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ELLIPTIC VARIATIONAL INEQUALITIES

Dr. Lalan Kumar Singh

ABSTRACT

In this Paper we shall present an introductory treatment of the theory variational
inequationlities of stationary type. Since its inception in the work of Lions and
stamacchla [60]. This has been one of the principal fields of applications of
the methods and results of nonlinear analysis. The main motivation for end
interest of this theory stem from its relevance to the study of free boundary
problems. These are boundary value problems involving partial differential
equations and must be found as a component of solution.

1. ABSTRACTEXISTENCE RESULTS

Throughout this section V and H are real Hilbert spaces such that V is dense in H
and the injection V into H is continous. The norms of V and H will be denoted by ||.||
and |.| respectively. H is identified with its own dual, and its then identified with a
subspace of the dual V of V. Hence V � H � V , algebraically and topologically. For
v e V and V e V denoted by (v at v) the value of v at v. We shall denoted by ||.|| the
norm of V.

Let A � L (V.V) be such that for lim v > 0,

(Av. v) > v||v||2 for all v � V                                (3.1)

The operator A is often defined by the equation

(u, Av) = a(u, v), for all u, v, � V                             (3.2)

where a : V � V ��R is a bilinear continous functional and

a(v, v) > v||v||2 for all v � V                                 (3.3)

Let � : v � �R be a lower semi continous convex function. If f is a given element of
V. Consider the following problem:

Find y � v such that

a(y, y–z) + �(y) –�(z) < (y–z, f) for all z � V                      (3.3)

where a is the billinear form defined by (3.2).

This is an abstract elliptic variational inequality associated elliptic variational
inequality associated with the operator Aand the function �.
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Eq. (3.3) can be rewritten in the form

Ay + ���( y) � f....                                      (3.3)

where ��� :V ��V is the subdifferential of f.

In the special case where � is the indicator function IK of a closed convex
subset k of v0 i.e.,

I
k
(x) = 0 if x � k, I

k
(x) = + �if x � K                          (3.4)

then problem (3.3) becomes:

Find y � K such that

a(y, y – z) < (y – z, f) for all z � K                           (3.5)

If the operator A is symmetric i.e.,

a(y, z) = a(z, y) for all z, y e V, then the variational inequality (3.3) is equivalent to the
following minimization problem, the Districhlet principle:

                              (3.6)

Thus every solution y to (3.3) solves problem (3.6). Conversely, if y is a minimum
point for the functional

then 0���( y). Since A + �� is maximal monotone and therefore �� = A + ��- f . we
may conclude that y is a solution to (3.3) (or) (3.3).

In applications to partial differential equations V is usually a Sobolev space on
an open subset  � of RN  and A is an elliptic differential operator on �. The space V
and the function f or the subset K of V incorporate various conditions on the boundary
or in �.

Theory 1: Let A be a linear continuous operator from V to V satisfying condition
(3.1) and let �:V ��R be a lower semi continuous convex function. Then for every f
��v’ the variational inequality (3.3) has a unique solution y ��V. Moreover, the mapping
f � y  is Lipschitzien from v to v.

Proof: The operator A ������is maximal monotone in V × V’. By condition (3.1), using the
definition of ���. we have

( Au ��v
0 
u ��u

0 
) ��v || u ||2 ��|| A || || u || ��(u) ���(u

0 
)

for all (u, v)  ���������������������������������������������������������(3.7)
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Hence  A + ��� is coercive and surjective.

Bycondition (3.1) it follows that the solution yto (3.3) is unique

|| y || < w–1 || f ||e                                                        (3.8)

For f = I
K
, defined by (3.4), we have

Corrollary 1: Let A :V�V‘ be a linear continous operator satisfying assumption
(3.1). Then for every  f �V ‘ the variational inequality (3.5) has a unique solution, y
� K.

Remark 1: For existence, the coercivity condition (3.1) is too restrictive. For
existence in variational inequality (3.5) it is sufficient to assume that for some v0 e
K.

Nowlet {��} beafinallyoffrechet differentiable convexfunctions

�� ( y) > -c (|| y || +1) for all  > 0 and y � v                      (3.9)

where C is independent of e and y.

lim �� = �( y) for all y � v (3.10)

x��
��0

lim inf ���( ye ) ���( y) (3.11)
x��
��0

for all y � V and every sequence {y�} ��V weakly convergent in V to y:

Let {y�} ��V be such that for ��� 0

f����f strongly in V (3.12)

consider the equation

Ay��������( y) ��fe                                                   (3.13)

where ���� :V ��V ‘ is the gradient of ��� .

By theorem 1 for every ��> 0, (3.13) has a unique solution y���V .

Theorem 2: Let A ��L (V, V’) be a symmetric operator satisfying condition (3.1).
Then under assumption (3.9) to (3.12), for  c ��0.

y����y���weekly in V                                              (3.14)
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where  y����is the solution to (3.3). Further assume that

for all �
0 ����0 and y

0 E �V                           (3.15)

Then y����y
0  strongly in V                              (3.16)

Proof: Let z be arbitrary but fixed in D(�). By (3.13) and the definition of gradient
we have

( y����z, Ay��) �����( y��) �����(z) ��( f��, y����z),Vz�V          (3.17)

Then by (3.1), (3.9) and (3.10) we see that {||y�} is bounded for�����0.

Hence there exists y
0 ��V and a sequence �

n
 ��0 for  n ����such that

yen  ��y* weekly in V

A 
yen

  ��Ay* weekly in V’                                 (3.18)

Since the function y ��( y, Ay)  is convex and continous on v. it is weakly lower semi
continous.

Hence lim inf ��y  .Ay ���( y*, Ay*)
    n��       en en

Together   with   (3.11),   (3.17)   and   (3.18)   this   yields �Ay*, y* ��z �����( y*)
���(z) ��( f , y* ��z) for all z �V . Hence y* is the solution to (3.3). Since the limit
is unique we conclude that (3.14) holds.

Now assume that condition (3.15) is satisfied. Since as seen above

|| ����( y��) ||e  ��|| f��||e ��|| Ay��||e ��c V ����0,

if follows by (3.1), (3.13) and (3.15) that

w || y����y��|| ��c (�����)��|| fe ��f��||* || y����y��||

for all �.����0. This gives (3.16).   //

���  is an operator associated with the variational inequality (3.3). A possible
choice for ��� is

��������(z) ��inf{�2���1 || z ��v ||2 ��(v); v �V }                (3.19)
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3.2  AREGULARITYRESULT

We  shall  denote AH :H ��H the  operator  AHy  –  Ay  for  all y ��D( A) �{v �V
: Av ��H}. The operator AH is positive definite in H and R(I + AH) = H because the
operature I ��A;V ��V ‘ is surjective (I is the unit operator in H). Hence AH is
maximal monotone in H × H.

Theorem 3: Under assumption (3.1), suppose in addition that there exist h ��H and
c ��R such that

�(I ���AH )�1( y ���h) ���( y) ��0��for all ��> 0 and y ��V          (3.20)

Then for every f ��H the solution y* to (3.3) belongs to D(AH) and

|Ay*| < 0 (1 + | f |) for all f ��H                               (3.21)
Proof: Let A��e L (H, H) be the operator defined by A��= �–1 (I – J�) = AJ��. �
> 0

where J��= (I + �AH)–1.

Let y* ��V be the solution to (3.3), we have

�Ay*, A��y* �����Ay*, h ��J��h������1 ����( y* ), y* ���h ��J���

( y* ���h)) ��( f , A��( y�����h).

Now from ( Ay, A��y) ��| A��y |2 for all y ��V and bycondition (3.20)

(���( y* ), y* ��J��( y* ���h) ���( y*) ���(J��( y* ���h) ����o�,

We conclude that

| A��y* |2 ��c��| f | (| A��y* | �C) for all ��> 0 Thus {|A�y*|} is bounded and

| AH y
* | ��c (1��| f |) where y*e D(AH). //

Corollary 2: Let A be a linear continous operator from V to V satisfying condition
(3.1) and K be a closed convex subset of V having the property that, for some h �
H.

(I ���AH )�1( y ���h) ��for all ����0 and all y ��K               (3.22)

Thus for every F ��H, the variational inequality (3.5) has a unique solution y* ��K

��D( AH ) which satisfies (3.21).

Now we shall prove an approximating result similar to theorem 2 in case where
{��} is a family of convex Frechet differentiable functions on H satisfying the
following conditions:



114 Dr. Lalan Kumar Singh

���( y) ����0(| y | �1) for all y e H and e > 0                 (3.23)

lim ���( y) ���( y) for all y ��D(�) (3.24)
��0

lim inf ���( y��) ��( y) if y����y strongly in V (3.25)
��0

( Ay.����( y)) ����c(1��| ��2 ( y) | ��| ay |) for all y ��D (AH) and ��> 0
(3.26)

(��2 ( y) ������(z), y ��z) ����c(c ���)(| ����( yy) |2 ��| ����(z) |2 �1

for all �. ��> 0 and y, z ��H                                                                     (3.27)

Here ���� : H ��H is the gradient of ��.

Let y����D (AH) be the solution to (3.13) i.e.,

Ay��������( y��) ��f �                               (3.28)

where { f �} ��H is such that

f ���� f strongly in H (3.29)

Theorem 4: Under assumption (3.23) to (3.27) for  ����0

y����y*  strongly in V                                (3.30)

AH y� ��Ay* weakly in H  (3.31)

�����( y��) ���������( y*) weakly in H
(3.32)

Proof: Taking the scalar product of (3.28) by y���using (3.1), (3.23) and (3.26),
we see that

| ����( y��) |2 ��|| y�� ||2 ��| AH y�� |2 ��0

for all ��> 0. Then using
conditions (3.1) and (2.27) it follows by (3.29) that

|| y����y�� ||2 ��0 (�����) for all �.��> 0. Hence for ����0.

����( y��) ��E ��f ��AH  y*  weakly in H. Then taking ����0 in inequality

���( y��) �����(z) �(�����( y��), y����z) ��z ��H ,

It follows by (3.24) and (3.25) that

�( y��) ���(z) ��(�, y* ��z) ��z ��H . //
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