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Abstract. For a class of symmetric Lévy processes (Yt)t≥0 with charac-

teristic exponent ψ we show that νt = e−
1
t
ψ(·)/p 1

t
(0), t > 0, gives rise

to an additive process (Xt)t≥0 with t-dependent characteristic exponent

−
∂
∂t

ln
(

p 1
t
(ξ)/p 1

t
(0)

)

where (pt)t>0 are the transition densities of (Yt)t≥0.

We estimate (from above and below) pt in terms of two metrics dψ,t and
δψ,t, dψ,t controlling pt(0) and δψ,t the spatial decay, and we prove that the
transition density πt,0 of PXt−X0

is controlled by δ
ψ, 1
t
and d

ψ, 1
t
now with

δ
ψ, 1
t
controlling πt,0(0) and d

ψ, 1
t
the spatial decay.

1. Introduction

In the mid 1980’s it became clear that heat kernels of second order elliptic partial
differential operators are best understood in terms of the underlying Riemannian
geometry, see [4] and [5] as seminal contributions. Further investigation led to the
concept of metric measure spaces associated with (local) Dirichlet forms, and now
geometry is used to construct corresponding diffusions and their generators, see
[21], and for more recent developments [7, 8, 9].

We bypass the work of the E.M.Stein school on the corresponding sub-elliptic
problem which led to the emergence of sub-Riemannian geometry as we want
to emphasise the efforts in [3] to extend the programme to non-local generators
of Markovian semigroups. The crucial role of the carré du champ operator, see
in particular [16], was highlighted, however to our best knowledge so far this
programme has not led to the desired results.

In studying concrete transition densities of symmetric Lévy processes as well
as the observation that the characteristic exponent of such a process often led to
a metric measure space, the second named author suggested to use this metric to
study the transition densities. In [15] for the diagonal term a first result could be
proved, and in [14] a suggestion of a theory was outlined to interpret the transi-
tion density of certain symmetric Lévy processes in terms of two time-dependent
metrics dψ,t and δψ,t where ψ is the characteristic exponent of the Lévy process.

Assuming volume doubling for the metric measure space
(

R
n, dψ,t, λ

(n)
)

the result
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reads as,

pt(x − y) ≍ λ(n)
(

Bdψ,t(0, 1)
)

e−δ
2
ψ,t(x,y), (1.1)

where Bdψ,t(0, 1) denotes the unit ball with respect to dψ,t and at ≍ bt means for
two constants 0 < γ0 < γ1 that γ0at ≤ bt ≤ γ1at. While in [14] the existence of
δψ,t could only be proved for some classes, the estimate,

pt(0) ≍ λ(n)
(

Bdψ,t(0, 1)
)

, (1.2)

holds always under the doubling condition and we can write,

pt(x − y) = pt(0)
pt(x− y)

pt(0)
= pt(0)e

−
(

−ln
pt(x−y)
pt(0)

)

. (1.3)

In the case we can show that,

x 7→ − ln
pt(x)

pt(0)
, (1.4)

is a continuous negative definite function, see [13, Vol I.] for the definition (but
note that the continuous negative definite function is just another name for the
characteristic exponent of a Lévy process), our conditions will imply that,

δψ,t(x, y) =

(

− ln
pt(x− y)

pt(0)

)1/2

, (1.5)

is a metric. So far we do not know a general result of this type, but plenty of
examples, see [2] or [14]. However even for the transition density of the relativistic
Hamiltonian process associated with ψ(ξ) = (|ξ|2+m)1/2−m, see [10], the problem
is still open. On the other hand, using subordination in the sense of Bochner, see
as a general reference [1] or [19], new examples can be constructed. It is helpful to
note in this context that for subordination a good functional calculus is available
[18], and that certain functional inequalities are stable under subordination, see
[20], since functional inequalities are useful tools to handle transition densities. We
want to also mention that in [6] the suggested approach was tested for Q-matrices
with state space Z

n relying much on commutative harmonic analysis. It would
be of interest to extend these ideas to locally compact groups since they allow a
corresponding harmonic analysis and are well studied objects in probability theory,
see H. Heyer [11].

In this paper we start with an obvious observation. If (µt)t≥0 is a convolution
semigroup of probability measures on R

n with Fourier transform,

µ̂t(ξ) = (2π)−n/2e−tψ(ξ), (1.6)

then by,

ρt(dx) :=
e−tψ(x)

(2π)npt(0)
dx, (1.7)

a family of probability measures (ρt)t≥0 is given. Using a ratio limit result as
proved in [14] it turns out that the family,

νt := ρ 1
t
, t > 0, (1.8)

is for t→ 0 weakly continuous and it gives rise to a family of strongly continuous
convolution operators (St)t≥0 which are contractions in either

(

C∞(Rn), ‖ ·‖∞
)

or
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(

L2(Rn), ‖ · ‖0
)

and are either positivity preserving or sub-Markovian. However,
in general (St)t≥0 is not a semigroup. We can show that with,

q(t, ξ) := − ∂

∂t
ln
p 1
t
(ξ)

p 1
t
(0)

, (1.9)

for u ∈ S(Rn) we get,

∂

∂t
Stu+ q(t,D)Stu = 0, lim

t→0
Stu = u, (1.10)

where q(t,D) is the pseudo-differential operator with symbol q(t, ξ). We give
examples for ξ 7→ q(t, ξ) being a continuous negative definite function. Under the
assumption that q : [0,∞) × R

n → R is continuous and ξ 7→ q(t, ξ) is a negative
definite function we prove further that we can associate with q(t, ξ) an additive
process (Xt)t≥0 with,

PXt−Xs = γt,s, 0 ≤ s < t, (1.11)

where,

γ̂t,s(ξ) = (2π)−n/2e−
∫
t

s
q(τ,ξ) dτ . (1.12)

Studying the density πt,0 of PXt−X0 in comparison with the density pt of (Yt)t≥0

we obtain (under some additional assumptions, see Theorem 5.1) our main result:

pt(x − y) ≍ λ(n)
(

Bdψ,t(0, 1)
)

e−δ
2
ψ,t(x,y), (1.13)

and,

πt,0(x− y) ≍ λ(n)
(

B
δ
ψ, 1
t (0, 1)

)

e
−d2

ψ, 1
t

(x,y)
, (1.14)

with dψ,t(x, y)
√

tψ(x− y) and δψ,t(x, y) =
(

− ln pt(x−y)
pt(0)

)1/2

.

We refer to [2], but also [14], where attempts were made to extend the results
to processes generated by pseudo-differential operators with symbol q(t, x, ξ) and
the x-dependence is subjected to oscillation conditions with respect to a reference
function as in [12].

In general, our notations are the ones used in [13].

2. Families of Measures Associated with Convolution Operators

Let (µt)t≥0 be a symmetric convolution semigroup of probability measures, i.e.,
each µt is a probability measure on R

n, µ0 = ǫ0, µs ∗ µt = µs+t, and µt → ǫ0
vaguely, hence weakly, for t→ 0, with Fourier transform,

µ̂t(ξ) = (2π)−n/2e−tψ(ξ), (2.1)

where ψ : Rn → R is a continuous negative definite function. Since all measures
µt are assumed to be probability measures it follows that ψ(0) = 0. We add the
following assumptions on ψ:

Ai) ψ(ξ) = 0 if and only if ξ = 0;
Aii) lim inf |ξ|→∞ ψ(ξ) > 0;

Aiii) e−tψ, ψe−tψ ∈ L1(Rn) for all t > 0.
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Note that if f is a Bernstein function growing as a power at infinity, e.g. f(s) =
sα, 0 < α < 1, then f(|ξ|2) as well as f(|ξ|α1 + |ξ2|α2), αj ∈ (0, 2], will satisfy these
assumptions. More examples are given in [14]. From condition Ai) we deduce,
compare Lemma 3.6.21 in [13, Vol I.], that by,

dψ(ξ, η) := ψ1/2(ξ − η), (2.2)

a metric is given on R
n and Aii) assures, see Lemma 3.2 in [14], that the metric

dψ generates on R
n the Euclidean topology. Furthermore, by Aiii) the measures

µt have a density pt ∈ C∞(Rn) ∩ L1(Rn) with respect to the Lebesgue measure
λ(n) given by,

pt(x) = (2π)−n
∫

Rn

eix·ξe−tψ(ξ) dξ, (2.3)

and of course we have,
∫

Rn

pt(x) dx =

∫

Rn

1 dµt = 1. (2.4)

Furthermore we find that

∂pt
∂t

(x) = (2π)−n
∫

Rn

eixξ
(

− ψ(ξ)
)

e−tψ(ξ) dξ,

exists. Note that in the case that ψ has at least power growth for |ξ| → ∞ the
condition ψe−tψ ∈ L1(Rn) is trivial. Thus with ψ (or the convolution semigroup
(µt)t≥0 or the corresponding canonical Lévy process (Xt)t≥0) we can associate a

metric measure space
(

R
n, dψ, λ

(n)
)

, see [14]. In the next section we will employ
this metric measure space to study pt. Observe that,

pt(0) = (2π)−n
∫

Rn

e−tψ(ξ) dξ, (2.5)

and therefore it follows that,

ρt :=
e−tψ(·)

(2π)npt(0)
λ(n), (2.6)

is for t > 0 a symmetric probability measure on R
n with Fourier transform,

ρ̂t(y) = (2π)−n/2
∫

Rn

e−iy·ξ
e−tψ(ξ)

(2π)npt(0)
dξ = (2π)−

n
2
pt(y)

pt(0)
. (2.7)

We now introduce the family of measures (νt)t>0 by,

νt := ρ 1
t
=

e−
1
t
ψ(·)

(2π)np 1
t
(0)

λ(n). (2.8)

First we note that,

νt(R
n) =

∫

Rn

1 νt(dξ) =

∫

Rn

e−
1
t
(ξ)

(2π)np 1
t
(0)

λ(n)(dξ)

=
(2π)−n

∫

Rn
e−

1
t
ψ(ξ) λ(n)(dξ)

p 1
t
(0)

=
p 1
t
(0)

p 1
t
(0)

= 1,

i.e., νt is a probability measure on R
n. Further we have,
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Proposition 2.1. For t → 0 the family of measures (νt)t>0 converges weakly to
the Dirac measure ε0, i.e.,

lim
t→0

νt = ε0 (weak limit). (2.9)

Proof. Let ϕ ∈ C∞
0 (Rn). By Plancherel’s theorem we find,

∫

Rn

ϕ(x− y) νt(dy)

=

∫

Rn

e−
1
t
ψ(y)

(2π)np 1
t
(0)

ϕ(x − y) dy

=
1

(2π)n/2p 1
t
(0)

∫

Rn

F−1
(

(2π)−n/2e−
1
t
ψ(·)

)

(ξ)F−1
(

ϕ(x− ·)
)

(ξ) dξ,

and since F−1
(

ϕ(x− ·)
)

(ξ) = e−ix·ξF−1ϕ(ξ) we obtain,

∫

Rn

ϕ(x− y) νt(dy) = (2π)−n/2
∫

Rn

p 1
t
(ξ)

p 1
t
(0)

e−ix·ξ
(

F−1ϕ
)

(ξ) dξ. (2.10)

By the ratio limit theorem, Theorem 5.7 in [15], it holds for the transition density

πt of a Lévy process on R
n that limt→∞

πt(x)
πt(0)

= 1 for all x ∈ R
n. Passing in (2.10)

to the limit t→ 0 we get,

lim
t→0

∫

Rn

ϕ(x − y) νt(dy) = (2π)−n/2
∫

Rn

e−ix·ξ
(

lim
t→0

p 1
t
(ξ)

p 1
t
(0)

)

(

F−1ϕ
)

(ξ) dξ

= (2π)−n/2
∫

Rn

e−ix·ξ
(

lim
t→∞

pt(ξ)

pt(0)

)

(

F−1ϕ
)

(ξ) dξ

= ϕ(x).

The density of C∞
0 (Rn) in C∞(Rn) implies limt→0 νt = ε0 vaguely and since

limt→0 νt(R
n) = 1 it follows that (2.9) holds. �

Hence the family (νt)t>0 is a family of probability measures converging weakly
to ε0. An open question is when they form a projective family or when we can
associate with (νt)t>0 a stochastic process. To investigate the situation further
we want to switch from (νt)t>0 to the corresponding family of operators (St)t>0

defined on Cb(R
n) by,

Stu(x) :=
(

u ∗ νt
)

(x) =

∫

Rn

u(x− y) νt(dy). (2.11)

For u ∈ S(Rn) we find by the convolution theorem when noting that Stu =
F−1(F (u ∗ νt)) that,

Stu(x) =

∫

Rn

eix·ξν̂t(ξ)û(ξ) dξ

= (2π)−n/2
∫

Rn

eix·ξ
p 1
t
(ξ)

p 1
t
(0)

û(ξ) dξ,
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or with,

σt(ξ) :=
p 1
t
(ξ)

p 1
t
(0)

, (2.12)

we have on S(Rn),

Stu(x) = (2π)−n/2
∫

Rn

eix·ξσt(ξ)û(ξ) dξ, (2.13)

i.e., St is a pseudo-differential operator with symbol σt(ξ). Of course (St)t>0 is
in general not a semigroup of linear operators. However from Proposition 2.1 and
(2.11) we deduce that (St)t>0 is a family of contractions on C∞(Rn), i.e.,

‖Stu‖∞ ≤ ‖u‖∞, (2.14)

which is strongly continuous, i.e.,

lim
t→0

‖Stu− u‖∞ = 0, (2.15)

for u ∈ S(Rn) and hence for u ∈ C∞(Rn). Furthermore,

u ≥ 0 implies Stu ≥ 0, (2.16)

i.e., (St)t>0 is on C∞(Rn) a strongly continuous family of positivity preserving con-
tractions. Moreover, using the density of S(Rn) in L2(Rn), Plancherel’s theorem
and 0 ≤ σt(ξ) ≤ 1 we deduce for u ∈ L2(Rn),

‖Stu‖0 ≤ ‖u‖0, (2.17)

lim
t→0

‖Stu− u‖0 = 0, (2.18)

and,

0 ≤ u ≤ 1 a.e. implies 0 ≤ Stu ≤ 1 a.e., (2.19)

which means that (St)t>0 is a strongly continuous family of sub-Markovian con-
traction on L2(Rn).

Proposition 2.2. Let

q(t, ξ) = − ∂

∂t
ln
p 1
t
(ξ)

p 1
t
(0)

. (2.20)

Then it follows for u ∈ S(Rn) that,
∂

∂t
Stu(x) + q(t,D)Stu(x) = 0, (2.21)

and,

lim
t→0

Stu = u, (2.22)

where q(t,D) is the pseudo-differential operator with the time-dependent symbol
q(t, ξ), and the limit in (2.22) can be taken in C∞(Rn), hence also pointwise for
u ∈ C∞(Rn), or in L2(Rn).

Proof. It remains to prove (2.21) which follows for u ∈ S(Rn) by differentiating
(2.13). Note that by (2.3) t 7→ pt(ξ) is differentiable for t > 0 and every ξ ∈ R

n. �
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Here we encounter a further open problem: As the Fourier transform of the mea-
sure σt is for every t > 0 a continuous positive definite function, we are searching
for conditions implying that q(t, ·) is a continuous negative definite function. Note

that formally we expect σt(ξ) = ce−
∫
t

0
q(τ,ξ) dτ to hold, hence for q(τ, ·) negative

definite we would obtain σt(·) positive definite and
∫ t

0
q(τ, ·) dτ would be a type of

characteristic exponent.

Example 2.3.

A. For Brownian motion in R
n we have ψB(ξ) =

1
2 |ξ|2 with

pBt (x) = (2πt)−n/2e−
|x|2

2t

which yields qB(t, ξ) =
1
2 |ξ|2.

B. For the Cauchy process in R
n we have ψC(ξ) = |ξ| with

pCt (x) = π−n+1
2 Γ(

n+ 1

2
)

t

(t2 + |x|2)n+1
2

which yields,

qC(t, ξ) = − ∂

∂t
ln
pC1
t

(ξ)

pC1
t

(0)
=

∂

∂t
ln
(

1 + t2|ξ|2
)

n+1
2

=
n+ 1

t

|ξ|2
|ξ|2 + 1

t2

=
n+ 1

t
f 1
t2

(

|ξ|2
)

,

where fr(s) =
s
s+r is a Bernstein function, hence qC(t, ·) is a continuous

negative definite function.

Example 2.4. (See [2]) The symmetric Meixner process on R has the symbol

ψM (ξ) = ln cosh ξ and the transition density pMt (x) = 2t−1

πΓ(t)

∣

∣Γ
(

t+ix
2

)∣

∣

2
and we

find, see [14],

pMt (ξ)

pMt (0)
=

∣

∣

∣

∣

Γ
(

t+ix
2

)

Γ
(

t
2

)

∣

∣

∣

∣

2

=

∞
∏

j=0

(

1 +
ξ2

(1t + 2j)2

)

,

which implies,

− ln
pM1
t

(ξ)

pM1
t

(0)
=

∞
∑

j=0

ln

(

1 +
ξ2

(1t + 2j)2

)

,

and eventually,

qM (t, ξ) = − ∂

∂t
ln
pM1
t

(ξ)

pM1
t

(0)
=

∞
∑

j=0

2

t2(1t + 2j)

ξ2

(1t + 2j)2 + ξ2
.

This series converges for t > 0 locally uniformly with respect to ξ and since
ξ2

( 1
t
+2j)2+ξ2

= f( 1
t
+2j)2 (ξ

2) with the Bernstein function as in Example 2.3.B, we

conclude that qM (t, ·) is a continuous negative definite function.
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Example 2.5. For ψH(ξ) = (m2 + ξ2)1/2 − m, m > 0, it is known, see [10],

that pHt (ξ) =
mtemt

π

K1

(

m
√
t2+ξ2

)

√
t2+ξ2

where K1 is the modified Bessel function of the

second kind with index 1. It is an open problem whether qH(t, ·) is a continuous
negative definite function.

In order to clarify the situation further, we need to introduce additive processes.

3. Additive Processes and Fundamental Solutions

Let q : (0,∞) × R
n → R be a continuous function such that q(t, 0) = 0 and

q(t, ·) : Rn → R be a continuous negative definite function. For 0 < s < t it

follows that ξ 7→
∫ t

s q(τ, ξ) dτ is again a continuous negative definite function. The
continuity follows directly from our assumptions and since the the pointwise limit
of negative definite functions is again negative definite, approximating the integral
by a sequence of Riemann sums will yield the negative definiteness. Consequently

the function ξ 7→ e−
∫
t

s
q(τ,ξ) dτ is a continuous positive definite function and hence

for 0 < s < t we can define a family of bounded measures (γt,s)t>s>0 by,

γ̂t,s(ξ) = (2π)−n/2e−
∫
t

s
q(τ,ξ) dτ . (3.1)

From q(t, 0) = 0 we deduce that γt,s is a probability measure. Moreover, using
results for the Fourier transform of measures, we find that,

Mi) γs,s = ε0 for 0 ≤ s;
Mii) γt,r ∗ γr,s = γt,s for 0 < s ≤ r ≤ t <∞;
Miii) γt,s → ε0 weakly for s→ t, s < t;
Miv) γt,s → ε0 weakly for t→ s, s < t.

According to K. Sato [17, Theorem 9.7], we can associate with (γt,s)0<s<t<∞ a
canonical additive process in law (Xt)t≥o with state space Rn, i.e., PXt−Xs = γt,s,
t > s.

Theorem 3.1. Let ψ : Rn → R be a continuous negative definite function satis-
fying Ai) - Aiii). Denote by pt the density of µt where (µt)t≥0 is the convolution

semigroup associated with ψ. If q(t, ξ) := − ∂
∂t ln

(

p 1
t
(ξ)/p 1

t
(0)

)

is with respect to

ξ a continuous negative definite function, then we can associate with q a canonical
additive process in law (Xt)t≥0 by the relation PXt−Xs = γt,s where t > s > 0 and
γt,s is defined by (3.1).

With the help of the probability measures γt,s, 0 < s < t < ∞, we can define
on C∞(Rn) or L2(Rn) the operators,

V (t, s)u(x) =

∫

Rn

u(x− y) γt,s(dy), (3.2)

and from Mi) - Miv) we deduce (for either u in C∞(Rn) or in L2(Rn) and conver-
gence is meant accordingly),

• V (s, s)u = u;
•
(

V (t, r) ◦ V (r, s)
)

u = V (t, s)u = V (t, s)u, r < s < t;
• V (t, s)u→ u as s→ t, s < t;
• V (t, s)u→ u as t→ s, s < t.
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Since γt,s can be viewed as an element in S ′(Rn) the convolution theorem yields
for u ∈ S(Rn) that,

(

V (t, s)u
)∧

(ξ) = e−
∫
t

s
q(τ,ξ) dτ û(ξ), (3.3)

which gives,
∂

∂t

(

V (t, s)u
)∧

(ξ) = −q(t, ξ)e−
∫
t

s
q(τ,ξ) dτ û(ξ),

and,
∂

∂s

(

V (t, s)u
)∧

(ξ) = q(s, ξ)e−
∫
t

s
q(τ,ξ) dτ û(ξ).

Therefore we deduce (at least as equations in S ′(Rn), given u ∈ S(Rn)),
∂

∂t
V (t, s)u+ q(t,D)V (t, s)u = 0, (3.4)

and,
∂

∂s
V (t, s)u− q(s,D)V (t, s)u = 0. (3.5)

Depending on properties of q(t, ·) we can identify V (t, s), t > s, as a fundamental
solution in the form of [22] for the initial value problem,

{

∂u
∂t (t, x)−A(t)u(t, x) = f(t, x),

u(0, x) = u0(x),

in L2
(

[0, T ];L2(Rn)
)

or Cb
(

[0, T ];C∞(Rn)
)

, we refer to [2] or [23] for more details.
For the purposes of this note we do not need the details.

Since q(t, ξ) = − ∂
∂t ln

(

p 1
t
(ξ)/p 1

t
(0)

)

we observe that,

∫ t

s

q(τ, ξ) dτ = − ln
p 1
t
(ξ)

p 1
t
(0)

+ ln
p 1
s
(ξ)

p 1
s
(0)

,

or,

e−
∫
t

s
q(τ,ξ) dτ =

p 1
t
(ξ)

p 1
t
(0)

p 1
s
(0)

p 1
s
(ξ)

,

i.e., using the definition of St we arrive at,

V (t, 0) = St, (3.6)

a relation which even holds when ξ 7→ q(t, ξ) is not a continuous negative definite
function but just given by (2.20). In addition we see that with (2.12),

PXt−X0 = γt,0, γ̂t,0 = (2π)−n/2σt. (3.7)

Assuming that the additive process (Xt)t>s>0 associated with q(t, ξ) given by
(2.20) exists and denoting the Lévy process associated with ψ by (Yt)t 0 we find,

PYt−Y0 = µt = F−1
(

e−tψ
)

(·)λ(n) = pt(·)λ(n), (3.8)

and,

PXt−X0 = γt,0 = F−1

(

p 1
t

p 1
t
(0)

)

(·)λ(n) = e−
1
t
ψ(·)

(2π)np 1
t
(0)

λ(n). (3.9)
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In the next section we will use (3.8) and (3.9) to obtain a geometric interpretation
of pt. For later purposes we define,

πt,0(x) :=
e−

1
t
ψ(x)

(2π)np 1
t
(0)

. (3.10)

4. Transition Functions and Geometry I. The Diagonal Term

Let ψ : R
n → R be a continuous negative definite function satisfying Ai) -

Aiii) with associated metric dψ(ξ, η) :=
√

ψ(ξ − η), and denote the corresponding

metric measure space by
(

R
n, dψ, λ

(n)
)

. In this case pt, the transition density as

defined by (2.3), belongs to L1(Rn) ∩C∞(Rn) and,

pt(x) ≤ pt(0). (4.1)

For later purposes it is helpful to note that pt(x) < pt(0) for all x ∈ R
n. Indeed,

pt(0)− pt(x) = (2π)−n
∫

Rn

(ei0·ξ − eix·ξ)e−tψ(ξ) dξ

= 2(2π)−n
∫

Rn

(1 − cosx · ξ)e−tψ(ξ) dξ,

and the function ξ 7→ (1 − cosx · ξ)e−tψ(ξ) is for every x ∈ R
n non-negative and

continuous. Hence pt(0) = pt(x0) for some x0 ∈ R
n \{0} is impossible. From (2.5)

we obtain immediately, see [14] or [15], that,

pt(0) = (2π)−n
∫

Rn

e−tψ(ξ) dξ = (2π)−n
∫ ∞

0

λ(n)
(

Bdψ(0,
√

r/t)
)

e−r dr, (4.2)

where Bdψ(x0, r) = {x ∈ R
n : dψ(x, x0) < r}. We assume further that the metric

measure space
(

R
n, dψ, λ

(n)
)

has the doubling property, i.e., for all x ∈ R
n and all

r > 0 it holds,

λ(n)
(

Bdψ(x, 2r)
)

≤ cλ(n)
(

Bdψ(x, r)
)

. (4.3)

In this case, as shown in [14, Theorem 4.1], it follows that,

pt(0) ≍ λ(n)
(

Bdψ (0, 1/
√
t)
)

, (4.4)

recall that at ≍ bt means that γ0at ≤ bt ≤ γ1at holds with constants 0 < γ0 ≤ γ1
independent of t. Switching to the t-dependent metric dψ,t(ξ, η) =

√

tψ(ξ − η) we
can re-write (4.4) as,

pt(0) ≍ λ(n)
(

Bdψ,t(0, 1)
)

. (4.5)

Hence pt(0), the “diagonal term” of the (translation invariant) transition function
p̃t(x, y) = pt(x − y) is controlled by the volume of the unit ball in the (volume
doubling) metric measure space

(

R
n, dψ,t, λ

(n)
)

.
Our first observation is that such a result carries over to additive processes. For

ease of notation we set,

Qt,s(ξ) :=

∫ t

s

q(τ, ξ) dτ = − ln
p 1
t
(ξ)

p 1
t
(0)

+ ln
p 1
s
(ξ)

p 1
s
(0)

, t > s > 0, (4.6)

where q is as in Theorem 3.1. Since Qt,s(·) is a real-valued continuous nega-
tive definite function and Qt,s(ξ) = 0 implies q(τ, ξ) = 0 for all τ ∈ [s, t], note
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that q(τ, ξ) ≥ 0 and by assumption τ 7→ q(τ, ξ) is continuous, we conclude that
Qt,s(ξ) = 0 if and only if ξ = 0, hence by,

dQt,s(ξ, η) := Q
1/2
t,s (ξ − η), (4.7)

a metric is defined on R
n. Further, we know that if,

dq(τ,·)(ξ, η) = q1/2(τ, ξ − η), (4.8)

generates the Euclidean topology, then lim inf |ξ|→∞ q(τ, ξ) > 0, see [14, Lemma
3.2]. Now Fatou’s lemma yields,

lim inf
|ξ|→∞

Qt,s(ξ) ≥
∫ t

s

(

lim inf
|ξ|→∞

q(τ, ξ)
)

dτ > 0, (4.9)

i.e., dQt,s generates the Euclidean topology too.

In the case that e−
∫
t

s
q(τ,·) dτ ∈ L1(Rn) we denote the density of the measure

γt,s by πt,s, i.e.,

πt,s(x) = (2π)−n/2
∫

Rn

eix·ξe−
∫
t

s
q(τ,ξ) dτ dξ. (4.10)

Theorem 4.1. Assume that for every τ > 0 the metric (4.8) generates the Eu-

clidean topology and that e−
∫
t

s
q(τ,·) dτ ∈ L1(Rn). Then it holds,

πt,s(0) = (2π)−n
∫

Rn

λ(n)
(

BdQt,s (0,
√
r)
)

e−r dr. (4.11)

If we have in addition,

β0q(t0, ξ) ≤ q(t, ξ) ≤ β1q(t0, ξ), (4.12)

for some t0 > 0, all t > 0 and ξ ∈ R
n with constants 0 < β0 ≤ β1, and if the

metric measure space
(

R
n, dq(t0,·), λ

(n)
)

has the volume doubling property then we
get,

πt,s(0) ≍ λ(n)
(

BdQt,s
(

0,
√

β1/β0
)

)

. (4.13)

Remark 4.2. Note that (4.12) implies e−
∫
t

s
q(τ,·) dτ ∈ L1(Rn).

Further note that we can always use the examples from [14] to construct exam-
ples for Theorem 4.1 provided we introduce a t-dependence respecting (4.12).

Proof. Since,

(2π)nπt,s(0) =

∫

Rn

e−Qt,s(ξ) dξ

=

∫ ∞

0

λ(n)
(

{ξ ∈ R
n : e−Qt,s(ξ) ≥ ρ}

)

dρ

=

∫ 1

0

λ(n)
(

{ξ ∈ R
n : Qt,s(ξ) ≤ − ln ρ}

)

dρ,
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we get,

(2π)nπt,s(0) = −
∫ 0

∞

λ(n)
(

{ξ ∈ R
n : Qt,s(ξ) ≤ r}

)

e−r dr

=

∫ ∞

0

λ(n)
(

{ξ ∈ R
n : Qt,s(ξ) ≤ r}

)

e−r dr,

and (4.11) is proved. Next, since
(

R
n, dq(t0,·), λ

(n)
)

has the volume doubling prop-

erty, by [14, Corollary 3.10] we get e−uq(t0,·) ∈ L1(Rn) for all u > 0, hence
e−β0(t−s)q(t0,·) ∈ L1(Rn) for all t > s ≥ 0. Now, for all ξ ∈ R

n we have,

β0(t− s)q(t0, ξ) ≤
∫ t

s

q(τ, ξ) dτ,

or,

e−β0(t−s)q(t0,ξ) ≥ e−
∫
t

s
q(τ,ξ) dτ ,

i.e., e−
∫
t

s
q(τ,·) dτ ∈ L1(Rn) for all t > s ≥ 0. Using the monotonicity of r 7→

λ(n)
(

BdQt,s (0,
√
r)
)

we find,

(2π)nπt,s(0) ≥
∫ ∞

β1/β0

λ(n)
(

BdQt,s (0,
√
r)
)

e−r dr

≥ λ(n)
(

BdQt,s
(

0,
√

β1/β0
)

)

∫ ∞

β1/β0

e−r dr

=
1

eβ1/β0
λ(n)

(

BdQt,s
(

0,
√

β1/β0
)

)

.

For the upper estimate we split the integral according to,

(2π)nπt,s(0) =

∫ β1/β0

0

λ(n)
(

BdQt,s (0,
√
r)
)

e−r dr

+

∫ ∞

β1/β0

λ(n)
(

BdQt,s (0,
√
r)
)

e−r dr,

and note that,
∫ β1/β0

0

λ(n)
(

BdQt,s (0,
√
r)
)

e−r dr ≤ λ(n)
(

BdQt,s
(

0,
√

β1/β0
)

)

∫ β1/β0

0

e−r dr

=

(

1− 1

eβ1/β0

)

λ(n)
(

BdQt,s
(

0,
√

β1/β0
)

)

.

On the other hand, by (4.12) we get,
∫ ∞

β1/β0

λ(n)
(

BdQt,s (0,
√
r)
)

e−r dr

≤
∫ ∞

β1/β0

λ(n)
({

ξ ∈ R
n :

(
∫ t

s

β0q(t0, ξ) dτ

)1/2

≤
√
r

})

e−r dr

≤
∫ ∞

β1/β0

λ(n)
({

ξ ∈ R
n :

√

β0(t− s)q(t0, ξ) ≤
√
r
})

e−r dr.

By the volume doubling property it follows for k ≥ 1 that,

λ(n)
(

Bdq(t0,·)(0, r)
)

≤ c(t0, r)λ
(n)

(

Bdq(t0 ,·)(0, 1)
)

,
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where c(t0, r) ≤ rα(t0)c0(t0, 1) for all k ≥ 1 and some α(t0) ≥ 0. This implies,
∫ ∞

β1/β0

λ(n)
(

BdQt,s (0,
√
r)
)

e−r dr

≤
∫ ∞

β1/β0

c(t0, r)λ
(n)

({

ξ ∈ R
n :

√

β0(t− s)q(t0, ξ) ≤ 1
})

e−r dr

≤ c(t0, 1)

∫ ∞

β1/β0

λ(n)
({

ξ ∈ R
n :

√

(t− s)q(t0, ξ) ≤
√

1/β0
})

rα(t0)/2e−r dr

≤ c(t0, 1)

∫ ∞

β1/β0

λ(n)
({

ξ ∈ R
n :

(
∫ t

s

q(t, ξ) dτ

)1/2

≤
√

β1/β0

})

rα(t0)/2e−r dr

= d(t0)λ
(n)

(

BdQt,s
(

0,
√

β1/β0
)

)

,

where d(t0) = c0(t0, 1)
∫∞

β1/β0
rα(t0)/2e−r dr <∞, and finally we obtain,

(2π)nπt,s(0) ≤
(

1− 1

eβ1/β0
+ d(t0)

)

λ(n)
(

BdQt,s
(

0,
√

β1/β0
)

)

.

�

5. Transition Functions and Geometry II. The Off-Diagonal Term

Suppose that we are given a symmetric Lévy process (Yt)t≥0 associated with a
continuous negative definite function ψ : Rn → R satisfying Ai)- Aiii). We denote
by dψ or dψ,t the corresponding metrics dψ(ξ, η) = ψ1/2(ξ − η) or dψ,t(ξ, η) =
√

tψ(ξ − η). We can now write the corresponding transition density as,

p̃t(x, y) := pt(x− y) = pt(0)
pt(x− y)

pt(0)
, (5.1)

and further as,

p̃t(x, y) = pt(0)e
ln
pt(x−y)
pt(0) = pt(0)e

−
(

−lnσ 1
t
(x−y)

)

, (5.2)

where we used (2.12). We need the following observation: Let q(t, ξ) be defined as
in (2.20) and σt as in (2.12). If the function ξ 7→ q(τ, ξ) is for all τ > 0 a continuous
negative definite function then the function ξ 7→ − lnστ (ξ) is also for all τ > 0

a continuous negative definite function. We have seen that ξ 7→
∫ t

s q(τ, ξ) dτ is a
continuous negative definite function if ξ 7→ q(τ, ξ) is. Since,

−
∫ t

s

∂

∂τ
ln
p 1
τ
(ξ)

p 1
τ
(0)

dτ = − ln
p 1
t
(ξ)

p 1
t
(0)

+ ln
p 1
s
(ξ)

p 1
s
(0)

,

a further application of the ratio limit theorem yields,
∫ t

0

q(τ, ξ) dτ = − ln
p 1
t
(ξ)

p 1
t
(0)

,

i.e., the negative definiteness of − lnσt(·) for all t > 0. Thus we can write,

p̃t(x, y) = pt(0)e
−
(

lnσ 1
t
(x−y)

)

, (5.3)
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where η 7→ − lnσ 1
t
(η) is a continuous negative definite function and from previous

considerations it follows that if p 1
t
(η0) = p 1

t
(0) then η0 = 0, hence δψ,t(x, y) =

(

− lnσ 1
t
(x − y)

)1/2
is a further metric on R

n. So, if ψ : Rn → R is a continuous

negative definite function satisfying Ai)-Aiii) for which ξ 7→ − ∂
∂t ln

(

p 1
t
(ξ)/p 1

t
(0)

)

is also continuous negative definite, then the transition density pt is controlled by
two families of (time-dependent) metrics on R

n namely dψ,t and δψ,t. In particular,

if
(

R
n, dψ,t, λ

(n)
)

has the volume doubling property then it holds that,

pt(x − y) ≍ λ(n)
(

Bdψ,t(0, 1)
)

e−δ
2
ψ,t(x,y). (5.4)

Now we assume that we can associate with ψ also the additive process (Xt)t≥0

constructed in Section 3. The density of the distribution PXt−X0 is given by,

πt,0(x − y) =
e−

1
t
ψ(x−y)

(2π)np 1
t
(0)

, (5.5)

compare with (4.10). Assuming in addition (4.12) we arrive at,

πt,0(x − y) ≍ λ(n)
(

BdQt,0
(

0,
√

β1/β0
)

)

e
−δ2Qt,0 (x,y),

where δQt,0 is the metric,

δQt,0(x, y) =

√

1

t
ψ(x− y) = dψ, 1

t
(x, y),

and for dQt,0 we find,

Qt,0(x, y) = − ln
p 1
t
(x− y)

p 1
t
(0)

= − lnσt(x− y),

thus,

dQt,0 (x, y) =
(

− lnσt(x− y)
)1/2

= δψ, 1
t
(x, y),

which yields,

πt,0(x− y) ≍ λ(n)
(

B
δ
ψ, 1
t

(

0,
√

β1β0
)

)

e
−d2

ψ, 1
t

(x,y)
.

Summing our considerations up we have proved,

Theorem 5.1. Let ψ : Rn → R be a continuous negative definite function satis-
fying Ai)-Aiii) and assume that q(t, ξ) = − ∂

∂t ln
(

p 1
t
(ξ)/p 1

t
(0)

)

is with respect to ξ

a continuous negative definite function. Moreover assume that the metric measure
space

(

R
n, dψ , λ

(n)
)

has the volume doubling property and for q(t, ξ) we have that
(4.12) holds. Denote by (Yt)t≥0 the Lévy process associated with ψ and by (Xt)t>0

the additive process constructed in Section 3. With

dψ,t(ξ, η) =
√

tψ(ξ − η)

and

δψ,t(x, y) =
(

− ln
p 1
t
(x− y)

p 1
t
(0)

)1/2

=
(

− lnσ 1
t
(x− y)

)1/2

we find,

pt(x − y) ≍ λ(n)
(

Bdψ,t(0, 1)
)

e−δ
2
ψ,t(x,y), (5.6)
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and,

πt,0(x− y) ≍ λ(n)
(

B
δ
ψ, 1
t

(

0,
√

β1/β0
)

)

e
−d2

ψ, 1
t

(x,y)
, (5.7)

hold.
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