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Abstract. We consider time-homogeneous uniformly non degenerate sto-
chastic differential games in domains and propose constructing ε-optimal

strategies and policies by using adjoint Markov strategies and adjoint Markov
policies which are actually time-homogeneous Markov, however, relative not
to the original process but to a couple of processes governed by a system con-

sisting of the main original equation and of an adjoint stochastic equations of
the same type as the main one. We show how to find ε-optimal strategies and
policies in these classes by using the solvability in Sobolev spaces of not the
original Isaacs equation but of its appropriate modification. We also give an

example of a uniformly nondegenerate game where our assumptions are not
satisfied and where we conjecture that there are no not only optimal Markov
but even ε-optimal adjoint (time-homogeneous) Markov strategies for one of
the players.

1. Introduction

The present paper is concerned with finding ε-optimal strategies in time-homo-
geneous uniformly nondegenerate stochastic differential games in domains. Much
research has been done in stochastic differential games since the early works of
Isaacs, Evans, Fleming, Friedman, Lions and Souganidis, to name just a few au-
thors. These authors were mainly dealing with the dynamic programming princi-
ple, the fact that the value functions satisfy Isaacs equations (at least in viscosity
sense), and the existence of equilibrium points. We are dealing with ε-optimal
strategies in the following setting.

Let Rd = {x = (x1, ..., xd)} be a d-dimensional Euclidean space and d1 ≥ 1 be
an integer. Assume that we are given separable metric spaces A and B, and let,
for each α ∈ A, β ∈ B, the following functions on Rd be given:

(i) d× d1 matrix-valued σαβ(x) = σ(α, β, x) = (σαβ
ij (x)),

(ii) Rd-valued bαβ(x) = b(α, β, x) = (bαβi (x)), and
(iii) real-valued cαβ(x) = c(α, β, x) ≥ 0, fαβ(x) = f(α, β, x), and g(x).
Under natural assumptions which will be specified later, on a probability space

(Ω,F , P ) carrying a d1-dimensional Wiener process wt one associates with these
objects and a bounded domain G ⊂ Rd of class C2 a stochastic differential game
with the diffusion term σαβ(x), drift term bαβ(x), discount rate cαβ(x), running
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cost fαβ(x), and the final cost g(x) paid when the underlying process first exits
from G. More precisely we consider the process defined by the equation

xt = x+

∫ t

0

σαsβs(xs) dws +

∫ t

0

bαsβs(xs) ds, (1.1)

where α· and β· are admissible actions of two players one of which is maximizing
and the other minimizing an expression like

E

∫ τ

0

fαtβt(xt) dt,

where τ is the first-exit time of the process from G. We adopt the setting almost
identical to that of [2] (although our set of admissible policies of α and β is, gener-
ally, wider) and define the order of players and their policies and strategies. Then
under very general conditions the value function turns out to be a viscosity solution
of the Isaacs equation (see [2]). As in the case of controlled diffusion processes and
Bellman’s equations it is natural to use the Isaacs equation to construct ε-optimal
strategy of one player and ε-optimal policies of the other. By using discrete time
approximations of this equation this was done in [1] and lead to the so-called al-
most optimal approximately Markov time-inhomogeneous policies, whose actions
at time t depend on a very near past history. Similar constructions one can find
in [10].

In this article to find near optimal strategies and policies, we propose using
adjoint Markov strategies and adjoint Markov policies which are actually time-
homogeneous Markov, however, relative not to the original process xt but to a
couple (xt, yt) which is given as a solution of a time-homogeneous system consisting
of (1.1) and adjoint stochastic equations of the same type as (1.1). We show how to
find ε-optimal strategies and policies by using the solvability in Sobolev spaces of
not the original Isaacs equation but of its appropriate modification. Observe that
it is unknown whether general even uniformly nondegenerate Isaacs equations have
solutions in Sobolev spaces. We also give an example of a uniformly nondegenerate
game where our assumptions are not satisfied and where we conjecture that there
are no not only optimal Markov but even ε-optimal adjoint (time-homogeneous)
Markov strategy for one of the players.

As a point of comparison note that in [2] and [1] the authors deal with time-
inhomogeneous possibly degenerate stochastic differential games on a finite time
interval in the whole space. In our case we have a uniformly nondegenerate time-
homogeneous stochastic differential game in a domain where it is quite natural to
look for time-homogeneous Markov strategies and policies.

The article is organized as follows. In the next section we present our main
results. In Section 3 we prove some auxiliary results. Theorems 2.4 and 2.5 and
Lemma 2.6 are proved in Section 4. In Section 5 we apply the previous results to
the case of controlled diffusion processes, to which belongs Theorem 2.7 proved in
Section 6. Finally, in Section 7 we prove Theorem 2.11 saying what happens if the
Isaacs condition is satisfied.

By N sometimes with arguments we denote various constants, depending only
on the arguments if they are present, but which may change from one occurrence
to another and, if in a statement, we are proving, there is a claim that N depends
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only on a, b, ..., then in the proof all constants called N depend only on a, b, ...
unless specifically indicated otherwise.

2. Main Results

Set aαβ = (1/2)σαβ
(
σαβ

)∗
.

Assumption 2.1. (i) a) The functions σ, b, c, f are continuous with respect to
β ∈ B for each (α, x) and continuous with respect to α ∈ A uniformly with
respect to β ∈ B for each x. b) These functions are continuous with respect to x
uniformly with respect to α and β, the function g belongs to C2(Rd).

(ii) There are constants K0 and K1 such that and for any x, y ∈ Rd (α, β) ∈
A×B

∥σαβ(x)− σαβ(y)∥ ≤ K1|x− y|, |bαβ(x)− bαβ(y)| ≤ K1|x− y|,

∥σαβ(x)∥, |bαβ(x)|, |cαβ(x)|, |fαβ(x)| ≤ K0.

(iii) There is a constant δ ∈ (0, 1] such that for any α ∈ A, β ∈ B, and x, λ ∈ Rd

we have

δ|λ|2 ≤ aαβij (x)λiλj ≤ δ−1|λ|2.
The reader understands, of course, that the summation convention is adopted

throughout the article.

Note that Assumption 2.1 (iii) obviously implies that d1 ≥ d.
Let (Ω,F , P ) be a complete probability space, let {Ft, t ≥ 0} be an increasing

filtration of σ-fields Ft ⊂ F such that each Ft is complete with respect to F , P ,
and let wt, t ≥ 0, be a standard d1-dimensional Wiener process given on Ω such
that wt is a Wiener process relative to the filtration {Ft, t ≥ 0}.

The following by now standard setting originated in [2] although we prefer the
notation introduced in [7]. The set of progressively measurable A-valued processes
αt = αt(ω) is denoted by A. Similarly we define B as the set of B-valued progres-
sively measurable functions. These are the sets of policies. By B we denote the
set of (strategies) B-valued functions β(α·) on A such that, for any T ∈ (0,∞)
and any α1

· , α
2
· ∈ A satisfying

P (α1
t = α2

t for almost all t ≤ T ) = 1,

we have

P (βt(α
1
· ) = βt(α

2
· ) for almost all t ≤ T ) = 1.

For α· ∈ A, β· ∈ B, and x ∈ Rd define xα·β·x
t as a unique solution of the Itô

equation (1.1) and set

ϕα·β·x
t =

∫ t

0

cαsβs(xα·β·x
s ) ds.

Next, recall that G is a bounded domain in Rd of class C2, define τα·β·x as the

first exit time of xα·β·x
t from G, and introduce

v(x) = inf sup
β∈B α·∈A

Eα·β(α·)
x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ

]
, (2.1)
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where the indices α·, β, and x at the expectation sign are written to mean that
they should be placed inside the expectation sign wherever and as appropriate,
that is

Eα·β·
x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ

]
:= E

[
g(xα·β·x

τα·β·x)e
−ϕα·β·x

τα·β·x +

∫ τα·β·x

0

fαtβt(xα·β·x
t )e−ϕα·β·x

t dt
]
.

Observe that this definition makes perfect sense due to Theorem 2.2.1 of [4] and
v(x) = g(x) in Rd \ D. Similar abbreviated notation will be used in other cases
when the underlying processes and functions depend on initial data or other pa-
rameters and functions.

Before stating our first main result we introduce two more assumptions and a
notation.

Assumption 2.2. For any ε > 0, there exists a finite set {α(1), ..., α(nε)} ⊂ A
such that for any α ∈ A there exists an i ∈ {1, ..., nε} such that for u = σ, b, c, f it
holds that

sup
β∈B
x∈G

|uαβ(x)− uα(i)β(x)| ≤ ε. (2.2)

It is easy to see that one can choose i = iε(α) satisfying (2.2) to be a Borel
function.

Assumption 2.3. Either σαβ(x) are symmetric positive-definite matrix-valued

functions or there is a constant ν > 0 such that σαβ
i,d1−d+j(x) = νδij for all i, j ≤ d

and all α, β, x.

The second part of this assumption means that the last d columns of σ form
an identity matrix multiplied by ν. The only use of this assumption is (4.7) which
can be satisfied in very many other situations.

Take and fix a ζ ∈ C∞
0 (Rd) with unit integral and for a Borel measurable

B-valued function β(α, x) on A × Rd and bounded measurable (real-, vector-, or
matrix-valued) functions h(α, β, x) given on A×B × Rd and ρ > 0 set

h(ρ)(α, y, x) =

∫
Rd

h(α, β(α, y + ρz), x+ ρz)ζ(z) dz, h(ρ)(α, y) = h(ρ)(α, y, y).

(2.3)

Theorem 2.4. Under the above assumptions, for any ε > 0 there exist a Borel
measurable B-valued function β(α, x) on A × Rd and ρ0 > 0 such that, if, for
ρ ∈ (0, ρ0], x ∈ G, and α· ∈ A, we define the process yt = yα·x

t (ρ) as a solution of

dyt = σ(ρ)(αt, yt) dwt + b(ρ)(αt, yt) dt, t ≥ 0, y0 = x, (2.4)

where σ(ρ), b(ρ) are defined according to (2.3), and set β
ρ
t (α·, x) = β(αt, y

α·x
t (ρ)),

then

v(x) ≤ sup
α·∈A

Eα·β
ρ(α·,x)

x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ

]
≤ v(x) + ε. (2.5)
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Furthermore, there exists a finite number of mutually disjoint subsets Ai, i =
1, ..., n, of A such that A =

∪
i Ai and for each i we have β(α1, x) = β(α2, x)

whenever α1, α2 ∈ Ai.

Observe that, obviously, (2.4) has a unique solution. Strategies like

β(αt, y
α·x
t (ρ))

are naturally called adjoint Markov strategies, because their actions at time t
albeit are not based only on the current action of α and the current state of xt but
still use instead of the latter the current state of an adjoint process yt = yα·x

t (ρ),
which is defined as a solution of an adjoint equation (2.4) (controlled exclusively

by α). In addition, as we will see, yα·x
t (ρ) is close to xt = x

α·β
ρ(α·,x)x

t if ρ is small.
In the next theorem Assumption 2.3 is not used.

Theorem 2.5. In Theorem 2.4 drop Assumption 2.3 but suppose that on (Ω,F , P )
there is a d-dimensional Wiener process (ŵt,Ft), t ≥ 0, independent of wt. Then
for any ε > 0 there exists a constant ν > 0 such that all assertions of Theorem 2.4
hold true if we add to the right-hand side of (2.4) the term ν dŵt.

Here we see another instance of adjoint Markov strategies of the player β. With

the choice β
ρ
t (α·, x) = β(αt, y

α·x
t (ρ)) the process xt = x

α·β
ρ(α·,x)x

t satisfies

dxt = σ(αt, β(αt, yt), xt) dwt + b(αt, β(αt, yt), xt) dt, t ≥ 0, x0 = x, (2.6)

where yt is defined from (2.4). Therefore, for the player α to find an adequate
response to the above strategy β

ρ
t (α·, x), he should solve a more or less standard

problem of optimal control of the two-component diffusion process (yt, xt) governed
by the system (2.4)-(2.6) and maximize the expectation in (2.5). An unpleasant
feature of this couple is that it is always a degenerate process. It turns out that
one can reduce the problem to optimal control of only yt when ρ is sufficiently
small and then the same Theorem 2.4 applied in the case of only one player will
provide an adjoint Markov policy while controlling yt which will become an adjoint
Markov policy of α in the original game. The above mentioned reduction of the
optimal control problem is based on the following.

Lemma 2.6. One more assertion can be added in Theorems 2.4 and 2.5: for any
α· ∈ A ∣∣∣Eα·β

ρ(α·,x)
x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ

]
−Eα·

x

[ ∫ τ(ρ)

0

f (ρ)(yt(ρ))e
−ϕt(ρ) dt+ g(yτ(ρ)(ρ))e

−ϕτ(ρ)(ρ)
]∣∣∣ ≤ ε, (2.7)

where

ϕα·x
t (ρ) =

∫ t

0

c(ρ)(αs, y
α·x
s (ρ)) ds,

where f (ρ) and c(ρ) are defined according to (2.3), and τα·x(ρ) is the first exit time
of yα·x

t (ρ) from G.

This lemma and Theorems 2.4 and 2.5 almost immediately lead to the following
result about ε-optimal adjoint Markov policies for α.



6 N. V. KRYLOV

Theorem 2.7. Let either
(a) the assumptions of Theorem 2.4 be satisfied, or
(b) the assumptions of Theorem 2.5 be satisfied.

Take ε > 0, x ∈ G, ρ, and βρ(α·, x) from Theorem 2.4 or 2.5, respectively. Then

there exist Lipschitz continuous in x d×d1-matrix valued σ̂(x) and Rd-valued b̂(x)
given on Rd, there exists a Borel measurable A-valued function αε(x) on Rd, and
in case (b) there also exists a constant ν > 0, such that, if for x ∈ G we define the
process zt = zxt by

dzt = σ̂(zt) dwt + b̂(zt) dt, t ≥ 0, z0 = x, (2.8)

in case (a) with the additional term ν dŵt on the right-hand side of (2.8) in case
(b) and set αε

t = αε(zxt ), then

sup
α·∈A

Eα·β
ρ(α·,x)

x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ

]
≤ E

αε
· β

ρ(αε
· ,x)

x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ

]
+ ε. (2.9)

Remark 2.8. The above results hold under milder assumptions than the ones im-
posed. For instance, an absolutely cheap generalization is that it suffices to have
g ∈ C(Rd) rather than g ∈ C2(Rd) because one can use uniform approximations
of g. The domain Ω also need not be in C2. It is quite sufficient for it to sat-
isfy the exterior cone condition or be even worse than that. Again appropriate
approximations would do the job.

The point of the article was to promote adjoint Markov policies and strategies,
rather than deal with numerous side problems arising along the way.

Example 2.9. Let d = 1, G = (−1, 1), A = B = {±1}, σ(α, β) = β, c = 0,
f = (1− |x+ αβ|)+, g ≡ 0. The Isaacs equation is

sup inf
α∈A β∈B

[(1/2)u′′ + (1− |x+ αβ|)+] = 0,

which is equivalent to

0 = (1/2)u′′ + sup inf
α∈A β∈B

(1− |x+ αβ|)+ = (1/2)u′′.

The solution of this equation in G with zero boundary data is zero. The inf inside
is zero for any α and is obtained on β(α, x) = α signx (sign 0 := −1).

Like in [2] and [1], let our probability space be the space C([0,∞)) of real-valued
continuous functions on [0,∞) with Wiener measure on the σ-field of Borel subsets
of C([0,∞)). Let the Wiener process be defined by wt(x·) = xt, t ≥ 0. Also let
Ft be the σ-field generated by ws, s ≤ t.

In such situation the equation

dxt = signxt dwt, t ≥ 0, x0 = 0 (2.10)

does not have Ft-adapted solutions at all (Tanaka’s example), and β cannot use
the strategy β(α, x) = α signx, since α can choose to be 1 for all times.
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The author believes that in this example there is no (time-homogeneous) ε-
optimal adjoint Markov strategies for β if ε is small enough. Regarding time-
inhomogeneous adjoint Markov strategies the reader is referred to [5]. However,
our results show that, if we just take two independent copies of our probability
space with wt being the Wiener process on one copy and ŵt being the Wiener
process on the other, take a mollification χ(x) of signx take a ν > 0 and introduce
an adjoint process by

dyt = αtχ(yt) dwt + ν dŵt, t > 0, y0 = 0,

then the strategy βt(α·) = αtsign yt will be ε-optimal for β if the mollification is
done with kernel of sufficiently small size and ν is sufficiently small. By the way,
on thus extended probability space (2.10) still does not have solutions.

Assumption 2.10. Assumption 2.2 is not necessarily satisfied, but for any ε > 0,
there exists a finite set {β(1), ..., β(nε)} ⊂ B such that for any β ∈ B there exists
an i ∈ {1, ..., nε} such that for u = σ, b, c, f it holds that

sup
α∈A
x∈G

|uαβ(x)− uαβ(i)(x)| ≤ ε, (2.11)

and for any uij , ui, u on G we have

sup inf
α∈A β∈B

[
aαβij uij + bαβi ui − cαβu+ fαβ

]
= inf sup

β∈B α∈A

[
aαβij uij + bαβi ui − cαβu+ fαβ

]
. (2.12)

When the Isaacs condition (2.12) is satisfied it is natural to introduce A as
the set of A-valued functions α(β·) on B such that, for any T ∈ (0,∞) and any
β1
· , β

2
· ∈ B satisfying

P (β1
t = β2

t for almost all t ≤ T ) = 1,

we have
P (αt(β

1
· ) = αt(β

2
· ) for almost all t ≤ T ) = 1.

Theorem 2.11. Under the Assumptions 2.1, 2.3, and 2.10 for any ε > 0 there
exist a Borel measurable A-valued function α(x) on Rd and ρ0 > 0 such that, if

for ρ ∈ (0, ρ0], x ∈ G, and β· ∈ B we define the process yt = yβ·x
t (ρ) as a solution

of
dyt = σ(ρ)(βt, yt) dwt + b(ρ)(βt, yt) dt, t ≥ 0, y0 = x, (2.13)

where σ(ρ) and b(ρ) are found following the example

h(ρ)(β, y) =

∫
Rd

h(α(y + ρz), β, y + ρz)ζ(z) dz,

and set αρ
t (β·, x) = α(yβ·x

t (ρ)), then

v(x) ≥ inf
β·∈B

Eαρ(β·x)β·
x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ

]
≥ v(x)− ε. (2.14)

Remark 2.12. Analogous theorem is valid when we drop Assumption 2.3 in The-
orem 2.11 but suppose that on (Ω,F , P ) there is a Wiener process (ŵt,Ft), t ≥ 0,
independent of wt.
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Remark 2.13. Observe that in Theorem 2.4 we are talking about the function
β(α, x) depending both on α and x and in Theorem 2.11 we have a function α(x)
of only x. Of course, this is because (2.11) is assumed in Theorem 2.11.

Remark 2.14. As a corollary of Theorems 2.4 and 2.11 we obtain a well-known
fact that our game has value and our strategies for β and α form, so to speak,
ε-saddle point and the game may be called fair.

3. Auxiliary Results

Here is a well-known result which, for instance, is a particular case of Lemma
2.1 of [7].

Lemma 3.1. Let σt be a d×d1-matrix-valued and bt be an Rd-valued progressively
measurable functions on Ω× (0,∞). Suppose that

∥σt∥, |bt| ≤ K0, (3.1)

|σ∗
t λ| ≥ ν|λ|2 (3.2)

for all λ ∈ Rd and (ω, t), where ν > 0 is a fixed constant. Take x ∈ G and define
τ as the first exit time from G of

xt = x+

∫ t

0

σs dws +

∫ t

0

bs ds.

Then for any n = 1, 2, ... there exists a constant N , depending only on n, d, ν,
K0, and the diameter of G, such that Eτn ≤ N .

The following result is also very well known (can be obtained, for instance, by
combining Lemma 2.8 of [3] and Lemma 8.5 and Theorem 3.1 of [6]). By Sδ we
denote the set of d × d symmetric matrices whose eigenvalues are between δ and
δ−1. Introduce Di = ∂/∂xi, Dij = DiDj and let Du denote the gradient of u.

Lemma 3.2. Let ν ∈ (0, 1]. Then there exists a function Φ ∈ C2(G) such that
Φ > 0 on G, Φ = 0 on ∂G, |DΦ| ≥ 1 on ∂G, and

aijDijΦ+ biDiΦ ≤ −1

on G for any a = (aij) ∈ Sν and b = (bi) such that |b| ≤ K0.

The next few results are needed while investigating how far off the adjoint
processes are of real controlled ones.

Lemma 3.3. Let σ
(i)
t (y, x), i = 1, 2, be d × d1-matrix-valued and b

(i)
t (y, x), i =

1, 2, be Rd-valued functions on Ω × [0,∞) × Rd × Rd. Suppose that for each
T ∈ [0,∞) these functions restricted to Ω× [0, T ]× Rd × Rd are measurable with
respect to FT⊗B(Rd)⊗B(Rd), where B(Rd) is the Borel σ-field in Rd. Assume that

σ
(i)
t and b

(i)
t are progressively measurable for any (x, y), σ

(1)
t (y, x) and b

(1)
t (y, x)

are Lipschitz continuous with respect to x with constant K1, and σ
(2)
t (y, y) and

b
(2)
t (y, y) are Lipschitz continuous with respect to y with a constant independent of
(ω, t). Suppose that there exists a function ∆(y) on G such that for any y ∈ G

∥σ(1)
t (y, y)− σ

(2)
t (y, y)∥2 + |b(1)t (y, y)− b

(2)
t (y, y)|2 ≤ ∆(y) (3.3)
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for all (ω, t). Also suppose that σ
(i)
t and b

(i)
t satisfy (3.1) and σ

(2)
t satisfies (3.2)

for all values of indices, arguments, and all λ ∈ Rd.
Take x ∈ G and define the processes xt and yt by

dyt = σ
(2)
t (yt, yt) dwt + b

(2)
t (yt, yt) dt, t ≥ 0, y0 = x,

dxt = σ
(1)
t (yt, xt) dwt + b

(1)
t (yt, xt) dt, t ≥ 0, x0 = x. (3.4)

Obviously this system has a unique solution. Finally, set θ to be the minimum of
the exit times of xt and yt from G. Then, for any T ∈ (0,∞), we have

E sup
t≤T∧θ

|xt − yt|2 ≤ NeNT ∥∆∥Ld(G), (3.5)

where N depends only on d, ν, K0, K1, and the diameter of G.

Proof. We modify the coefficients of system (3.4) by multiplying them by Iθ>t,
which does not affect (3.5), allows us to eliminate θ from it and also allows us to
formally apply Theorem 2.5.9 of [4] according to which the left-hand side of (3.5)
is less than

NTeNTE

∫ T∧θ

0

(
∥σ(1)

t (yt, yt)− σ
(2)
t (yt, yt)∥2 + |b(1)t (yt, yt)− b

(2)
t (yt, yt)|2

)
dt,

where N = N(K1). In light of (3.3), the expectation here is estimated by

E

∫ θ

0

∆(yt) dt

and it only remains to apply Theorem 2.2.2 of [4]. The lemma is proved. □
Corollary 3.4. Under the assumptions of Lemma 3.3, for any T ∈ (0,∞), we
have

E sup
t≤θ

|xt − yt|2 ≤ I +NT−1,

where I is the right-hand side of (3.5) and N depends only on d, ν,K0, and the
diameter of G.

Indeed, it suffices to use Lemma 3.3 and observe that

E sup
t≤θ

|xt − yt|2Iθ>T ≤ 4diam2(G)P (θ > T ) ≤ NT−1Eθ ≤ NT−1.

Lemma 3.5. Let σ
(i)
t , b

(i)
t , i = 1, 2, be as in Lemma 3.3 but independent of (y, x)

and assume that they satisfy (3.1) and (3.2) for all values of indices, arguments,
and all λ ∈ Rd. Take h ∈ Ld(G), x ∈ G, and set

x
(i)
t = x+

∫ t

0

σ(i)
s dws +

∫ t

0

b(i)s ds, t ≥ 0.

Introduce θ as the minimum of the first exit times of x
(i)
t , i = 1, 2, from G. Let

χ
(i)
t , i = 1, 2, be real-valued jointly measurable processes given on [0, θ] and bounded

by a constant K2.
Then for any κ, γ > 0

E

∫ θ

0

|χ(1)
t h(x

(1)
t )− χ

(2)
t h(x

(2)
t )| dt ≤ γE

∫ θ

0

|χ(1)
t − χ

(2)
t | dt+N1(γ) +N2(κ)
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+N3∥h∥Ld(G)κ
−2

(
E sup

t≤θ
|x(1)

t − x
(2)
t |2

)1/2
, (3.6)

where N1(γ) depends only on h, γ, d, ν, K0, and the diameter of G, and N1(γ) → 0
as γ → ∞, N2(κ) depends only on h, κ, d, ν,K0, and the diameter of G, and
N2(κ) → 0 as κ ↓ 0 and N3 depends only on d, ν, K0, and the diameter of G.

Proof. First observe that

|χ(1)
t h(x

(1)
t )− χ

(2)
t h(x

(2)
t )| ≤ I +K2|h(x(1)

t )− h(x
(2)
t )|,

where

I = |χ(1)
t − χ

(2)
t | |h(x(1)

t )| ≤ γ|χ(1)
t − χ

(2)
t |+ 2K2I|h(x(1)

t )|>γ
|h(x(1)

t )|.

By Theorem 2.2.2 of [4]

E

∫ θ

0

I|h(x(1)
t )|>γ

|h(x(1)
t )| dt ≤ N∥I|h|>γh∥Ld(G),

where N depends only on d, ν, K0, and the diameter of G. It follows that it
suffices to prove the lemma for χ(i) ≡ 1.

In that case we extend h beyond G by setting it to be zero there, which does
not affect (3.6), introduce h(κ) as the convolution of h and κ−dζ(x/κ), and replace
h in the left-hand side of (3.6) with h(κ). The error of the replacement is less than

2∑
i=1

E

∫ θ

0

|h(x(i)
t )− h(κ)(x

(i)
t )| dt,

which by Theorem 2.2.2 of [4] is less than a constant, depending only on ν, d, K0,
and the diameter of G, times

∥h− h(κ)∥Ld(Rd),

which tends to zero as κ ↓ 0. This gives us the term N2(κ) on the right in (3.6).
Finally,

E

∫ θ

0

|h(κ)(x
(1)
t )− h(κ)(x

(2)
t )| dt ≤ sup

Rd

|Dh(κ)|(Eθ2)1/2
(
E sup

t≤θ
|x(1)

t − x
(2)
t |2

)1/2
≤ Nκ−2∥h∥Ld(Rd)∥Dζ∥Ld/(d−1)(Rd)

(
E sup

t≤θ
|x1,t − x2,t|2

)1/2
.

The lemma is proved. □

4. Proofs of Theorems 2.4 and 2.5 and Lemma 2.6

Recall that aαβ = (1/2)σαβ
(
σαβ

)∗
and for sufficiently smooth functions u =

u(x) introduce

Lαβu(x) = aαβij (x)Diju(x) + bαβi (x)Diu(x)− cαβ(x)u(x).

Also set

H[u](x) = sup inf
α∈A β∈B

(Lαβu(x) + fαβ(x)). (4.1)
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Lemma 4.1. Take u ∈ W 2
d (G) and m ∈ {1, 2, ...}. Then for any α ∈ A there

exists a Borel B-valued function β(x) on Rd such that for almost all x ∈ G∣∣Lαβ(x)u(x) + fαβ(x)(x)−Hα(x)
∣∣ ≤ m−1, (4.2)

where

Hα[u](x) := inf
β∈B

(
Lαβu(x) + fαβ(x)

)
.

Proof. Fix α ∈ A and u ∈ W 2
d (G) and choose u, Du, and D2u so that they are

Borel functions. Then let {β(i), i = 1, 2, ...} be a countable everywhere dense set
in B. Since a, b, c, f are continuous in β,

Hα[u](x) = inf
β(i)

(
Lαβ(i)u(x) + fαβ(i)(x)

)
,

and for any x ∈ G there exists β(i) with the least i = i(x) for which

Hα[u](x) ≥ Lαβ(i(x))u(x) + fαβ(i(x))(x)
)
−m−1.

As is easy to see, i(x) is a Borel function and such is β(i(x)) as well. For x ̸∈ G
set β(x) = β0, where β0 is any element of B. Then we get a function we need and
the lemma is proved. □

Lemma 4.2. Take u ∈ W 2
d (G) and m ∈ {1, 2, ...}. Then there exists a finite

family of Borel B-valued functions {β(1), ..., β(nm)} on Rd and a Borel B-valued
function β(α, x) on A× Rd such that

(i) β(α, ·) ∈ {β(1), ..., β(nm)} for any α ∈ A;
(ii) for

hα = Lαβ(α,·)u+ fαβ(α,·) −H[u]

we have

∥ sup
α∈A

hα
+∥Ld(G) ≤ m−1. (4.3)

Proof. Again choose u, Du, and D2u so that they are Borel functions and take
{α(1), ..., α(nε)} from Assumption 2.2 for ε = 1/m. Then let β(i, x) be functions
found from Lemma 4.1 corresponding to α(i), i = 1, ..., nε. Define i(α) to be the
first i for which (2.2) holds. Finally, set

β(α, x) = β(i(α), x).

By Assumption 2.2, for any α ∈ A, β ∈ B, and x ∈ G,

Lαβu(x) + fαβ(x) ≤ Lα(i(α))βu(x) + fα(i(α))β(x)

+m−1N(1 + |u(x)|+ |Du(x)|+ |D2u(x)|),
where and below the constants denoted by N depend only on d. By plugging in
β = β(α, x) = β(i(α), x) we find that, for any α ∈ A and x ∈ G

hα(x) ≤ Hα[u](x)−H[u](x) +m−1N(1 + |u(x)|+ |Du(x)|+ |D2u(x)|)

≤ m−1N(1 + |u(x)|+ |Du(x)|+ |D2u(x)|),
where the last inequality is due to Hα[u] ≤ H[u]. This yields (4.3) with m−1

on the right multiplied by N times the Ld(G)-norm of 1 + |u| + |Du| + |D2u|.
Obviously, this is enough and the lemma is proved. □
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Set

P [u](x) = sup
a∈Sδ

aijDiju(x).

By Theorem 14.1.6 of [9] for each K the equation

max(H[uK ], P [uK ]−K) = 0

in G (a.e.) with boundary condition uK = g ∈ C2 has a solution uK ∈ W 2
p (G) for

any p > 1. By following the arguments in Section 7 of [8], we conclude that the
uK ’s admit a representation as the value functions in the corresponding stochastic
games and by Theorem 7.1 of [8] we have uK ↓ v uniformly on Ḡ as K → ∞.
Observe that (a.e.) in G

H[uK ] ≤ 0. (4.4)

Next, fix K > 0 and m ∈ {1, 2, ...}. Below we introduce some objects which
may change as we change K and m, but we still do not exhibit their dependence
on K,m for simplicity of notation and because K,m are fixed for now.

Let {β(1), ..., β(n)} and β(α, x) be the family of functions β(i) and function
β(α, x) from Lemma 4.2 with uK in place of u. Observe that by construction and
(4.4)

sup
α∈A

(
Lαβ(α,·)uK + fαβ(α,·)) ≤ h, (4.5)

where h ≥ 0 is such that ∥h∥Ld(G) ≤ 1/m.
Use this β(α, x) in (2.3) and (2.4) to define

yt = yα·x
t (ρ), βρ

t (α·, x) = β(αt, y
α·x
t (ρ)), xt = x

α·β
ρ(α·,x)x

t .

First, we want to prove that xt and yt are close when ρ is sufficiently small. This
will be based in part on the fact that the couple (yt, xt) is a solution of the system

dxt =σ(αt, β(αt, yt), xt) dwt + b(αt, β(αt, yt), xt) dt,

dyt =σ(ρ)(αt, yt, yt) dwt + b(ρ)(αt, yt, yt) dt.
(4.6)

An important and easy consequence of Assumption 2.3 is that

σ(ρ)(α, y)(σ(ρ)(α, y))∗ ≥ ν2(δij), (4.7)

for all ρ, α, y.

Lemma 4.3. For any vector-valued h = h(α, β, x) define

Ihρ (α̂, α, y) :=
∣∣h(α̂, β(α, y), y)− ∫

Rd

h(α̂, β(α, y + ρz), y + ρz)ζ(z) dz
∣∣2.

Then for any ε > 0 there exist ρ0 > 0 and a function ∆h
ρ(y) such that, for all

ρ ∈ (0, ρ0], α̂, α ∈ A, y ∈ G, and h = σ, b, c, f we have

Ihρ (α̂, α, y) ≤ ∆h
ρ(y), ∥∆h

ρ∥Ld(G) ≤ ε. (4.8)

Proof. According to Assumption 2.2 for any ε > 0 there exists a finite subset Â(ε)
(independent of ρ) of A such that

sup
α̂∈A

Ihρ (α̂, α, y) ≤ sup
α̂∈Â(ε)

Ihρ (α̂, α, y) + ε ≤
∑

α̂∈Â(ε)

Ihρ (α̂, α, y) + ε.
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Take an α̂ ∈ Â(ε) and observe that the set

S(α̂) := {h(α̂, β(α, ·), ·);α ∈ A}

is finite (see Lemma 4.2) and each element of this set is bounded and measurable
with respect to y. By the Lebesgue theorem

Ihρ (α̂, α, y) ≤
∑

s∈S(α̂)

∣∣s(y)− ∫
Rd

s(y + ρz)ζ(z) dz
∣∣2 → 0

as ρ ↓ 0 at almost any point y ∈ Rd. Hence,

Ihρ (α̂, α, y) ≤
∑

α̂∈Â(ε)

∑
s∈S(α̂)

∣∣s(y)− ∫
Rd

s(y + ρz)ζ(z) dz
∣∣2 + ε =: ∆h

ρ,ε(y) + ε,

where ∆h
ρ,ε are bounded uniformly with respect to ρ and tend to zero as ρ ↓ 0

(a.e.) in Rd, in particular, in Ld(G) for any ε. As a result, for any α̂, α ∈ A and
y ∈ G,

Ihρ (α̂, α, y) ≤ ∆h
ρ,ε(y) + ε,

where for all sufficiently small ρ

∥∆h
ρ,ε + ε∥Ld(G) ≤ 2εN(d)diam(G).

This is, certainly, enough and the lemma is proved. □

Lemma 4.4. Introduce θ(ρ) = θα·β
ρ(α·,x)x(ρ) as the minimum of the first exit

times of x
α·β

ρ(α·,x)x
t and of yα·x

t (ρ) from G. Then

sup
α·∈A

Eα·β
ρ(α·,x)

x sup
t≤θ(ρ)

|xt − yt(ρ)|2 → 0 (4.9)

as ρ ↓ 0 uniformly with respect to x ∈ G.

Proof. By Corollary 3.4 and Lemma 4.3, for any ε, T > 0 the left-hand side of
(4.9) is less than NeNT ε + N/T , where N is independent of ρ, ε, T , for all small
enough ρ and so is its lim sup as ρ ↓ 0. Sending first ε ↓ 0 and then T → ∞ yields
the desired result. The lemma is proved. □

Corollary 4.5. For h = σ, b, c, f we have

sup
α·∈A

Eα·β
ρ(α·,x)

x

∫ θ(ρ)

0

|h(αt, β(αt, yt(ρ), xt)− h(ρ)(αt, yt(ρ), yt(ρ))| dt → 0 (4.10)

as ρ ↓ 0 uniformly with respect to x ∈ G, where h(ρ)(α, y, x) is introduced according
to (2.3).

Indeed, since h is continuous in x uniformly with respect to (α, β), one can
replace xt in (4.10) with yt(ρ) only incurring the error

sup
α·∈A

Eα·β
ρ(α·,x)

x θ(ρ)w
(

sup
t≤θ(ρ)

|xt − yt(ρ)|
)

≤
(
sup
α·∈A

Eα·β
ρ(α·,x)

x θ2(ρ)
)1/2(

sup
α·∈A

Eα·β
ρ(α·,x)

x w2
(

sup
t≤θ(ρ)

|xt − yt(ρ)|
)1/2

, (4.11)



14 N. V. KRYLOV

where w(r), r ≥ 0, is a bounded continuous function, w(0) = 0. By Lemmas 3.1
and 4.4 this error tends to zero as ρ ↓ 0 uniformly with respect to x ∈ G. Due
to Theorem 2.2.2 of [4] and Lemma 4.3, what remains after the above mentioned
replacement is less than a constant independent of ρ times the Ld-norm of ∆h

ρ ,
which also tends to zero as ρ ↓ 0 uniformly with respect to x ∈ G.

Theorem 4.6. For any x ∈ G, ρ, γ, κ > 0 we have

uK(x) ≥ sup
α·∈A

Eα·β
ρ(α·,x)

x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ
]

−µ(ρ)(1 + γ + κ−2)−N1(γ)−N2(κ)−Nm−1, (4.12)

where N1(γ) is independent of ρ, κ, N1(γ) → 0 as γ → ∞, N2(κ) is independent
of ρ, N2(κ) → 0 as κ ↓ 0, N depends only on d, δ,K0, and the diameter of G, µ(ρ)
is independent of γ, κ and µ(ρ) → 0 as ρ ↓ 0.

Proof. For simplicity of notation we drop the argument ρ of θ and yt. Take α· ∈ A
and observe that in the notation from Lemma 4.4 by Itô’s formula

Eα·β
ρ(α·,x)

x uK(xθ)e
−ϕθ = uK(x)

+Eα·β
ρ(α·,x)

x

∫ θ

0

[
aij(αt, β(αt, yt), xt)DijuK(xt)

+bi(αt, β(αt, yt), xt)DiuK(xt)− c(αt, β(αt, yt), xt)uK(xt)
]
e−ϕt dt, (4.13)

where, dropping obvious values of indices,

ϕt =

∫ t

0

c(αs, β(αs, ys), xs) ds.

By Lemma 3.5 with h = uK , DuK , D2uK , for any κ, γ > 0, the last term in
(4.13) is less than

Eα·
x

∫ θ

0

[
aij(αt, β(αt, yt), yt)DijuK(yt)

+bi(αt, β(αt, yt), yt)DiuK(yt)− c(αt, β(αt, yt), yt)uK(yt)
]
e−ϕt dt

+γ[Ia(α·, ρ, x) + Ib(α·, ρ, x) + Ic(α·, ρ, x)]

+N1(γ) +N2(κ) +N3κ
−2

(
Eα·β

ρ(α·,x)
x sup

t≤θ
|xt − yt|2

)1/2

, (4.14)

whereN1, N2, N3 are independent of α·, ρ, and x, N1(γ) → 0 as γ → ∞, N2(κ) → 0
as κ ↓ 0, and we use the notation

Ih(α·, ρ, x) = Eα·β
ρ(α·,x)

x

∫ θ

0

|h(αt, β(αt, yt), xt)− h(αt, β(αt, yt), yt)| dt.

By Corollary 4.5 the factor of γ in (4.14) is dominated by µ(ρ) for an appropriate
function µ(ρ) which tends to zero as ρ ↓ 0. The last term in (4.14) is dominated
by µ(ρ)κ−2.

After that taking into account (4.5) and Theorem 2.2.2 of [4] we see that

Eα·β
ρ(α·,x)

x uK(xθ)e
−ϕθ ≤ uK(x) + µ(ρ)(γ + κ−2) +N1(γ) +N2(κ)
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−Eα·β
ρ(α·,x)

x

∫ θ

0

f(αt, β(αt, yt), yt)e
−ϕt dt+Nm−1, (4.15)

where N depend only on d, ν,K0 and the diameter of G. We can replace the last
yt in the integrand in (4.15) by xt incurring as in Corollary 4.5 another error term
like µ(ρ) which goes to zero as ρ ↓ 0. By adding to this that

Eα·β
ρ(α·,x)

x g(xτ )e
−ϕτ = Eα·β

ρ(α·,x)
x uK(xτ )e

−ϕτ

≤ Eα·β
ρ(α·,x)

x uK(xθ)e
−ϕθ + sup

G
|DuK |Eα·β

ρ(α·,x)
x |xτ − xθ|

+sup
G

|uK |Eα·β
ρ(α·,x)

x (τ − θ) ≤ Eα·β
ρ(α·,x)

x uK(xθ)e
−ϕθ

+N4E
α·β

ρ(α·,x)
x ((τ − θ)1/2 + τ − θ),

where N4 depends only on uK , d, and K0, we see that to prove (4.12) it suffices
now to show that

χ(ρ) := sup
α·∈A

Eα·β
ρ(α·,x)

x

∫ τ

θ

dt → 0

as ρ ↓ 0 uniformly with respect to x. By Lemma 3.2 and Itô’s formula we have

χ(ρ) ≤ Eα·β
ρ(α·,x)

x

[
Φ(xθ)− Φ(xτ )

]
= Eα·β

ρ(α·,x)
x

[
Φ(xθ)− Φ(yθ)

]
Iθ<τ

and it only remains to use Lemma 4.4 once more. The theorem is proved. □

Proof of Theorem 2.4. First choose and fix K and m so that |v− uK | ≤ ε/4
and Nm−1 ≤ ε/4, where N is taken from Theorem 4.6. Then find and fix κ and
γ from N1(γ) +N2(κ) ≤ ε/4. Finally find ρ such that

µ(ρ)(1 + γ + κ−2) ≤ ε/4.

Then (4.12) will become (2.14).
The last statement of the theorem follows by construction of βρ(α·, x). The

theorem is proved.

Remark 4.7. An important particular case of Theorem 2.4 is when σ, b, c, f are in-
dependent of α, so that we are actually dealing with a controlled diffusion process.
Also, clearly, similar statements to Theorem 2.4 hold true if we exchange the roles
of α and β and consider the stochastic differential game corresponding to

H[u](x) = inf sup
β∈B α∈A

[Lαβu(x) + fαβ(x)],

in place of (4.1). Of course, one should then replace Assumption 2.2 with a similar
one about B. To reduce this game to the one we are treating, it suffices just to
rename A and B and take −u, −g and −f in place of u, g, and f , respectively.

Proof of Theorem 2.5. Fix ν > 0 and replace (1.1) with

xt = x+

∫ t

0

σαsβs(xs) dws + νŵt +

∫ t

0

bαsβs(xs) ds.



16 N. V. KRYLOV

The solution of this equation is denoted by xα·β·x
t (ν) and by τα·β·x(ν) we denote

its first exit time from G. We take the same c, f, g and define v(x, ν) by (2.1)
where we replace xt, τ , and ϕt with xt(ν), τ(ν), and

ϕt(ν) =

∫ t

0

cαsβs(xs(ν)) ds,

respectively. Obviously to thus obtained new stochastic differential game we can
apply Theorem 2.4 and conclude that for any ε > 0 there exists β(α, x), with the
properties described in Theorem 2.4 and ρ0 > 0 such that if for ρ ∈ (0, ρ0], x ∈ G,
and α· ∈ A we define the process yt = yα·x

t (ρ) as a solution of

dyt = σ(ρ)(αt, yt, yt) dwt + νŵt + b(ρ)(αt, yt, yt) dt, t ≥ 0, y0 = x, (4.16)

then

sup
α·∈A

Eα·β
ρ(α·,x)

x

[ ∫ τ(ν)

0

f(xt(ν))e
−ϕt(ν) dt

+g(xτ(ν)(ν))e
−ϕτ(ν)(ν)

]
≤ v(x, ν) + ε. (4.17)

It follows that to prove the theorem it suffices to show that

Eα·β·
x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ

]
−Eα·β·

x

[ ∫ τ(ν)

0

f(xt(ν))e
−ϕt(ν) dt+ g(xτ(ν)(ν))e

−ϕτ(ν)(ν)
]
→ 0 (4.18)

as ν ↓ 0 uniformly with respect to α· ∈ A, β· ∈ B, and x ∈ G.
First observe (although this is an overkill) that Lemma 3.3 is applicable here

when σi’s are independent of the first space variable. Then Corollary 3.4 is also
applicable which as in Lemma 4.4 leads to the conclusion that

Eα·β·
x sup

t≤θ(ν)

|xt − xt(ν)|2 → 0 (4.19)

as ν ↓ 0 uniformly with respect to α· ∈ A, β· ∈ B, and x ∈ G, where θ(ν) is the
minimum of exit times of xt and xt(ν) from G.

Next, while proving (4.18) first assume that g ≡ 0. Observe that, owing to
(4.19), the argument at the end of the proof of Theorem 4.6 shows that it suffices to
prove the version of (4.18) when both τ and τ(ν) are replaced with θ(ν) (assuming
g ≡ 0).

Then notice that in light of the continuity of f in x uniform with respect to
(α, β) (cf. also (4.11))

Eα·β·
x

∫ θ(ν)

0

|f(xt)− f(xt(ν)|e−ϕt dt ≤ Eα·β·
x

∫ θ(ν)

0

|f(xt)− f(xt(ν)| dt → 0

as ν ↓ 0 uniformly with respect to α· ∈ A, β· ∈ B, and x ∈ G.
Also

Iα·β·
x := Eα·β·

x

∫ θ(ν)

0

|f(xt(ν))| |e−ϕt − e−ϕt(ν)| dt

≤ K0E
α·β·
x

∫ θ(ν)

0

∫ t

0

|c(xs)− c(xs(ν))| ds dt
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= K0E
α·β·
x

∫ θ(ν)

0

(θ(ν)− s)|c(xs)− c(xs(ν))| ds

≤ K0

[
Eα·β·

x θ3(ν)
]1/2[

Jα·β·
x

]1/2
,

where

Jα·β·
x = Eα·β·

x

∫ θ(ν)

0

|c(xs)− c(xs(ν))|2 ds ≤ 2K0E
α·β·
x

∫ θ(ν)

0

|c(xs)− c(xs(ν))| ds.

One sees easily as above that Iα·β·
x → 0 as ν ↓ 0 uniformly with respect to α· ∈ A,

β· ∈ B, and x ∈ G.
It remains to deal with the terms containing g in (4.18). Since g ∈ C2(Ḡ), by

Itô’s formula we have

Eα·β·
x g(xτ )e

−ϕτ = g(x)

+Eα·β·
x

∫ τ

0

[
aij(xt)Dijg(xt) + bi(xt)Dig(xt)− c(xt)g(xt)

]
e−ϕt dt, (4.20)

Eα·β·
x g(xτ(ν)(ν))e

−ϕτ(ν)(ν) = g(x) + (1/2)ν2Eα·β·
x

∫ τ(ν)

0

∆g(xt(ν)))e
−ϕt(ν) dt

+Eα·β·
x

∫ τ(ν)

0

[
aij(xt(ν))Dijg(xt(ν)) + bi(xt(ν))Dig(xt(ν))

−c(xt(ν))g(xt(ν))
]
e−ϕt(ν) dt. (4.21)

The second term on the right in (4.21) clearly goes to zero as ν ↓ 0 uniformly
with respect to α· ∈ A, β· ∈ B, and x ∈ G. The difference of the remaining ones
in (4.20) and (4.21) is shown to do the same by the first part of the proof. The
theorem is proved.

Proof of Lemma 2.6. This proof is very similar to the second part of the
proof of Theorem 2.5. First we assume that g ≡ 0. Take θ = θα·β

ρ(α·,x)x(ρ)
from Lemma 4.4 and note that the argument at the end of the proof of Theorem
4.6 shows that it suffices to prove the version of (2.7) when both τ and τ(ρ) are
replaced with θ(ρ) (assuming g ≡ 0).

Next, observe that

Eα·β
(ρ)(α·,x)

x

∫ θ(ρ)

0

|f(xt)− f (ρ)(αt, yt(ρ))|e−ϕt dt

≤ Eα·β
(ρ)(α·,x)

x

∫ θ(ρ)

0

|f(αt, β(αt, yt(ρ)), xt)− f (ρ)(αt, yt(ρ), yt(ρ))| dt. (4.22)

By Corollary 4.5 the last expression tends to zero as ρ ↓ 0 uniformly with respect
to α· ∈ A and x ∈ G.

Also as in the above proof

Iα·β
(ρ)(α·,x)

x := Eα·β
(ρ)(α·,x)

x

∫ θ(ρ)

0

|f (ρ)(αt, yt(ρ))| |e−ϕt − e−ϕt(ρ)| dt

≤ K0

[
Eα·β

(ρ)(α·,x)
x θ3(ρ)

]1/2[
Jα·β

(ρ)(α·,x)
x

]1/2
,
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where J
α·β

(ρ)(α·,x)
x stands for

Eα·β
(ρ)(α·,x)

x

∫ θ(ρ)

0

|c(αs, β(αs, ys(ρ)), xs)− c(ρ)(αs, ys)|2 ds

≤ 2K0E
α·β

(ρ)(α·,x)
x

∫ θ(ρ)

0

|c(αs, β(αs, ys(ρ)), xs)− c(ρ)(αs, ys)| ds.

Lemma 3.1 and Corollary 4.5 convince us that I
α·β

(ρ)(α·,x)
x → 0 as ρ ↓ 0 uniformly

with respect to α· ∈ A and x ∈ G.
It remains to deal with the terms containing g in (2.7). Again by using Itô’s

formula we write
Eα·β

(ρ)(α·,x)
x g(xτ )e

−ϕτ = g(x)

+Eα·β
(ρ)(α·,x)

x

∫ τ

0

[
aij(xt)Dijg(xt) + bi(xt)Dig(xt)− c(xt)g(xt)

]
e−ϕt dt.

Similarly we transform the term with g involving τ(ρ) and then we reduce the
problem to estimating the terms like the ones we started with. The lemma is
proved.

5. A Particular Case where A is a Singleton

Here we assume that A is a singleton and will not write α and α· in our notation.
In particular, now we are dealing with a controlled diffusion process given as a
solution of the equation

dyt = σ(βt, yt) dwt + b(βt, yt) dt, t ≥ 0, y0 = x. (5.1)

Its solution is denoted by yβ·x
t . Our goal is to minimize

Eβ·
x

[ ∫ τ

0

f(yt)e
−ϕt dt+ g(yτ )e

−ϕτ

]
(5.2)

over β· ∈ B, where (according to our standard notation) τβ·x is the first exit time

of yβ·x
t from G, f(yt) = f(βt, y

β·x
t ),

ϕβ·x
t =

∫ t

0

c(βs, y
β·x
s ) ds.

In this case Theorem 2.4 becomes the following.

Theorem 5.1. Under the assumptions of Theorem 2.4 for any ε > 0 there exist
a Borel measurable B-valued function β(x) on Rd and ρ0 > 0 such that, if for
ρ ∈ (0, ρ0], we define

σ(ρ)(z, y) =

∫
Rd

σ(β(z + ρξ), y + ρξ)ζ(z) dξ,

introduce b(ρ)(z, y) similarly, and for x ∈ G define the process zt = zxt (ρ) by

dzt = σ(ρ)(zt, zt) dwt + b(ρ)(zt, zt) dt, t ≥ 0, z0 = x, (5.3)

and set βρ
t (x) = β(zxt (ρ)), then

inf
β·∈B

Eβ·
x

[ ∫ τ

0

f(yt)e
−ϕt dt+ g(yτ )e

−ϕτ
]
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≥ E
βρ
· (x)

x

[ ∫ τ

0

f(yt)e
−ϕt dt+ g(yτ )e

−ϕτ
]
− ε. (5.4)

Here is a version of Theorem 2.5

Theorem 5.2. In Theorem 5.1 drop Assumption 2.3 but suppose that on (Ω,F , P )
there is a d-dimensional Wiener process (ŵt,Ft), t ≥ 0, independent of wt. Then
for any ε > 0 there exists a constant ν > 0 such that all assertions of Theorem 2.4
hold true if we add to the right-hand side of (5.3) the term ν dŵt.

Remark 5.3. In Section 6 we are going to maximize (5.2) instead of minimizing
it. One problem is reduced to another just by changing signs of f and g. Also it
is worth noting that in Section 6 the parameter used in maximization is called α·
instead of β·.

6. Adjoint ε-optimal Markov Policies for α

Take ε > 0, ρ > 0, β(α, x) from Theorem 2.4 use the notation (2.3) and, for
α· ∈ A and x ∈ Rd, defined the controlled diffusion process yt(ρ) = yα·x

t (ρ) by

dyt = σ(ρ)(αt, yt) dwt + b(ρ)(αt, yt) dt, t ≥ 0, y0 = x, (6.1)

with the reward function

Eα·
x

[ ∫ τ(ρ)

0

f (ρ)(yt(ρ))e
−ϕt(ρ) dt+ g(yτ(ρ)(ρ))e

−ϕτ(ρ)(ρ)
]
. (6.2)

We are going to maximize (6.2) treating α here as β in Section 5 and adjusting
the maximization problem to the one of minimization.

However, there is a formal objection to overcome before we can translate the
results of Section 5 to our situation. Namely, in Section 5, the functions σ, b, c, f as
inherited from taking A as a singleton were assumed to be continuous with respect
to β. Therefore, here we need our σ(ρ), b(ρ), c(ρ), f (ρ) to be continuous with respect
to α and they may fail to be such because, even if h in (2.3) is continuous in the
first argument α uniformly with respect to β, β(α, y + ρz) can be discontinuous
as a function of α. Indeed, for different α, β(α, x) can be very different functions
of x. However, in light of the second statement in Theorem 2.4 to make β(α, x)
continuous with respect to α it suffices just to change the distance function in A
keeping it the same as α1, α2 belong to the same Ai and defining it as 1 otherwise.
By the way, this change in no way affects the set of policies of α and only allows
us to formally apply the results of Section 5.

According to Theorem 5.1 for any ε > 0 there exist a Borel measurable A-valued

function αε(z) on Rd and a Lipschitz continuous functions σ̂(z) and b̂(z) on Rd

with values in the set of d × d1-matrices and in Rd, respectively, such that, if for
x ∈ G we define the process zxt by

dzt = σ̂(zt) dwt + b̂(zt) dt, t ≥ 0, z0 = x, (6.3)

and set αε,x
t (x) = αε(zxt ), then

sup
α·∈A

Eα·
x

[ ∫ τ(ρ)

0

f (ρ)(yt(ρ))e
−ϕt(ρ) dt+ g(yτ(ρ)(ρ))e

−ϕτ(ρ)(ρ)
]
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≤ E
αε,x

·
x

[ ∫ τ(ρ)

0

f (ρ)(yt(ρ))e
−ϕt(ρ) dt+ g(yτ(ρ)(ρ))e

−ϕτ(ρ)(ρ)
]
+ ε. (6.4)

Finally, due to Lemma 2.6, (6.4) implies that (2.9) holds with 3ε in place of ε.
This proves part (a) of Theorem 2.7. The proof of part (b) is quite similar and
the theorem is proved.

7. Proof of Theorem 2.11

If in Theorem 14.1.6 of [9] we replace H[u] and P [u] by −H[−u] and −P [−u],
then we will see that for any K > 0 the equation

min(H[u−K ],−P [−u−K ] +K) = 0

in G (a.e.) with boundary condition u−K = g ∈ C2 has a solution u−K ∈ W 2
p (G)

for any p > 1. By following the arguments in Section 7 of [8], we conclude that
u−K ↑ v uniformly on Ḡ as K → ∞. Observe that (a.e.) in G

H[u−K ] ≥ 0. (7.1)

Fix K > 0 and m ∈ {1, 2, ...}. In the same way in which we found above the
function β(x) we find a Borel A-valued function α(x) such that in G

inf
β∈B

[Lα(·)βu−K + fα(·)β ] ≥ −1/m.

Our goal is to prove that if K and m are large enough and ρ is small enough, then
the above α(x) is the one we are talking about in Theorem 2.11.

Take yβ·x
t (ρ) and αρ

t (β·, x) = α(yβ·x
t (ρ)) from the statement of the theorem.

Introduce θ = θα
ρ(β·,x)β·x(ρ) as the minimum of the first exit times of x

αρ(β·,x)β·x
t

and of yβ·x
t (ρ) from G. Then in the same way in which we arrived at Lemma 4.4

we obtain that

sup
β·∈B

Eαρ(β·,x)β·
x sup

t≤θ(ρ)

|xt − yt(ρ)|2 → 0

as ρ ↓ 0 uniformly with respect to x ∈ G.
Then following closely the argument in Section 4 we get an analog of Theorem

4.6 that for any x ∈ G, ρ, γ, κ > 0 we have

u−K(x) ≤ inf
β·∈B

Eαρ(β·,x)β·
x

[ ∫ τ

0

f(xt)e
−ϕt dt+ g(xτ )e

−ϕτ
]

+µ(ρ)(1 + γ + κ−2) +N1(γ) +N2(κ) +Nm−1,

where N1(γ) is independent of ρ, κ, N1(γ) → 0 as γ → ∞, N2(κ) is independent
of ρ, N2(κ) → 0 as κ ↓ 0, N depends only on d, δ,K0, and the diameter of G, µ(ρ)
is independent of γ, κ and µ(ρ) → 0 as ρ ↓ 0.

After that the assertion of Theorem 2.11 is obtained by the same short argument
as in Section 4 in the proof of Theorem 2.4.
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