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ELLIPTIC VARIATIONAL INEQUALITIES

Dr. Lalan Kumar Sngh

ABSTRACT

InthisPaper weshall present an introductory treatment of the theory variational
inequationlities of stationary type. Since its inception in the work of Lions and
stamacchla [60]. This has been one of the principal fields of applications of
the methods and results of nonlinear analysis. The main motivation for end
interest of this theory stem from its relevance to the study of free boundary
problems. These are boundary value problems involving partial differential
equations and must be found as a component of solution.

1. ABSTRACTEXISTENCE RESULTS

Throughout this section VV and H are real Hilbert spaces such that V isdensein H
and theinjection V into H is continous. Thenorms of V and H will be denoted by ||.||
and |.| respectively. H is identified with its own dual, and its then identified with a
subspace of thedual V of V. Hence V< H < V, algebraically and topologically. For
veVandV eV denoted by (v at v) thevalue of v at v. We shall denoted by ||.|| the
norm of V.

LetAeL (V.V) besuchthat for limv >0,

(Av. v) > Vv|v|2 for all ve V (3.1
The operator A is often defined by the equation
(u, Av) =a(u, v), foradl u,v, e V (3.2
wherea: VeV — Risabilinear continous functional and
a(v,v) > v|v|2 for all ve V (3.3

Let ¢ : v— Rbealower semi continous convex function. If f is agiven dement of
V. Consider thefollowing problem:

Findy ¢ v such that
aly, -2 + o) 42 < (y—z f) foral ze V (3.3)
where ais the billinear form defined by (3.2).

Thisis an abstract dliptic variational inequality associated dliptic variational
inequality associated with the operator Aand the function ¢.
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Eq. (3.3) can be rewritten in the form
Ay+oo(y)’f.. (3.3
where o ¢ :V — Vis the subdifferential of f.

In the special case where ¢ is the indicator function IK of a closed convex
subset k of v, i.e.,

() =0if xek, 1 (X) =+ wif xe K (3.4
then problem (3.3) becomes:
Find y € K such that

ay,y—2<(y-zf)foralzeK (3.5
If the operator A is symmetrici.e.,

a(y, 2 =a(z y)for al z, yeV, thenthevariational inequality (3.3) isequivalent tothe
following minimization problem, theDistrichlet principle:

ia(z 2)+o(2)(z, f):zeV

S (3.6)

Thus every solution y to (3.3) solves problem (3.6). Conversdy, if y isa minimum
point for thefunctional

v = %a(z, D +0E) - (= f)

then Osoy( y). Since A + 8¢ is maximal monotone and therefore oy = A + o¢- f . we
may conclude that y isa solution to (3.3) (or) (3.3).

In applications to partial differential equationsV is usually a Sobolev space on
an open subset Q of RN and A isan dliptic differential operator on Q. The spaceV
andthefunction f or thesubset K of V incorporatevarious conditions on the boundary
orinQ.

Theory 1: Let Abealinear continuous operator fromV toV satisfying condition
(3.2) and let ¢:V — R bealower semi continuous convex function. Then for every f
¢ V' thevariational inequality (3.3) hasauniquesolutiony ¢ V. Moreover, themapping
f —y isLipschitzienfromvtov.

Proof: Theoperator A+ 0 ¢ ismaximal monotoneinV x V'. By condition (3.1), using the
definition of 0 ¢. we have

(Au+vu-u)=v|u =LA ull+d(u) —¢(u)
for all (U, v) €00 (3.7)
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Hence A + 6 ¢ is coercive and surjective.
Bycondition (3.1) it follows that the solution yto (3.3) is unique

Iy I <wflle (3.9)
For f =1, defined by (3.4), we have

Corrollary 1: Let A :V—V' be alinear continous operator satisfying assumption
(3.2). Thenfor every fV* thevariational inequality (3.5) has a unique solution, y
e K.

Remark 1: For existence, the coercivity condition (3.1) is too restrictive. For
existencein variational inequality (3.5) it is sufficient to assumethat for somev, e
K.

: -1
[[v|| lim (Avov—v0)||v|| =+ 0,
X—>0
VekK

Nowlet { ¢} beafinallyoffrechet differentiable convexfunctions

0°(y)2-c(lyll+1) foral >0andyev (3.9)
where C is independent of eand y.

lim¢*=o¢(y) foralyev (3.10)
X—0
e—>0
liminf % (ye) = d(y) (3.11)
X—>»00
e—0

for all y ¢ V and every sequence{y.} <V weakly convergentinV toy:
Let {y,} = Vbesuchthat fors— 0

f.— fstrongly inV (3.12)
consider the equation

AYe+ V() = fe (3.13)
where V¢€ :V — V ‘ is the gradient of ¢¢ .

By theorem 1 for every € > 0, (3.13) has a unique solution yg €V .

Theorem 2: Let A e L (V, V') be a symmetric operator satisfying condition (3.1).
Then under assumption (3.9) to (3.12), for ¢ — 0.

ye = Y& weekly inV (3.14)
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where y& isthe solution to (3.3). Further assume that

fw ()~ Vo (2 y — 22 —e(1+ (| VWK P).).

VO (2)II7 INE+A) -

k J
foral e, A >0andy EeV (3.15)
Thenyg — y0 strongly inV (3.16)

Proof: Let zbearbitrary but fixed in D(¢). By (3.13) and the definition of gradient
we have

(Ve =2 AVe) + 0% (Ye) - 0% (2 < (fe, Ve — 2, VzeV (3.17)
Then by (3.1), (3.9) and (3.10) we see that {]ly.} is bounded for ¢ — 0.

Hence there exists y0 ¢ V and a sequence e — 0 for n — o such that

Yen — Y weekly inV
A, — AY weekly in V'’ (3.18)

Sincethe functiony — (y, Ay) is convex and continous on V. it is weakly lower semi
continous.

Henceliminf ('y Ay ) 2(y", AY")
nN—o €n €n

Together with (3.11), (3.17) and (3 18) this y|eIdS(Ay y Z)+¢(y)
<do(2) + (f, y —-2) foral zeV. Hencey is the solution to (3.3). Since the limit
is unique we conclude that (3.14) holds.

Now assume that condition (3.15) is satisfied. Since as seen above
I VO* (¥e) lle < e llet 1| AYe lle< cVe>0,

if follows by (3.1), (3.13) and (3.15) that
wWllYe—yall<c(e+A)+ I fe—falk Il ye—yall

for all e.A > 0. Thisgives (3.16). //

V¢ is an operator associated with the variational inequality (3.3). A possible
choice for ¢€ is

¢‘°’ — 0g (2) —inf{ (28)_1 lz-v ||2 +0(V); veV} (3.19)
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3.2 AREGULARITYRESULT

We shall denote AH :H — H the operator Ay — Ay for all ye D(A) {veV
: Ave H}. The operator Ay is positive definitein H and R(I + AH) = H because the
operature | + AV — V * is aurjective (1 is the unit operator in H). Hence AH is
maximal monotoneinH x H.

Theorem 3: Under assumption (3.1), suppose in addition that there exist h e H and
¢ ¢ R such that

o(1 + MAH ) L(y+ah) <o(y)+0p forall A >0andye V (3.20)
Then for every f ¢ H the solution y* to (3.3) belongs to D(AH) and
IAy*| <0 (L1 +|f]foralfeH (3.21)
Proof: Let Ay el (H, H) be the operator defined by Ay =A~1 (1 —J;) = A, . &
>0
where 3 = (I + AL
Let y* £ V bethe solution to (3.3), we have
A ALY A =3+t @ey ),y +ah-3y)
(y" +ah) = (f, A (y* +2Ah).

Now from (Ay, Ay y) > | ALY |2 for al y e Vand bycondition (3.20)

@Oy )y = (Y +2h) = ¢(y") - o (Y +3h)>—on,
We conclude that

1Ay B<ct|fl(ALy" |+C) forall A >0 Thus{|Ay"] isbounded and

|AqY | < c(L+]|f|) wherey'e D(A). //

Corollary 2: Let A bea linear continous operator fromV to V satisfying condition
(3.1) and K be a closed convex subset of V having the property that, for someh ¢
H.

(I +2AH ) L(y+rh)eforal A >0andal y e K (3.22)

Thus for every F ¢ H, the variational inequality (3.5) has a unique solution y* eK
N D( AH ) which satisfies (3.21).
Now we shall prove an approximating result similar to theorem 2 in case where

{¢?} is a family of convex Frechet differentiable functions on H satisfying the
following conditions:
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$¢(y)<-0(ly|+1) foral yeH ande> 0 (3.23)
lim ¢ (y) = ¢(y) for al y £ D(0) (3.24)
e—>0
liminf ¢ (yg) =0(y) if yg — y strongly in V (3.25)
e—>0
(AY.VOE (y)) = —c(1+ | V2 (y) |+ |ay]) foral y e D (Ay) and ¢ > 0
(3.26)
(Vo2 (y) — Vo (), y - 2) 2 — o(c + W)(| VO (yy) P+ Vot (@) P +1
foralle. A >0andy, ze H (3.27)

Here V& : H — H is the gradient of ¢%.
Let y¢ & D (Ap) be the solution to (3.13) i.e,

AVE +V§E () —f 8 (3.28)

where { f €} < H is such that

f€ - f strongly in H (3.29)
Theorem 4: Under assumption (3.23) to (3.27) for € - 0

v >y strongly inV (3.30)
AH Y¢ — Ay" weakly in H (3.31)

VoE(YE) >eedd(y) wekly inH
(3.32)

Proof: Taking the scalar product of (3.28) by y& using (3.1), (3.23) and (3.26),
we see that

| VOE (YE) P+ Ve I+ AH YE B <0

for al € > 0. Then using
conditions (3.1) and (2.27) it follows by (3.29) that

Ve = y* |2 <0 (e + 1) for all e > 0. Hence for & —> 0.

VoE(yE) > E=f—AH y weskly in H. Then taking £ — O in inequality
0% (Y2) =% @D (Vo (Y?), ¥* -2 +zeH,

It follows by (3.24) and (3.25) that

H(YE)<o@ +(ey —2)+zeH. I
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