mail: amohsen@umz.ac.ir, zohrehbagheri@yahoo.com, cemtunc@yahoo.com

2. PRELIMINARIES

In this section, we give some definitions and related lemmas for our main result.

Definition 2.1. A triangular norm (shorter t-norm) is a binary operation on the unit interval [0,1], i.e., a function $T : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following four axioms: For all *a*,*b*,*c*" [0,1]

(i) T(a,b) = T(b,a) (commutativity),

(ii) T(a,T(b,c)) = T(T(a,b),c) (associativity),

(iii)T(a, 1) = a(boundary condition),

(iv) $T(a,b) \le T(a,c)$ whenever $b \le c$ (monotonicity).

Basic examples are the L *ukasiewicz t*-norm T_L and the t-norms T_p and T_M where $T_L(a, b) := max\{a + b - 1, 0\}$, $T_p(a, b) := ab$ and $T_M(a, b) := min\{a, b\}$.

Definition 2.2: Let K be a field. A non-Archimedean absolute value on K is a function

 $||: K \rightarrow [0, +\infty)$ such that, for any $a, b \in K$,

(i) $|a| \ge 0$ and the equality holds if and only if a = 0,

(ii)
$$|ab| = |a||b|$$
,

(iii) $|a + b| \le max\{|a|, |b|\}$ (the strict triangle inequality).

Note that $|n| \le 1$ for each integer *n*. We always assume, in addition, that |i| is non-trivial, i.e., there exists an $a_0 \in K$ such that $|a_0| = 0, 1$.

Definition 2.3: Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation |.|. A function k.k : $X \rightarrow R$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(i) kxk = 0 if and only if x = 0,

(ii) $krxk = |r|kxk(r \in K; x \in X)$,

(iii)The strong triangle inequality (ultrametric); namely

 $kx + yk \le max\{kxk; kyk : x; y \in X\}.$

Then (X; k. k) is called a non-Archimedean space. Due to the fact that

$$kx_{n} - x_{m}k \le max\{kx_{i+1} - x_{i}k | m \le j \le n - 1\}$$
 (n > m).

Definition 2.4: A sequence $\{x_n\}$ is Cauchy if and only if $\{x_{n+1} - x_n\}$ converges to zero in a non-Archimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

In this paper, we solve the stability problem for the pexiderial functional equations

$$f(ax + 2ay) + f(ax - 2ay) = 2ag(x) + 4ag(2y) - 8g(ay)$$

when the unknown functions are with values in a non-Archimedean space.

3. MAIN RESULTS

Throughout this section, we assume that *H* is an additive semigroup and *X* is a complete non-Archimedean space and $a \in N$.

Theorem 3.1: Let ψ : $H \times H \rightarrow [0, \infty]$ be a function such that

$$\lim_{n \to \infty} \frac{\psi(2^n x, 2^n y)}{|2|^n} = 0$$
(3.1)

for all $x, y \in H$ and let for each $x \in H$ the limit

$$\Psi(x) = \lim_{n \to \infty} \max\left\{ \frac{\psi(2^{k} x, 0)}{|4|^{k}} | 0 \le k < n \right\}$$
(3.2)

exists. Suppose that f, g: $H \rightarrow X$ are mappings with f(0) = g(0) = 0 and satisfying the following inequality $kf(ax + 2ay) + f(ax - 2ay) + 8g(ay) - 2ag(x) - 4ag(2y)k \le g(xy) - 2ag(x) - 4ag(xy) -$

$$f(ax + 2ay) + f(ax - 2ay) + 8g(ay) - 2ag(x) - 4ag(2y)k \le \psi(x, y)$$
(3.3)

for all $x \in X$. Then there exists a mapping $T : H \rightarrow X$ such that

$$||f(x) - T(x)|| \le \frac{1}{|4|} \Psi(x)$$
 (3.4)

and

$$||g(x) - T(x)|| \le \max\left\{\frac{\psi(x,0)}{|2|}, \frac{1}{|4|}\Psi(x)\right\}$$
(3.5)

for all $x \in X$. Moreover, if

$$\lim_{j \to \infty} \lim_{n \to \infty} \max\left\{ \frac{\psi(2^k x, 0)}{|4|^k} | j \le k < n+j \right\} = 0$$

then T is the unique mapping satisfying (3.4) and (3.5).

Proof. Putting y = 0 and a = 1 in (3.3), we get

$$\|f(x) - g(x)\| \le \frac{\psi(x,0)}{|2|}$$
(3.6)

Substituting y = 0 and a = 2 in (3.3), we have

$$\|\frac{f(2x)}{2} - g(x)\| \le \frac{\psi(x,0)}{|4|}$$
(3.7)

so

$$\|\frac{f(2x)}{2} - f(x)\| \le \frac{\psi(x,0)}{|4|}$$
(3.8)

for all $x \in H$. Replacing x by $2^{n-1}x$ in (3.8) and dividing both sides by 2^{n-1} , then

$$\left\|\frac{f(2^{n}x)}{2^{n}} - \frac{f(2^{n-1}x)}{2^{n-1}}\right\| \le \frac{\psi(2^{n-1}x,0)}{|4|^{n}}$$
(3.9)

It follows from (3.1) and (3.9) that the sequence $\left\{\frac{f(2^n x)}{2^n}\right\}_n$ is a Cauchy sequence. Since X is complete,

so
$$\left\{\frac{f(2^n x)}{2^n}\right\}$$
 is convergent. Set $T(x) \coloneqq \lim_{n \to \infty} \frac{f(2x)}{2^n}$. Using induction we see

that

$$\left\|\frac{f(2^{n}x)}{2^{n}} - f(x)\right\| \le \frac{1}{|4|} \max\left\{\frac{\psi(2^{k}x,0)}{|4|^{k}} \mid 0 \le k < n\right\}$$
(3.10)

It's clear that (3.10) holds for n = 1 by (3.9). Now, if (3.10) holds for every $0 \le k < n$, we obtain

$$\begin{aligned} \left\| \frac{f(2^{n}x)}{2^{n}} - f(x) \right\| &= \left\| \frac{f(2^{n}x)}{2^{n}} - \frac{f(2^{n-1}x)}{2^{n-1}} + \frac{f(2^{n-1}x)}{2^{n-1}} - f(x) \right\| \\ &\leq \max\left\{ \left\| \frac{f(2^{n}x)}{2^{n}} - \frac{f(2^{n-1}x)}{2^{n-1}} \right\|, \left\| \frac{f(2^{n-1}x)}{2^{n-1}} - f(x) \right\| \right\} \\ &\leq \max\left\{ \frac{\psi(2^{n-1}x,0)}{|4|^{n}}, \frac{1}{|4|} \max\left\{ \frac{\psi(2^{k}x,0)}{|4|^{k}} | 0 \le k < n - 1 \right\} \right\} \\ &\leq \frac{1}{|4|} \max\left\{ \frac{\psi(2^{k}x,0)}{|4|^{k}} | 0 \le k < n \right\}. \end{aligned}$$

So for all $n \in N$ and all $x \in H$, (3.10) holds. By taking *n* to approach infinity in (3.10) and using (3.2) one obtains (3.4). On the other hand, by (3.7), we obtain

$$||g(x) - T(x)|| \le \max\{||g(x) - f(x)||, ||f(x) - T(x)||\} \le \max\left\{\frac{\psi(x,0)}{|2|}, \frac{1}{|4|}\Psi(x)\right\}.$$

If *S* be another mapping satisfies (3.4) and (3.5), then for all $x \in H$, we get

$$\|T(x) - S(x)\| \le \lim \max_{j \to \infty} \left\{ \|T(x) - \frac{f(2^{j}x)}{2^{j}}\|, \|\frac{f(2^{j}x)}{2^{j}} - S(x)\| \right\}$$
$$\le \frac{1}{|4|} \lim_{j \to \infty} \lim_{n \to \infty} \max \left\{ \frac{\psi(2^{k}x, 0)}{|4|^{k}} | j \le k < n+j \right\} = 0$$

Therefore T = S. This completes the proof.

Corollary 3.2. Let $\lambda : [0; \infty) \rightarrow [0; \infty)$ be a function satisfying

$$\lambda(|2|t) \le \lambda(|2|) \lambda(t) (t \ge 0); \lambda(|2|) < |4|$$

Let $\delta > 0$, *H* be a normed space and let *f*; *g*: $H \rightarrow X$ are mappings with f(0) = g(0) = 0 and satisfying

$$kf(ax + 2ay) + f(ax - 2ay) - 2ag(x) - 4ag(2y) + 8g(ay)k \le \delta(\lambda kxk + \lambda kyk) \text{ for all } b \le \delta(\lambda kxk + \lambda ky$$

x; *y* \in *H*. Then there exists a unique mapping T : *H* \rightarrow *X* such that

$$|| f(x) - T(x) || \le \frac{1}{|4|} \delta \lambda(||x||)$$

and

$$||g(x) - T(x)|| \le \frac{\delta \lambda(||x||)}{|4|}$$

for all $x \in H$.

Proof. Defining $\psi : H^2 \rightarrow [0; \infty)$ by $\psi(x; y) := \delta(\lambda kxk + \lambda kyk)$, then we have

$$\lim_{n \to \infty} \frac{\psi(2^k x, 0)}{|4|^k} \le \lim_{n \to \infty} \left[\frac{\lambda(|2|)}{|4|} \right]^n \psi(x, y) = 0$$

for all $x, y \in H$. On the other hand

$$\Psi(x) = \lim_{n \to \infty} \max\left\{ \frac{\psi(2^k x, 0)}{|4|^k} \, | \, 0 \le k < n \right\} = \frac{\psi(x, 0)}{|4|}$$

exists for all $x \in H$. Also

$$\lim_{j \to \infty} \lim_{n \to \infty} \max \left\{ \frac{\psi(2^k x, 0)}{|4|^k} | j \le k < n+j \right\} = 0.$$

Applying Theorem (3.1), we conclude desired result.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces. J. Math. Soc, Japan 2, (1950), 64–66.
- John A. Baker, A general functional equation and its stability. Proc. Amer. Math. Soc, 133(2005), no. 6, 1657–1664 (electronic).
- [3] John A. Baker, J. Lawrence, and F. Zorzitto, *the stability of the equation* f(x+y)=f(x)*.*f(y), Proc.Amer. Math. Soc, **74**(1979), no. 2, 242–246.
- [4] John A. Baker, The stability of the cosine equation. Proc. Amer. Math. Soc, 80(1980), no.3, 411–416.
- [5] R. Ger and P. Semrlé, The stability of the exponential equation, Proc. Amer. Math. Soc, 124 (1996), no. 3, 779–787.
- [6] J. A. Goguen, L-Fuzzy sets, J. Math. Anal. Appl. 18(1967), 145–174.
- [7] K. Hensel, Ober Eineneue Theorie der algebraishen Zahlen. (German) Math. Z. 2 (1918), no. 3-4, 433452.
- [8] D. H. Hyers, On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U. S. A. 27, (1941), 222–224.
- [9] K. Jarosz, Almost multiplicative functionals. Studia Math. 124(1997), no. 1, 37–58.
- [10] B. E. Johnson, Approximately multiplicative functionals. J. London Math. Soc. 2 34 (1998), no. 3, 489–510.
- [11] A. K. Katsaras, Fuzzy topological vector spaces . II. Fuzzy Sets and Systems, 12(1984), no. 2 143–154.
- [12] Peter J.Nyikos, On some non-Archimedean spaces of Alexandroff and Urysohn, Topology Appl. 91(1999), no.1, 1–23.
- [13] Jin Han Park, Intuitionistic fuzzy metric spaces. chaos Solitons Fratals 22 (2004), no. 5, 1039–1046.
- [14] C. Park, M. Eshaghi Gordji, A. Najati, Generalized Hyers-Ulam stability of an AQCQ functional equation in non-Archimedean Banach spaces. J. Nonlinear Sci. Appl. 3(2010), no. 4, 272-281.
- [15] J. M. Rassias, Solution of a quadratic stability Hyers-Ulam type problem, Ricerche Mat. 50(2001), no. 1, 9–17.
- [16] J. M. Rassias, Solution of the Ulam stability problem for Euler-Lag range quadratic mappings. J. Math. Anal. Appl. 220(1998), no. 2, 613–639.
- [17] Themistocles M. Rassias, On the stability of the quadratic functional equation and its applications. Studia Univ. Babe, s-Bolyai Math. 43 (1998), no. 3, 89–124.
- [18] Themistocles M. Rassias, *The problem of S. M. Ulam for approximately multiplicative mappings*. J. Math. Anal. Appl. 246 (2000), no. 2, 352–378.
- [19] Themistocles M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300.

- [20] S. M. Ulam, problems in modern mathematics. Science Editions, Jhon Wiley sons, Inc., New york (1964).
- [21] L. A. Zadeh, Fuzzy sets. Information and Control 8 (1965), 338–353.
- [22] G. Zamani Eskandani, Hamid Vaezi and Y. N. Dehghan *Stability of a Mixed Additive and Quadratic Functional Equation in Nonarchimedean Banach Modules*. Taiwanese J. Math. **14** (2010), no. 4, 1309–1324.