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ON THE ADJOINT MARKOV POLICIES IN STOCHASTIC
DIFFERENTIAL GAMES

N. V. KRYLOV*

ABSTRACT. We consider time-homogeneous uniformly non degenerate sto-
chastic differential games in domains and propose constructing e-optimal
strategies and policies by using adjoint Markov strategies and adjoint Markov
policies which are actually time-homogeneous Markov, however, relative not
to the original process but to a couple of processes governed by a system con-
sisting of the main original equation and of an adjoint stochastic equations of
the same type as the main one. We show how to find e-optimal strategies and
policies in these classes by using the solvability in Sobolev spaces of not the
original Isaacs equation but of its appropriate modification. We also give an
example of a uniformly nondegenerate game where our assumptions are not
satisfied and where we conjecture that there are no not only optimal Markov
but even e-optimal adjoint (time-homogeneous) Markov strategies for one of
the players.

1. Introduction

The present paper is concerned with finding e-optimal strategies in time-homo-
geneous uniformly nondegenerate stochastic differential games in domains. Much
research has been done in stochastic differential games since the early works of
Isaacs, Evans, Fleming, Friedman, Lions and Souganidis, to name just a few au-
thors. These authors were mainly dealing with the dynamic programming princi-
ple, the fact that the value functions satisfy Isaacs equations (at least in viscosity
sense), and the existence of equilibrium points. We are dealing with e-optimal
strategies in the following setting.

Let R? = {x = (2',...,2%)} be a d-dimensional Euclidean space and d; > 1 be
an integer. Assume that we are given separable metric spaces A and B, and let,
for each o € A, 8 € B, the following functions on R? be given:

(i) d x dy matrix-valued 0% (z) = o(a, B, 2) = (627 (2)),

(i

ij
i) Ré-valued b (z) = b(a, B, z) = (b°(z)), and

(iii) real-valued c*?(z) = c(a, B,7) > 0, f**(z) = f(a, B,2), and g(x).

Under natural assumptions which will be specified later, on a probability space
(Q, F, P) carrying a dj-dimensional Wiener process w; one associates with these
objects and a bounded domain G' C R? of class C? a stochastic differential game
with the diffusion term o8 (z), drift term v*3(z), discount rate ¢*?(x), running
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cost f*(z), and the final cost g(z) paid when the underlying process first exits
from G. More precisely we consider the process defined by the equation

t t
xt:x—l—/ ao‘sﬁs(xs)dws—k/ bo<Ps () ds, (1.1)
0 0

where a. and 3. are admissible actions of two players one of which is maximizing
and the other minimizing an expression like

E / fePe(ay) dt,
0

where 7 is the first-exit time of the process from G. We adopt the setting almost
identical to that of [2] (although our set of admissible policies of o and 3 is, gener-
ally, wider) and define the order of players and their policies and strategies. Then
under very general conditions the value function turns out to be a viscosity solution
of the Isaacs equation (see [2]). As in the case of controlled diffusion processes and
Bellman’s equations it is natural to use the Isaacs equation to construct e-optimal
strategy of one player and e-optimal policies of the other. By using discrete time
approximations of this equation this was done in [1] and lead to the so-called al-
most optimal approximately Markov time-inhomogeneous policies, whose actions
at time ¢ depend on a very near past history. Similar constructions one can find
in [10].

In this article to find near optimal strategies and policies, we propose using
adjoint Markov strategies and adjoint Markov policies which are actually time-
homogeneous Markov, however, relative not to the original process x; but to a
couple (z, y;) which is given as a solution of a time-homogeneous system consisting
of (1.1) and adjoint stochastic equations of the same type as (1.1). We show how to
find e-optimal strategies and policies by using the solvability in Sobolev spaces of
not the original Isaacs equation but of its appropriate modification. Observe that
it is unknown whether general even uniformly nondegenerate Isaacs equations have
solutions in Sobolev spaces. We also give an example of a uniformly nondegenerate
game where our assumptions are not satisfied and where we conjecture that there
are no not only optimal Markov but even e-optimal adjoint (time-homogeneous)
Markov strategy for one of the players.

As a point of comparison note that in [2] and [1] the authors deal with time-
inhomogeneous possibly degenerate stochastic differential games on a finite time
interval in the whole space. In our case we have a uniformly nondegenerate time-
homogeneous stochastic differential game in a domain where it is quite natural to
look for time-homogeneous Markov strategies and policies.

The article is organized as follows. In the next section we present our main
results. In Section 3 we prove some auxiliary results. Theorems 2.4 and 2.5 and
Lemma 2.6 are proved in Section 4. In Section 5 we apply the previous results to
the case of controlled diffusion processes, to which belongs Theorem 2.7 proved in
Section 6. Finally, in Section 7 we prove Theorem 2.11 saying what happens if the
Isaacs condition is satisfied.

By N sometimes with arguments we denote various constants, depending only
on the arguments if they are present, but which may change from one occurrence
to another and, if in a statement, we are proving, there is a claim that N depends
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only on a,b, ..., then in the proof all constants called N depend only on a,b, ...
unless specifically indicated otherwise.

2. Main Results
Set a®® = (1/2)0% (a°8)".

Assumption 2.1. (i) a) The functions o,b, ¢, f are continuous with respect to
B € B for each (a,z) and continuous with respect to @ € A uniformly with
respect to 8 € B for each x. b) These functions are continuous with respect to x
uniformly with respect to a and 3, the function g belongs to C?(R%).

(ii) There are constants K and K; such that and for any =,y € R? (a, 8) €
AXx B

lo?(z) =P ()| < Kilz —yl, b () = b**(y)| < Kala —yl,

lo®? (@)]], 1677 ()], [e*# ()], | £2% ()] < Ko.
(iii) There is a constant § € (0, 1] such that for any o € A, 3 € B, and z, A € R?
we have
SIA? < aff ()N N < 67 A2
The reader understands, of course, that the summation convention is adopted
throughout the article.

Note that Assumption 2.1 (iii) obviously implies that d; > d.

Let (Q, F, P) be a complete probability space, let {F;,¢ > 0} be an increasing
filtration of o-fields F; C F such that each F; is complete with respect to F, P,
and let w;,t > 0, be a standard d;-dimensional Wiener process given on {2 such
that w, is a Wiener process relative to the filtration {F;,¢ > 0}.

The following by now standard setting originated in [2] although we prefer the
notation introduced in [7]. The set of progressively measurable A-valued processes
o = ai(w) is denoted by 2. Similarly we define B as the set of B-valued progres-
sively measurable functions. These are the sets of policies. By B we denote the
set of (strategies) B-valued functions B(c.) on 2 such that, for any T € (0, 00)
and any o!, a? € A satisfying

P(a; =af for almost all ¢ <T) =1,

we have
P(B,(a!) = B,(a?) for almost all t<T)=1.

For a. € 2, . € B, and z € R? define 227" as a unique solution of the Itd
equation (1.1) and set

¢
f‘ﬂ'x:/ casgs(x?ﬂ'x)ds.
0

Next, recall that G is a bounded domain in R? of class C2, define 77 as the
a.f.x

first exit time of x from G, and introduce
v(z) = inf sup EXA@) [/ f(x)e™? dt + g(x,)e 7|, (2.1)
BEB a.cA 0
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where the indices a., 3, and x at the expectation sign are written to mean that
they should be placed inside the expectation sign wherever and as appropriate,
that is

Egﬁ' {/OT f(xt)e_¢t dt + g('rT)e_¢T:|

«.B.x
o B.x

= Bg(at e s +/ Fot (g P e at].
0

Observe that this definition makes perfect sense due to Theorem 2.2.1 of [4] and
v(z) = g(z) in R?\ D. Similar abbreviated notation will be used in other cases
when the underlying processes and functions depend on initial data or other pa-
rameters and functions.

Before stating our first main result we introduce two more assumptions and a
notation.

Assumption 2.2. For any ¢ > 0, there exists a finite set {a(1),...,a(ne)} C A
such that for any o € A there exists an ¢ € {1,...,n.} such that for u = 0,b, ¢, f it
holds that
sup |[u®?(z) — u@P(z)| <e. (2.2)
BEB
zeG
It is easy to see that one can choose i = i.(«) satisfying (2.2) to be a Borel
function.

Assumption 2.3. Either 0®#(z) are symmetric positive-definite matrix-valued
functions or there is a constant v > 0 such that cr?gl_dﬂ.(x) =vd;; foralli,j <d
and all o, 3, x.

The second part of this assumption means that the last d columns of o form
an identity matrix multiplied by v. The only use of this assumption is (4.7) which
can be satisfied in very many other situations.

Take and fix a ¢ € C§°(R?) with unit integral and for a Borel measurable
B-valued function B(a,x) on A x R? and bounded measurable (real-, vector-, or
matrix-valued) functions h(a, 8, ) given on A x B x R% and p > 0 set

W) (a,y, x) :/ h(a, Bla,y + pz), & + p2)¢(2) dz, W) (a,y) = W' (a,y,y).
Rd
(2.3)

Theorem 2.4. Under the above assumptions, for any € > 0 there exist a Borel
measurable B-valued function B(a,z) on A x R% and py > 0 such that, if, for
p € (0,p0], x € G, and a. € A, we define the process yr = y;"“(p) as a solution of

dyt = U(p) (atv yt) dwt + b(P) (ata yt) dta t 2 Oa Yo = T, (24)

where o), bP) are defined according to (2.3), and set B (a.,x) = B(as, ¥ *(p)),
then

o) < sup BE O [ e det glae | <o) e (25)
a.eA 0
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Furthermore, there exists a finite number of mutually disjoint subsets A;,i =
1,...,n, of A such that A = |J; A; and for each i we have f(ai,x) = [(a2,x)
whenever ay,as € A;.

Observe that, obviously, (2.4) has a unique solution. Strategies like

Blow, yi“(p))

are naturally called adjoint Markov strategies, because their actions at time ¢
albeit are not based only on the current action of o and the current state of x; but
still use instead of the latter the current state of an adjoint process y: = y;"“(p),
which is defined as a solution of an adjoint equation (2.4) (controlled exclusively

. B (o ,x)
t

by «). In addition, as we will see, y;"*(p) is close to z; = ¥ if p is small.

In the next theorem Assumption 2.3 is not used.

Theorem 2.5. In Theorem 2.4 drop Assumption 2.3 but suppose that on (Q, F, P)
there is a d-dimensional Wiener process (W, Ji),t > 0, independent of w;. Then
for any € > 0 there exists a constant v > 0 such that all assertions of Theorem 2.4
hold true if we add to the right-hand side of (2.4) the term v diby.

Here we see another instance of adjoint Markov strategies of the player 5. With

B (o, x)x

the choice 3% (a.,z) = B,y " (p)) the process z; = xy satisfies

dry = o(ou, B(a, yi), v¢) dws + b(ag, B(ow, ye), x) dt, >0, xo=uz, (2.6)

where y; is defined from (2.4). Therefore, for the player « to find an adequate
response to the above strategy 34 (., z), he should solve a more or less standard
problem of optimal control of the two-component diffusion process (y;, x;) governed
by the system (2.4)-(2.6) and maximize the expectation in (2.5). An unpleasant
feature of this couple is that it is always a degenerate process. It turns out that
one can reduce the problem to optimal control of only y; when p is sufficiently
small and then the same Theorem 2.4 applied in the case of only one player will
provide an adjoint Markov policy while controlling y; which will become an adjoint
Markov policy of « in the original game. The above mentioned reduction of the
optimal control problem is based on the following.

Lemma 2.6. One more assertion can be added in Theorems 2.4 and 2.5: for any
a e

peten| [ pagetedt + glon)e
0

7(p)
_E™ [/ £ (g, (p))e=9 P dt + g(yT(p)(p))e—%(m(P)} ‘ <e, (2.7)
0

where .
22 (p) = / P (0,52 % (p)) ds,

where ) and c\P) are defined according to (2.3), and 7% (p) is the first exit time
of 4 * (p) from G.

This lemma and Theorems 2.4 and 2.5 almost immediately lead to the following
result about e-optimal adjoint Markov policies for a.
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Theorem 2.7. Let either

(a) the assumptions of Theorem 2.4 be satisfied, or

(b) the assumptions of Theorem 2.5 be satisfied.
Take e > 0, x € G, p, and B°(a.,x) from Theorem 2.4 or 2.5, respectively. Then
there exist Lipschitz continuous in x d X dy-matriz valued & () and R*-valued b(z)
given on Re, there exists a Borel measurable A-valued function of (z) on RY, and
in case (b) there also exists a constant v > 0, such that, if for x € G we define the
process zy = z§ by

dzy = 6(z) dwy +b(z) dt, t>0, 2z =, (2.8)

in case (a) with the additional term v di; on the right-hand side of (2.8) in case
(b) and set of = ac(z7), then

sup Eg.,ep(a.,z)[/ Flze)e® dt—i—g(xT)e_‘ﬁ’}
a.eA 0

< gy pilete) [/ flay)e % dt + g(xT)ef‘ﬁT} +e. (2.9)
0

Remark 2.8. The above results hold under milder assumptions than the ones im-
posed. For instance, an absolutely cheap generalization is that it suffices to have
g € C(RY) rather than g € C?(R%) because one can use uniform approximations
of g. The domain € also need not be in C2. It is quite sufficient for it to sat-
isfy the exterior cone condition or be even worse than that. Again appropriate
approximations would do the job.

The point of the article was to promote adjoint Markov policies and strategies,
rather than deal with numerous side problems arising along the way.

Example 2.9. Let d =1, G = (-1,1), A = B = {£1}, o(a, ) = B, ¢ = 0,
f=0-|z+ap|)+, g =0. The Isaacs equation is

sup inf [(1/2)u” + (1 — |z + af])+] = 0,
ac€A BEB

which is equivalent to

0= (1/2)u” + sup inf (1 — |z + afB|)+ = (1/2)u".
a€A BEB

The solution of this equation in G with zero boundary data is zero. The inf inside

is zero for any « and is obtained on S(a, x) = asignz (sign0 := —1).

Like in [2] and [1], let our probability space be the space C([0, c0)) of real-valued
continuous functions on [0, co) with Wiener measure on the o-field of Borel subsets
of C(]0,00)). Let the Wiener process be defined by wi(z.) = z¢, t > 0. Also let
Fi be the o-field generated by ws, s < t.

In such situation the equation

dry =signzydw,, t>0, x9=0 (2.10)

does not have Fi-adapted solutions at all (Tanaka’s example), and § cannot use
the strategy B(«,x) = asignz, since a can choose to be 1 for all times.
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The author believes that in this example there is no (time-homogeneous) e-
optimal adjoint Markov strategies for 8 if € is small enough. Regarding time-
inhomogeneous adjoint Markov strategies the reader is referred to [5]. However,
our results show that, if we just take two independent copies of our probability
space with w; being the Wiener process on one copy and w; being the Wiener
process on the other, take a mollification x(x) of sign x take a v > 0 and introduce
an adjoint process by

dyy = cux(ye) dwy +vdiy, t>0, yo=0,
then the strategy 3,(a.) = aysigny, will be e-optimal for 3 if the mollification is

done with kernel of sufficiently small size and v is sufficiently small. By the way,
on thus extended probability space (2.10) still does not have solutions.

Assumption 2.10. Assumption 2.2 is not necessarily satisfied, but for any ¢ > 0,
there exists a finite set {8(1), ..., 3(n.)} C B such that for any 8 € B there exists
an ¢ € {1,...,n.} such that for u = 0,b, ¢, f it holds that
sup [u®? (z) — u®P@(2)] <, (2.11)
acA
zeCG
and for any u;;,u;,u on G we have
sup inf [a%ﬁuij + b?ﬁui —cPu+ faﬁ]
a€A BEB
= inf sup [a%ﬁuij + b?"gui — Py + fo‘ﬂ]. (2.12)
BeB acA
When the Isaacs condition (2.12) is satisfied it is natural to introduce A as
the set of A-valued functions a(f.) on B such that, for any T € (0,00) and any
BL, 8% € B satistying
P(B} = p? foralmostall t<T)=1,

we have
P(ay(BY) = ay(B?) for almost all ¢ <T)=1.

Theorem 2.11. Under the Assumptions 2.1, 2.8, and 2.10 for any € > 0 there

exist a Borel measurable A-valued function a(z) on R% and py > 0 such that, if

for p € (0,p0], x € G, and . € B we define the process y; = yfﬁm(p) as a solution

of
dyt = J(p) (/Bt7 yt) dwt + b(ﬁ) (/Bta yf) dta t Z 07 Yo =7, (213)

where ®) and b are found following the example
WOB9) = [ hlaly+ p2). 5.0+ pG() de
and set of (8., ) = oyl " (p)), then

v(z) > ,Bi.relfB E(B)B. {/OT f(ay)e % dt + g(xT)e_qb*} >v(x) —e. (2.14)

Remark 2.12. Analogous theorem is valid when we drop Assumption 2.3 in The-
orem 2.11 but suppose that on (2, F, P) there is a Wiener process (wy, Ft),t > 0,
independent of wy.
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Remark 2.13. Observe that in Theorem 2.4 we are talking about the function
B(a, ) depending both on « and z and in Theorem 2.11 we have a function a(z)
of only z. Of course, this is because (2.11) is assumed in Theorem 2.11.

Remark 2.14. As a corollary of Theorems 2.4 and 2.11 we obtain a well-known
fact that our game has value and our strategies for § and « form, so to speak,
e-saddle point and the game may be called fair.

3. Auxiliary Results

Here is a well-known result which, for instance, is a particular case of Lemma
2.1 of [7].

Lemma 3.1. Let 0; be a d x dy-matriz-valued and by be an R%-valued progressively
measurable functions on Q x (0,00). Suppose that

oI, [be] < Ko, (3.1)
|oi Al > v[A]? (3:2)

for all A € R? and (w,t), where v > 0 is a fived constant. Take x € G and define
T as the first exit time from G of

t t
xt:x+/osdws+/bsds.
0 0

Then for any n = 1,2,... there exists a constant N, depending only on n, d, v,
Ky, and the diameter of G, such that ET™ < N.

The following result is also very well known (can be obtained, for instance, by
combining Lemma 2.8 of [3] and Lemma 8.5 and Theorem 3.1 of [6]). By S5 we
denote the set of d x d symmetric matrices whose eigenvalues are between § and
§~1. Introduce D; = 9/0", D;; = D;D; and let Du denote the gradient of u.

Lemma 3.2. Let v € (0,1]. Then there ezists a function ® € C*(G) such that
®>00nG, ®=00n0G, |DP| >1 ondG, and

aijDi;® + b;D; @ < —1
on G for any a = (a;;) € S, and b= (b;) such that |b| < K.

The next few results are needed while investigating how far off the adjoint
processes are of real controlled ones.

Lemma 3.3. Let Ut(i)(y,x), i = 1,2, be d X dy-matriz-valued and bgi) (y,x), i =
1,2, be R¥-valued functions on  x [0,00) x R? x R%.  Suppose that for each
T € [0,00) these functions restricted to Q x [0,T] x R? x RY are measurable with
respect to Fr@B(RY)@B(R?), where B(R?) is the Borel o-field in R%. Assume that
o’t(i) and bgi) are progressively measurable for any (x,y), ogl)(y,x) and bgl)(y,m)
are Lipschitz continuous with respect to x with constant Ky, and crt2 (y,y) and
b§2)(y, y) are Lipschitz continuous with respect to y with a constant independent of
(w,t). Suppose that there exists a function A(y) on G such that for any y € G

o (g, 9) — o2 (. )12 + B (5, ) — b7 (3, 9) 2 < Aly) (3.3)
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for all (w,t). Also suppose that Ut(i) and bﬁ“ satisfy (3.1) and O’t(2) satisfies (3.2)
for all values of indices, arguments, and all X € RY.
Take x € G and define the processes xy and y; by

dys = 0 (e, y0) dwy + b2 (g, ye) dt, >0, yo =,

dry = ol (ye, w) dw, + 08 (g, @) dt, £>0, x0 =1 (3.4)
Obuviously this system has a unique solution. Finally, set 8 to be the minimum of

the exit times of xy and y¢ from G. Then, for any T € (0,00), we have

E sup |z; — yt|2 < NeNT||A||Ld(G), (3.5)
t<TAG

where N depends only on d, v, Ky, K1, and the diameter of G.
Proof. We modify the coefficients of system (3.4) by multiplying them by Iy,
which does not affect (3.5), allows us to eliminate 6 from it and also allows us to

formally apply Theorem 2.5.9 of [4] according to which the left-hand side of (3.5)
is less than

NTE/ (o e, ve) = o (e, ) |12 + 1087 (v 9e) — 08 (e, ) 2) it

where N = N(K;). In light of (3.3), the expectation here is estimated by

/Ayt

and it only remains to apply Theorem 2.2.2 of [4]. The lemma is proved. (]

Corollary 3.4. Under the assumptions of Lemma 3.3, for any T € (0,00), we
have
Esuple; —y,|* <IT+NT™H,
t<0

where I is the right-hand sid; of (3.5) and N depends only on d,v, Ky, and the
diameter of G.

Indeed, it suffices to use Lemma 3.3 and observe that

Esup |z, — yi|*Tps7 < 4diam®(G)P(§ > T) < NT 'E9 < NT~L.
t<6

Lemma 3.5. Let 0'( 2 b( ,1=1,2, be as in Lemma 3.3 but independent of (y,x)
and assume that they satzsfy (3.1) and (3.2) for all values of indices, arguments,
and all X € RY. Take h € Ly(G), x € G, and set

0 0

Introduce 0 as the minimum of the first exit times ofx , 1 =1,2, from G. Let

Xf: ), i = 1,2, be real-valued jointly measurable processes given on [0, 0] and bounded

by a constant K.
Then for any k,vy > 0

0 0
B [ n(e) ~ x bl de < o8 [0 e+ NaG) + Na(w)
0 0
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1/2
)

+Nl|hllzu(o) i (Esuplay” — ) (3.6)

where N1(v) depends only on h, 7, d, v, Ko, and the diameter of G, and N1(y) — 0
as v — 00, Na(k) depends only on h, k,d,v, Ky, and the diameter of G, and
Ny(k) = 0 as k | 0 and N3 depends only on d, v, Ky, and the diameter of G.

Proof. First observe that
ItV () = iR < T+ Ks|h(ag)) — b)),
where

1 2 1 1 2 1
= =X )] <A = x|+ 2Ks1 In ().

h(z())| >

By Theorem 2.2.2 of [4]

4
1
E/O I|h(m§1>)‘>w|h(x1(t )>‘ dt < N||I|h|>'thLd(G)a

where N depends only on d, v, Ky, and the diameter of G. It follows that it
suffices to prove the lemma for y(* = 1.

In that case we extend h beyond G by setting it to be zero there, which does
not affect (3.6), introduce h(*) as the convolution of h and k=% (z/k), and replace
h in the left-hand side of (3.6) with h(*). The error of the replacement is less than

SE / Ih(zP) — b ()] dt,
=1

which by Theorem 2.2.2 of [4] is less than a constant, depending only on v, d, Ky,
and the diameter of GG, times

17— W) gy may,
which tends to zero as x | 0. This gives us the term N3(x) on the right in (3.6).
Finally,
0
E / (RO (@) = B @) dt < sup| DRC|(B6*) /2 (B suplaf” — o) |2) "/
0 R4 <6

_ 1/2
< Nk 2Hh||Ld(Rd)||DC||Ld/(d,1>(Rd)(Efg]g|951,t — x94|%) 2,

The lemma is proved. (I

4. Proofs of Theorems 2.4 and 2.5 and Lemma 2.6
Recall that a®? = (1/2)0%?(0*#)" and for sufficiently smooth functions u =

u(zx) introduce
L*Pu(z) = aff (z) Diju(z) + b3” (z) Diu(z) — P (z)u(=).

Also set

Hlu)(z) = sup inf (L*Pu(z) + [ (). (4.1)
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Lemma 4.1. Take u € W2(G) and m € {1,2,..}. Then for any o € A there
exists a Borel B-valued function 3(x) on R? such that for almost all v € G
|LoP @y () + fP@) (2) — H*(2)| < m™7, (4.2)

where

Hu)(z) := ﬁ1I€1fB (Lo‘ﬁu(m) + ().

Proof. Fix o € A and u € W3(G) and choose u, Du, and D?u so that they are
Borel functions. Then let {8(i),7 = 1,2,...} be a countable everywhere dense set
in B. Since a, b, ¢, f are continuous in 3,

H (@) = inf (L7 Ou(@) + 1270 ().

and for any x € G there exists (i) with the least i = i(x) for which
Hu)(x) > L@y (z) + faﬁ(i(af))(w)) —mL

As is easy to see, i(x) is a Borel function and such is 8(i(x)) as well. For z ¢ G
set B(x) = By, where [y is any element of B. Then we get a function we need and
the lemma is proved. O

Lemma 4.2. Take u € W2(G) and m € {1,2,...}. Then there exists a finite
family of Borel B-valued functions {B3(1), ..., 8(nm,)} on R? and a Borel B-valued
function B(a,x) on A x R? such that

(i) B(a,-) € {B(1),...,B8(nm)} for any o € A;
(i) for
e = [oBla)y 4 faﬁ(aw) — Hlu]
we have
| sup AL, (q) < m™1L. (4.3)
acA

Proof. Again choose u, Du, and D?u so that they are Borel functions and take
{a(1),...,a(n:)} from Assumption 2.2 for € = 1/m. Then let 5(i,x) be functions
found from Lemma 4.1 corresponding to «(i), i = 1,...,n.. Define i(a) to be the
first ¢ for which (2.2) holds. Finally, set

Bla,x) = B(i(a), ).
By Assumption 2.2, for any o € A, f € B, and z € G,
Lo‘ﬁu(x) + fo‘ﬁ(x) < La(i(a))ﬂu(x) + foz(i(a))ﬁ(x)
+m  N(1 4 |u(x)| + |Du(x)] + |D?*u(z)|),

where and below the constants denoted by IV depend only on d. By plugging in
B = B(a,z) = B(i(a),z) we find that, for any o € A and x € G

h(x) < Ho[ul(2) — H[u)(z) + m™ N1+ |u(@)] + | Du(@)| + |D*u()])
<mTIN(1+ Ju(@)] + [Du()| + |D*u(2))),
where the last inequality is due to H%[u] < H[u]. This yields (4.3) with m™1

on the right multiplied by N times the Ly(G)-norm of 1 + |u| + |Du| + |D?ul|.
Obviously, this is enough and the lemma is proved. ([
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Set
Plu](z) = sup a;; D;ju(x).
a€Ss
By Theorem 14.1.6 of [9] for each K the equation

max(Huk], Plux] — K) =0

in G (a.e.) with boundary condition ug = g € C? has a solution ug € W72(G) for
any p > 1. By following the arguments in Section 7 of [8], we conclude that the
ur’s admit a representation as the value functions in the corresponding stochastic
games and by Theorem 7.1 of [8] we have ux | v uniformly on G as K — oco.
Observe that (a.e.) in G

Hluk] <0. (4.4)

Next, fix K > 0 and m € {1,2,...}. Below we introduce some objects which
may change as we change K and m, but we still do not exhibit their dependence
on K, m for simplicity of notation and because K, m are fixed for now.

Let {B(1),...,6(n)} and B(«a,z) be the family of functions 5(¢) and function
B(a, x) from Lemma 4.2 with ug in place of u. Observe that by construction and
(4.4)

sup (Laﬁ(a")uK + faﬁ(o"')) < h, (4.5)
acA
where h > 0 is such that ||h|[z, @) < 1/m.
Use this 8(a, ) in (2.3) and (2.4) to define

a.x a.x a. B (a.,x)x
=y (o), Bl w) = Blawyi " (p), we = af PO,

First, we want to prove that x; and y; are close when p is sufficiently small. This
will be based in part on the fact that the couple (y¢, x;) is a solution of the system

dzy =00y, Blay, yr), xe) dwe + b(ow, Blow, yr), x¢) di,

(p) (p) (4.6)
dys =0\ (o, e, yt) dwg + Y (v, yi, yi) dt.
An important and easy consequence of Assumption 2.3 is that

o) (a,y) (0 (e, )" = 1?(5i)), (4.7)

for all p, a,y.

Lemma 4.3. For any vector-valued h = h(«, 8, x) define
I2(6.0.9) 1= M6 80w 9) = [ W@ Bny+ 025+ p2)C() def
Then for any € > 0 there exist po > 0 and a function A}p‘(y) such that, for all
p€(0,p0], &,a€ A,y €@, and h =0,b,c, f we have
(&, a,y) < ANY), 18] La@) <e (4.8)

Proof. According to Assumption 2.2 for any € > 0 there exists a finite subset A(E)
(independent of p) of A such that

sup I (&, 0,y) < sup IN(G,oy)+e< D IN(A,a,y) +e
aca acA(e) acA(e)
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Take an & € A(e) and observe that the set

S(a) :={h(&,B(a,-),);a € A}
is finite (see Lemma 4.2) and each element of this set is bounded and measurable
with respect to y. By the Lebesgue theorem

“ 2
Da,a,y) < >0 [s(y) —/ s(y +p2)¢(2)dz|” =0
seS (&) R4
as p | 0 at almost any point y € R¢. Hence,
Baans Y% - [ st del o= b+
Rd
acA(e) s€s(a)

where ALL . are bounded uniformly with respect to p and tend to zero as p | 0
(a.e.) in RY, in particular, in Lq(G) for any €. As a result, for any &,a € A and
yeG,
hya h
Iy(G,00y) <A (y) +e,
where for all sufficiently small p
||AZ’E + €l a(e) < 2eN(d)diam(G).

This is, certainly, enough and the lemma is proved. O

Lemma 4.4. Introduce 0(p) = 0*B°(@2)%(p) as the minimum of the first exit

times of x?"ap(a"z)z and of y*(p) from G. Then
sup EQA"0) sup |z, — yi(p)|* = 0 (4.9)
aen £<0(p)

as p | 0 uniformly with respect to x € G.

Proof. By Corollary 3.4 and Lemma 4.3, for any €,7 > 0 the left-hand side of
(4.9) is less than NeNTe + N/T, where N is independent of p,e, T, for all small
enough p and so is its lim sup as p | 0. Sending first € | 0 and then T" — oo yields
the desired result. The lemma is proved. O

Corollary 4.5. For h =o0,b,c, f we have
0(p)
sup Eg-pr () / h(o, Blow, ye(p), ) — B (e, ye(p), ye(p))| dt — 0 (4.10)
a.€ 0
as p | 0 uniformly with respect to x € G, where h'P) (a,y, ) is introduced according

o (2.3).

Indeed, since h is continuous in x uniformly with respect to (a, ), one can
replace z; in (4.10) with y;(p) only incurring the error

sup B2 29(p)w( sup [z; - yo(p))
a.eA t<6(p)

) 1/2 ) 1/2
< ( sup E2P (D‘"I)OQ(p)) ( sup BB a2 ( sup |z — yt(p)|) , (4.11)
a.eA a.eA t<6(p)
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where w(r), r > 0, is a bounded continuous function, w(0) = 0. By Lemmas 3.1
and 4.4 this error tends to zero as p | 0 uniformly with respect to x € G. Due
to Theorem 2.2.2 of [4] and Lemma 4.3, what remains after the above mentioned
replacement is less than a constant independent of p times the Lgz-norm of AZ7
which also tends to zero as p | 0 uniformly with respect to = € G.

Theorem 4.6. For any x € G, p,v,xk > 0 we have

uK(:v) > sup E;x,ﬁp(oc.,x)[/ f(l’t)e_(bt dt+g($7)€_¢"]
a.eA 0

(p)(1 4+ K%)= Ny(7) = Na() — N, (4.12)
where N1(7) is independent of p,k, N1(v) — 0 as v — 00, Na(k) is independent
of p, Na(k) = 0 as k | 0, N depends only on d,d, Ky, and the diameter of G, u(p)
is independent of v,k and p(p) — 0 as p | 0.

Proof. For simplicity of notation we drop the argument p of 6 and y;. Take a. € 2
and observe that in the notation from Lemma 4.4 by It&’s formula

B D (sp)e = g z)

0
+E§"ﬁp(a"m)/ [a”(at:ﬂ(atvyt)axt)Dz’juK(xt)
0

+b% (v, Baw, ye ), we) Diusc () — e, Blove, ye), we)urc () | e dt, (4.13)
where, dropping obvious values of indices,

t
¢t=/0 c(as, Blas, ys), Ts) ds.

By Lemma 3.5 with h = ug, Dug, D*ug, for any x,7 > 0, the last term in
(4.13) is less than

0 ..
EY / [a' (v, B(ov, ye), y¢) Diju (ye)
0

+b7 (a, Blove, yt), v ) Divre () — e, B, ye), ye)ure ()| e~ dt

I, p,x) + IP(ae, p,x) + 19(a, p, )]
, 1/2
+N1(y) + Nao(k) + Nyr ™2 (E;"ﬁ (. ,x) sup |z — yt|2) , (4.14)
<0

where N1, Na, N3 are independent of a.., p, and 2, N1(y) = 0asy — oo, Na(k) — 0
as k | 0, and we use the notation

6
Ih<a-7p? ZL') = E?-,Bp(a"x) / |h(at75(at7yt>7xt) - h(at76(atayt)7yt)‘ dt
0

By Corollary 4.5 the factor of v in (4.14) is dominated by u(p) for an appropriate
function p(p) which tends to zero as p | 0. The last term in (4.14) is dominated
by pu(p)s—2.

After that taking into account (4.5) and Theorem 2.2.2 of [4] we see that

Eg P (wg)e™® < ugc () + u(p)(v + £7%) + Ni(7) + Na(k)



MARKOV POLICIES 15

0
*E.?ﬂp(a"m) / flow, Blaw, ye), ye)e” %t dt + Nm ™, (4.15)
0

where N depend only on d, v, Ky and the diameter of G. We can replace the last
y¢ in the integrand in (4.15) by z; incurring as in Corollary 4.5 another error term
like p1(p) which goes to zero as p | 0. By adding to this that

EeB ) g(g Ym0 = BB Dy (1, )e 07

< E;‘ﬂp(a"x)uK(xg)eﬂb" + sup \DuK|E§“BP(a"‘T) |z — ol
G
-+ sup |uK|E§'5P(O‘"z)(T —-0) < E;"‘ﬁp(“”r)uK(xg)e_%
G

+NLES B ) (1 — )2 47— ),

where Ny depends only on ug, d, and Ky, we see that to prove (4.12) it suffices
now to show that

x(p) := sup Eﬁ'ﬁp(o"’x)/ dt =0
a.eA 0

as p J 0 uniformly with respect to . By Lemma 3.2 and It6’s formula we have
x(p) < BF P00 [@(2g) = @(a)] = BF P [@(x) — (yo) o<

and it only remains to use Lemma 4.4 once more. The theorem is proved. ]

Proof of Theorem 2.4. First choose and fix K and m so that |[v —ug| < e/4
and Nm~—1 < €/4, where N is taken from Theorem 4.6. Then find and fix x and
v from Ni(7v) + N2(k) < £/4. Finally find p such that

pp)(L+y+r7%) <e/4

Then (4.12) will become (2.14).
The last statement of the theorem follows by construction of 3°(w.,z). The
theorem is proved.

Remark 4.7. An important particular case of Theorem 2.4 is when o, b, ¢, f are in-
dependent of «, so that we are actually dealing with a controlled diffusion process.
Also, clearly, similar statements to Theorem 2.4 hold true if we exchange the roles
of o and 8 and consider the stochastic differential game corresponding to
H[u](z) = inf sup [L%u(z) + f*°(x)],
BEB acA
in place of (4.1). Of course, one should then replace Assumption 2.2 with a similar

one about B. To reduce this game to the one we are treating, it suffices just to
rename A and B and take —u, —g and — f in place of u, g, and f, respectively.

Proof of Theorem 2.5. Fix v > 0 and replace (1.1) with

t t
Ty =+ / g&sPs (xs) dws + viby + / pevsBs (x5) ds.
0 0
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The solution of this equation is denoted by 2% (1) and by 7% (1) we denote
its first exit time from G. We take the same ¢, f,g and define v(z,v) by (2.1)
where we replace z;, 7, and ¢; with z;(v), 7(v), and

¢t(V)=/O P (x,(v)) ds,

respectively. Obviously to thus obtained new stochastic differential game we can
apply Theorem 2.4 and conclude that for any € > 0 there exists 8(a, x), with the
properties described in Theorem 2.4 and pg > 0 such that if for p € (0, po], = € G,
and a. € A we define the process y: = y;"“(p) as a solution of

dyy = 0P (g, ye, ye) dwy + vidg + 0P (g, yp, ye) dt, >0, yo =z,  (4.16)
then

™(v)
sup EoA"(@z) [/ fze(v)e=? ™) qt
a. e 0

g0 (1))e O] < (1) + <. (4.17)
It follows that to prove the theorem it suffices to show that

B [ [ e di+ glanye ]

T(v)
B[ [ Ha)e W dt + glargpe W] 0 (1s)
0

as v | 0 uniformly with respect to a. € A, . € B, and = € G.

First observe (although this is an overkill) that Lemma 3.3 is applicable here
when ¢%’s are independent of the first space variable. Then Corollary 3.4 is also
applicable which as in Lemma 4.4 leads to the conclusion that
E&P sup |z — 2 (v)]? = 0 (4.19)

t<0(v)
as v | 0 uniformly with respect to a. € 2, 5. € B, and x € G, where 6(v) is the
minimum of exit times of z; and z4(v) from G.

Next, while proving (4.18) first assume that g = 0. Observe that, owing to
(4.19), the argument at the end of the proof of Theorem 4.6 shows that it suffices to
prove the version of (4.18) when both 7 and 7(v) are replaced with 6(v) (assuming
g=0).

Then notice that in light of the continuity of f in 2 uniform with respect to
(a, B) (cf. also (4.11))

0(v)

)
E;"‘B'/ |f(ze) — flae(v)]e™? dtSEﬁ’B'/ |f(ze) = fae(v)]dt — 0
0 0

as v } 0 uniformly with respect to a. € 2, 5. € B, and x € G.
Also

O(v) pt
< KoEP / le(xs) — e(xs(v))| dsdt
0 0
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0(v)
= KOE?B' /0 O(v) — s)|c(zs) — c(xs(v))| ds

1/2

)

< Ko| B4 0°(v)| v o]

where

o(v) 0(v)
Jgﬂ- = Eg‘:ﬂ' / le(xs) — C(Z‘s(l/))|2 ds < 2KOE§"5’ / le(xs) — e(xs(v))] ds.
0 0

One sees easily as above that 125 — 0 as v | 0 uniformly with respect to o. € ,
B. €%, and z € G.

It remains to deal with the terms containing g in (4.18). Since g € C%(G), by
1t6’s formula we have

B gla,)e " = g()
B / [ (20) Dijg () + bi(w) Dig(ar) — e(wr)g(an)] e de,  (4.20)

()

77 g y)e ™0 = gla) + (/22 B | Mgl a
T(v)
1B / (a5 (22 (1)) Dijg(e(v)) + byl () Digla (1))
() g @i (v))] e~ dt. (4.21)

The second term on the right in (4.21) clearly goes to zero as v | 0 uniformly
with respect to a. € A, 5. € B, and x € G. The difference of the remaining ones
in (4.20) and (4.21) is shown to do the same by the first part of the proof. The
theorem is proved.

Proof of Lemma 2.6. This proof is very similar to the second part of the
proof of Theorem 2.5. First we assume that g = 0. Take § = 8" (@2)z(p)
from Lemma 4.4 and note that the argument at the end of the proof of Theorem
4.6 shows that it suffices to prove the version of (2.7) when both 7 and 7(p) are
replaced with 6(p) (assuming g = 0).

Next, observe that

0(p)
BB (@) / F(@e) — £ (a, ya(p)) e it
0

0(p)

< EeB (o) / |f (@ Blae, ye(p)s ) — FO (s ye(p) we(p))] dt. (4.22)

By Corollary 4.5 the last expression tends to zero as p | 0 uniformly with respect
toa. €A and z € G.
Also as in the above proof
6(p)

I;xﬁ(")(a.,z) — Egﬁ(”(a.,z)/ £ (ag, e (p))| e~ % — e~ 2 ()| gt
0

/2

)

< K [E§-3<p>(a.,x)93 (p)} 1/2 {J?_ﬁw(a_,m)] 1
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.8 (a.,x) st

where J ands for

0(p)
Eoa” (e >/ (e, Blats, ys(p))s ) — ¢ (g, )P ds
0

0(p)
< 2K0E3ﬂ(p)(“"x)/ (s, Blas, ys(p)), s) — P (g, y5)| ds.
0

Ixﬁp( ’)—>Oasp¢0un1f0rmly

Lemma 3.1 and Corollary 4.5 convince us that
with respect to a. € A and x € G.

It remains to deal with the terms containing g in (2.7). Again by using Itd’s
formula we write

By A7 (e )e 0 = g(a)

) T _
—I—E;)‘ﬂ( (@) / [aij(x¢)Dyjg(xe) + bi(2) Dig(s) — c(ae)g(we) e~ dt.
0

Similarly we transform the term with ¢ involving 7(p) and then we reduce the
problem to estimating the terms like the ones we started with. The lemma is
proved.

5. A Particular Case where A is a Singleton

Here we assume that A is a singleton and will not write o and «. in our notation.
In particular, now we are dealing with a controlled diffusion process given as a
solution of the equation

dyt = 0-(5t, yt) dwt + b(ﬁtv yt) dtv t Z 07 Yo = . (51)
Its solution is denoted by yf ¥, Our goal is to minimize
EP [/ fy)e % dt + g(yT)e_‘b*} (5.2)
0

over 3. € B, where (according to our standard notation) 75-% is the first exit time
of y/* from G, f(ye) = f(Br.9) "),

t
67 = /0 ¢(Bay ") ds.

In this case Theorem 2.4 becomes the following.

Theorem 5.1. Under the assumptions of Theorem 2.4 for any e > 0 there exist
a Borel measurable B-valued function B(z) on R% and py > O such that, if for
p € (0, pol. we define

o) = [ (Bt €+ pOC(E) e,

introduce b\P)(z,y) similarly, and for x € G define the process z, = z¥(p) by
dzy = U(”)(zt, zt) dwy + b(p)(zt, zi)dt, t>0, z9=u, (5.3)
and set 3 (x) = B(z£(p)), then

inf EPS ! —%t 4t - —¢r
it B[ faeta+ gtun)e )
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> By [/OT Flye)e™? dt + g(yr)e 7] —e. (5.4)

Here is a version of Theorem 2.5

Theorem 5.2. In Theorem 5.1 drop Assumption 2.3 but suppose that on (2, F, P)
there is a d-dimensional Wiener process (¢, Ft),t > 0, independent of w;. Then
for any € > 0 there exists a constant v > 0 such that all assertions of Theorem 2.4
hold true if we add to the right-hand side of (5.3) the term v diby.

Remark 5.3. In Section 6 we are going to maximize (5.2) instead of minimizing
it. One problem is reduced to another just by changing signs of f and g. Also it
is worth noting that in Section 6 the parameter used in maximization is called a.
instead of ..

6. Adjoint c-optimal Markov Policies for «

Take € > 0, p > 0, B(«,z) from Theorem 2.4 use the notation (2.3) and, for
a. € A and z € R?, defined the controlled diffusion process y;(p) = y*“(p) by

dy; = U(p)(ahyt) dw; + b (ag,ye)dt, t>0, yo=uzx, (6.1)

with the reward function

(p)
Eﬁ{/ FOelp))e P dt + g(yr(p) (p))e ). (6:2)
0

We are going to maximize (6.2) treating « here as 8 in Section 5 and adjusting
the maximization problem to the one of minimization.

However, there is a formal objection to overcome before we can translate the
results of Section 5 to our situation. Namely, in Section 5, the functions o, b, ¢, f as
inherited from taking A as a singleton were assumed to be continuous with respect
to 3. Therefore, here we need our o), b(P) ¢(P) | £(P) to be continuous with respect
to « and they may fail to be such because, even if h in (2.3) is continuous in the
first argument « uniformly with respect to 8, S8(«,y + pz) can be discontinuous
as a function of . Indeed, for different a, 5(«v, 2) can be very different functions
of . However, in light of the second statement in Theorem 2.4 to make S(a,x)
continuous with respect to « it suffices just to change the distance function in A
keeping it the same as a1, as belong to the same A; and defining it as 1 otherwise.
By the way, this change in no way affects the set of policies of o and only allows
us to formally apply the results of Section 5.

According to Theorem 5.1 for any € > 0 there exist a Borel measurable A-valued
function af(z) on R? and a Lipschitz continuous functions &(z) and b(z) on R?
with values in the set of d x d;-matrices and in R?, respectively, such that, if for
x € G we define the process z{ by

dzy = 6(z) dwy + b(z) dt, t>0, =z =uz, (6.3)
and set ay’*(x) = a®(2¥), then

7(p)
sup £ [ [ £0wnlp)e ) dt + g(ur ()0
. € 0
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e 7(p)
<B[ [ IO dt gl (p)e 0] e (6
0

Finally, due to Lemma 2.6, (6.4) implies that (2.9) holds with 3¢ in place of ¢.
This proves part (a) of Theorem 2.7. The proof of part (b) is quite similar and
the theorem is proved.

7. Proof of Theorem 2.11

If in Theorem 14.1.6 of [9] we replace H[u] and Plu] by —H[—u] and —P[—u],
then we will see that for any K > 0 the equation

min(H[u_g], —P[-u_g]+ K) =0

in G (a.e.) with boundary condition u_g = g € C? has a solution u_x € W2(G)
for any p > 1. By following the arguments in Section 7 of [8], we conclude that
u_g T v uniformly on G as K — oo. Observe that (a.e.) in G

Hlu_x] > 0. (7.1)

Fix K > 0 and m € {1,2,...}. In the same way in which we found above the

function B(x) we find a Borel A-valued function «(z) such that in G

inf [Le()8q, (Bl > _1/m.

ﬁlrelB[ u-g + f°] = =1/m
Our goal is to prove that if K and m are large enough and p is small enough, then
the above a(x) is the one we are talking about in Theorem 2.11.

Take 47 “(p) and of(B.,x) = a(y!“(p)) from the statement of the theorem.
Introduce § = §2"(82)8.2(p) as the minimum of the first exit times of x?ﬂ(ﬁ”m)ﬁ’r
and of ¥/ “(p) from G. Then in the same way in which we arrived at Lemma 4.4
we obtain that

sup Eg" 528 sup |z, —yi(p)]* = 0
B.eB +<0(p)
as p | 0 uniformly with respect to z € G.

Then following closely the argument in Section 4 we get an analog of Theorem

4.6 that for any = € G, p,7,k > 0 we have

u_g(z) < inf E7B-2IB] / flz)e % dt + g(x,)e 7]
B.€B 0

+u(p) (1 +7 +£72) + Ni(y) + No(k) + Nm ™1,

where Ni(7v) is independent of p, k, N1(y) — 0 as v — 00, Na(k) is independent
of p, Na(k) — 0 as k | 0, N depends only on d, d, Ky, and the diameter of G, u(p)
is independent of v,k and u(p) — 0 as p | 0.

After that the assertion of Theorem 2.11 is obtained by the same short argument
as in Section 4 in the proof of Theorem 2.4.
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