On the Stability of the Quadratic Functional Equation of Pexider Type in NonArchimedean Spaces

M. Alimohammady ${ }^{1}$, Z. Bagheri 2 and C. Tunc ${ }^{3}$

Abstract: In this article, we prove the generalized Hyers-Ulam-Rassias stability of the pexiderial functional equation

$$
f(a x+2 a y)+f(a x-2 a y)=2 a g(x)+4 a g(2 y)-8 g(a y)
$$

in non-Archimedean normed spaces.
Keywords: Hyers-Ulam-Rassias stability, Non-Archimedean space, pexiderial functional equation.
MSC: 39B82, 46S10, 12J25.

1. INTRODUCTION

In 1940 S . Ulam originally raised the stability problem of functional equation. He had posed the following question. Let (G..) be a group and ($B, ., d$) be a metric group given >0 does there exist a $\delta>0$ such that if a function $f: G \rightarrow B$ satisfies the inequality $d(f(x y), f(x) f(y)) \leq \delta$ for all $x, y \in G$ there exists a homomorphism $g: G \rightarrow B$ such that $\mathrm{d}(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})) \preceq \epsilon$ for all $x \in G$. In 1941, D.H. Hyers[8] solved this question in the context of Banach spaces. This was the first step towards more studies in this domain of research. In 1978, T.M. Rassias [19] has generalized the Hyers theorem by considering an unbounded Cauchy difference.

Theorem 1.1. Let $f: E \rightarrow F$ be a mapping from a norm vector space E into a Banach space F subject to the inequality $\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ For all $x, y \in E$, where and p are constants with $\epsilon>0$ and $p<1$. Then there exists a unique additive mapping $T: E \rightarrow F$ such that $\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}$, For all $x \in E$. If $p<0$ then inequality $f(x y)=f(x)+f(y)$ holds for all $x, y 6=$ 0. During the last decade many mathematicians investigated several stability problems of functional equations.

In 1897, Hensel [7] has introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications (see [4], [8], [9], [15]).

The Hyers- Ulam stability of the functional equation

$$
f(a x+2 a y)+f(a x-2 a y)=2 a f(x)+4 a f(2 y)-8 f(a y)
$$

was proved by G. ZamaniEskandani, H. Vaezi and Y. N. Dehghan [22] for mappings $f: X \rightarrow Y$, where X is a non-Archimedean Banach modules and Y is a unital Banach algebra. In this paper, we consider the following Pexider functional equation

$$
f(a x+2 a y)+f(a x-2 a y)=2 a g(x)+4 a g(2 y)-8 g(a y)
$$

[^0]
2. PRELIMINARIES

In this section, we give some definitions and related lemmas for our main result.
Definition 2.1. A triangular norm (shorter t-norm) is a binary operation on the unit interval [0,1], i.e., a function $T:[0,1] \times[0,1] \rightarrow[0,1]$ satisfying the following four axioms: For all a, b, c " $[0,1]$
(i) $T(a, b)=T(b, a)$ (commutativity),
(ii) $T(a, T(b, c))=T(T(a, b), c)$ (associativity),
(iii) $T(a, 1)=a$ (boundary condition),
(iv) $T(a, b) \leq T(a, c)$ whenever $b \leq c$ (monotonicity).

Basic examples are the L ukasiewicz t-norm T_{L} and the t-norms T_{P} and T_{M} where $T_{L}(a, b):=\max \{a+b$ $-1,0\}, T_{P}(a, b):=a b$ and $T_{M}(a, b):=\min \{a, b\}$.

Definition 2.2: Let K be a field. A non-Archimedean absolute value on K is a function
$\|: K \rightarrow[0,+\infty)$ such that, for any $a, b \in K$,
(i) $|a| \geq 0$ and the equality holds if and only if $a=0$,
(ii) $|a b|=|a||b|$,
(iii) $|a+b| \leq \max \{|a|,|b|\}$ (the strict triangle inequality).

Note that $|n| \leq 1$ for each integer n. We always assume, in addition, that \mid is non-trivial, i.e., there exists an $a_{0} \in K$ such that $\left|a_{0}\right| 6=0,1$.

Definition 2.3: Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation |.| . A function k.k : $X \rightarrow R$ is a non- Archimedean norm (valuation) if it satisfies the following conditions:
(i) $\mathrm{k} x \mathrm{k}=0$ if and only if $x=0$,
(ii) $\mathrm{k} r x \mathrm{k}=|r| \mathrm{k} x \mathrm{k}(r \in K ; x \in X)$,
(iii)The strong triangle inequality (ultrametric); namely

$$
\mathrm{k} x+y \mathrm{k} \leq \max \{\mathrm{k} x \mathrm{k} ; \mathrm{kyk}: x ; y \in X\} .
$$

Then $(X ; \mathrm{k} . \mathrm{k})$ is called a non-Archimedean space. Due to the fact that

$$
\mathrm{k} x_{n}-x_{m} \mathrm{k} \leq \max \left\{\mathrm{k} x_{j+1}-x_{j} \mathrm{k} \mid m \leq j \leq n-1\right\} \quad(n>m)
$$

Definition 2.4: A sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a nonArchimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

In this paper, we solve the stability problem for the pexiderial functional equations

$$
f(a x+2 a y)+f(a x-2 a y)=2 a g(x)+4 a g(2 y)-8 g(a y)
$$

when the unknown functions are with values in a non-Archimedean space.

3. MAIN RESULTS

Throughout this section, we assume that H is an additive semigroup and X is a complete non-Archimedean space and $a \in N$.

Theorem 3.1: Let $\psi: H \times H \rightarrow[0, \infty]$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(2^{n} x, 2^{n} y\right)}{|2|^{n}}=0 \tag{3.1}
\end{equation*}
$$

for all $x, y \in H$ and let for each $x \in H$ the limit

$$
\begin{equation*}
\psi(x)=\lim _{n \rightarrow \infty} \max \left\{\left.\frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}} \right\rvert\, 0 \leq k<n\right\} \tag{3.2}
\end{equation*}
$$

exists. Suppose that f, g : $H \rightarrow X$ are mappings with $f(0)=g(0)=0$ and satisfying the following inequality

$$
\begin{equation*}
\mathrm{k} f(a x+2 a y)+f(a x-2 a y)+8 g(a y)-2 a g(x)-4 a g(2 y) \mathrm{k} \leq \psi(x, y) \tag{3.3}
\end{equation*}
$$

for all $x \in X$. Then there exists a mapping $T: H \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|4|} \Psi(x) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|g(x)-T(x)\| \leq \max \left\{\frac{\psi(x, 0)}{|2|}, \frac{1}{|4|} \Psi(x)\right\} \tag{3.5}
\end{equation*}
$$

for all $x \in X$. Moreover, if

$$
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}} \right\rvert\, j \leq k<n+j\right\}=0
$$

then T is the unique mapping satisfying (3.4) and (3.5).
Proof. Putting $y=0$ and $a=1$ in (3.3), we get

$$
\begin{equation*}
\|f(x)-g(x)\| \leq \frac{\psi(x, 0)}{|2|} \tag{3.6}
\end{equation*}
$$

Substituting $y=0$ and $a=2$ in (3.3), we have

$$
\begin{equation*}
\left\|\frac{f(2 x)}{2}-g(x)\right\| \leq \frac{\psi(x, 0)}{|4|} \tag{3.7}
\end{equation*}
$$

so

$$
\begin{equation*}
\left\|\frac{f(2 x)}{2}-f(x)\right\| \leq \frac{\psi(x, 0)}{|4|} \tag{3.8}
\end{equation*}
$$

for all $x \in H$. Replacing x by $2^{n-1} x$ in (3.8) and dividing both sides by 2^{n-1}, then

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n-1} x\right)}{2^{n-1}}\right\| \leq \frac{\psi\left(2^{n-1} x, 0\right)}{|4|^{n}} \tag{3.9}
\end{equation*}
$$

It follows from (3.1) and (3.9) that the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}_{n}$ is a Cauchy sequence. Since X is complete, so $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ is convergent. Set $T(x):=\lim _{n \rightarrow \infty} \frac{f(2 x)}{2^{n}}$. Using induction we see
that

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-f(x)\right\| \leq \frac{1}{|4|} \max \left\{\left.\frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}} \right\rvert\, 0 \leq k<n\right\} \tag{3.10}
\end{equation*}
$$

It's clear that (3.10) holds for $n=1$ by (3.9). Now, if (3.10) holds for every $0 \leq k<n$, we obtain

$$
\begin{aligned}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-f(x)\right\| & =\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n-1} x\right)}{2^{n-1}}+\frac{f\left(2^{n-1} x\right)}{2^{n-1}}-f(x)\right\| \\
& \leq \max \left\{\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n-1} x\right)}{2^{n-1}}\right\|,\left\|\frac{f\left(2^{n-1} x\right)}{2^{n-1}}-f(x)\right\|\right\} \\
& \leq \max \left\{\frac{\psi\left(2^{n-1} x, 0\right)}{|4|^{n}}, \frac{1}{|4|} \max \left\{\left.\frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}} \right\rvert\, 0 \leq k<n-1\right\}\right\} \\
& \leq \frac{1}{|4|} \max \left\{\left.\frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}} \right\rvert\, 0 \leq k<n\right\} .
\end{aligned}
$$

So for all $n \in N$ and all $x \in H$, (3.10) holds. By taking n to approach infinity in (3.10) and using (3.2) one obtains (3.4). On the other hand, by (3.7), we obtain

$$
\begin{aligned}
\|g(x)-T(x)\| & \leq \max \{\|g(x)-f(x)\|,\|f(x)-T(x)\|\} \\
& \leq \max \left\{\frac{\psi(x, 0)}{|2|}, \frac{1}{|4|} \Psi(x)\right\} .
\end{aligned}
$$

If S be another mapping satisfies (3.4) and (3.5), then for all $x \in H$, we get

$$
\begin{aligned}
\|T(x)-S(x)\| & \leq \lim \max _{j \rightarrow \infty}\left\{\left\|T(x)-\frac{f\left(2^{j} x\right)}{2^{j}}\right\|,\left\|\frac{f\left(2^{j} x\right)}{2^{j}}-S(x)\right\|\right\} \\
& \leq \frac{1}{|4|} \lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}} \right\rvert\, j \leq k<n+j\right\}=0
\end{aligned}
$$

Therefore $T=S$. This completes the proof.
Corollary 3.2. Let $\lambda:[0 ; \infty) \rightarrow[0 ; \infty)$ be a function satisfying

$$
\lambda(|2| t) \leq \lambda(|2|) \lambda(t)(t \geq 0) ; \lambda(|2|)<|4|
$$

Let $\delta>0$, H be a normed space and let $f ; g: H \rightarrow X$ are mappings with $f(0)=g(0)=0$ and satisfying

$$
\mathrm{k} f(a x+2 a y)+f(a x-2 a y)-2 a g(x)-4 a g(2 y)+8 g(a y) \mathrm{k} \leq \delta(\lambda \mathrm{k} x \mathrm{k}+\lambda \mathrm{k} y \mathrm{k}) \text { for all }
$$

$x ; y \in H$. Then there exists a unique mapping $T: H \rightarrow X$ such that

$$
\|f(x)-T(x)\| \leq \frac{1}{|4|} \delta \lambda(\|x\|)
$$

and

$$
\|g(x)-T(x)\| \leq \frac{\delta \lambda(\|x\|)}{|4|}
$$

for all $x \in H$.
Proof. Defining $\psi: H^{2} \rightarrow[0 ; \infty)$ by $\psi(x ; y):=\delta(\lambda \mathrm{k} x \mathrm{k}+\lambda \mathrm{kyk})$, then we have

$$
\lim _{n \rightarrow \infty} \frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}} \leq \lim _{n \rightarrow \infty}\left[\frac{\lambda(|2|)}{|4|}\right]^{n} \psi(x, y)=0
$$

for all $x, y \in H$. On the other hand

$$
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{\left.\frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}} \right\rvert\, 0 \leq k<n\right\}=\frac{\psi(x, 0)}{|4|}
$$

exists for all $x \in H$. Also

$$
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\left.\frac{\psi\left(2^{k} x, 0\right)}{|4|^{k}} \right\rvert\, j \leq k<n+j\right\}=0 .
$$

Applying Theorem (3.1), we conclude desired result.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces. J. Math. Soc, Japan 2, (1950), 64-66.
[2] John A. Baker, A general functional equation and its stability. Proc. Amer. Math. Soc, 133(2005), no. 6, 1657-1664 (electronic).
[3] John A. Baker, J. Lawrence, and F. Zorzitto, the stability of the equation $f(x+y)=f(x) \cdot f(y)$, Proc.Amer. Math. Soc, 74(1979), no. 2, 242-246.
[4] John A. Baker, The stability of the cosine equation. Proc. Amer. Math. Soc, 80(1980), no.3, 411-416.
[5] R. Ger and P. Semrlф, The stability of the exponential equation, Proc. Amer. Math. Soc, 124 (1996), no. 3, 779-787.
[6] J. A. Goguen, L-Fuzzy sets, J. Math. Anal. Appl. 18(1967), 145-174.
[7] K. Hensel, Ober Eineneue Theorie der algebraishen Zahlen. (German) Math. Z. 2 (1918), no. 3-4, 433452.
[8] D. H. Hyers, On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U. S. A. 27, (1941), 222-224.
[9] K. Jarosz, Almost multiplicative functionals. Studia Math. 124(1997), no. 1, 37-58.
[10] B. E. Johnson, Approximately multiplicative functionals. J. London Math. Soc. 234 (1998), no. 3, 489-510.
[11] A. K. Katsaras, Fuzzy topological vector spaces . II. Fuzzy Sets and Systems, 12(1984), no. 2 143-154.
[12] Peter J.Nyikos, On some non-Archimedean spaces of Alexandroff and Urysohn, Topology Appl. 91(1999), no.1, 1-23.
[13] Jin Han Park, Intuitionistic fuzzy metric spaces. chaos Solitons Fratals 22 (2004), no. 5, 1039-1046.
[14] C. Park, M. Eshaghi Gordji, A. Najati, Generalized Hyers-Ulam stability of an AQCQ functional equation in nonArchimedean Banach spaces. J. Nonlinear Sci. Appl. 3(2010), no. 4, 272-281.
[15] J. M. Rassias, Solution of a quadratic stability Hyers-Ulam type problem, Ricerche Mat. 50(2001), no. 1, 9-17.
[16] J. M. Rassias,Solution of the Ulam stability problem for Euler-Lag range quadratic mappings. J. Math. Anal. Appl. 220(1998), no. 2, 613-639.
[17] Themistocles M. Rassias, On the stability of the quadratic functional equation and its applications. Studia Univ. Babe, sBolyai Math. 43 (1998), no. 3, 89-124.
[18] Themistocles M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl. 246 (2000), no. 2, 352-378.
[19] Themistocles M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[20] S. M. Ulam, problems in modern mathematics. Science Editions, Jhon Wiley sons, Inc., New york (1964).
[21] L. A. Zadeh, Fuzzy sets. Information and Control 8 (1965), 338-353.
[22] G. Zamani Eskandani, Hamid Vaezi and Y. N. Dehghan Stability of a Mixed Additive and Quadratic Functional Equation in Nonarchimedean Banach Modules. Taiwanese J. Math. 14 (2010), no. 4, 1309-1324.

[^0]: ${ }^{1,2}$ Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
 ${ }^{3}$ Department of Mathematics, Faculty of Sciences, university of YuzuncuYil, Kampus Van, Turkey
 E-mail: amohsen@umz.ac.ir, zohrehbagheri@yahoo.com, cemtunc@yahoo.com

