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Abstract: This paper surveys real-time scheduling algorithms for multiprocessor systems. The survey outlines
fundamental results about multiprocessor real-time scheduling that hold independent of the scheduling algorithms
employed. It provides a taxonomy of the different scheduling methods, and considers the various performance
metrics that can be used for comparison purposes. A detailed review is provided covering partitioned, global,
hybrid scheduling algorithms, and heuristic approaches. The survey addresses the Dynamic Voltage and Frequency
Scaling (DVFS) technique that is acommonly-used for power-management wherethe clock frequency of a processor
is decreased to allowa corresponding reduction in the supply voltage. This reducespower consumption, which can
lead to significantreduction in the energy required for a computation, particularlyfor memory-bound workloads. It
found that while DVFS is effective on the older platforms,it actually increases energy usage on the mostrecent
platform, even for highly memory-bound workloads.

1. INTRODUCTION

This paper considers low-power design of real time operating system techniques for task scheduling upon
multicore embedded systems. During the last two decades, much work has been done and many researchers
have worked in the field ofenergy-efficient scheduling. First, the paper explores the literature briefly for
energy-aware real time scheduling of independent tasks and dependent tasks sharing resources. Second,
multiprocessor techniques and algorithms which are main focus of this paper are reviewed for symmetric
(homogeneous), heterogeneous and asymmetric multiprocessor platforms.

2. REAL-TIME SCHEDULING OVERVIEW

The real-time tasks need an algorithm that controls the execution of these tasks on the processor according
to some policy. Thus, the scheduling algorithm assigns tasks to the processor and provides an ordered list
of tasks, called the planning sequence or the schedule. Scheduling algorithms and policies can be classified
according to many criteria into [1-4]: Off-line or on-line scheduling according to the time of making
scheduling decisions.Preemptive or non-preemptive scheduling according to the preemption capability of
tasks. Best-effort or timing-fault intolerant scheduling according to the nature of time constraints.Centralized
or distributed scheduling according to the nature of the scheduling platform.Off-line scheduling builds a
complete planning sequence with all task set parameters. The schedule is known before task execution and
can be implemented efficiently. However, this static approach is very rigid; it assumes that all parameters,
including release times, are fixed and it cannot adapt to environmental changes. On-line scheduling allows
choosing at any time the next task to be elected and it has knowledge of the parameters of the currently
triggered tasks. When a new event occurs, the elected task may be changed without necessarily knowing in
advance the time of this event occurrence. This dynamic approach provides less precise statements than the
static one since it uses less information, and it has higher implementation overhead. However, it manages
the unpredictable arrival of tasks and allows progressive creation of the planning sequence. Thus, on-line
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scheduling is used to cope with aperiodic tasks and abnormal overloading.In preemptive scheduling, an
elected task may be preempted and the processor allocated to a more urgent task or one with higher priority;
the preempted task is moved to the ready state, awaiting later election on some processor. Preemptive
scheduling is usable only with preemptive tasks. Non-preemptive scheduling does not stop task execution.
One of the drawbacks of non-preemptive scheduling is that it may result in timing faults that a preemptive
algorithm can easily avoid. In uniprocessor architecture, critical resource sharing is easier with non-
preemptive scheduling since it does not require any concurrent access mechanism for mutual exclusion and
task queuing. However, this simplification is not valid in multiprocessor architecture.

Best-effort scheduling, with soft timing constraints, uses a best effort strategy and tries to do its best
with the available processors. The application may tolerate timing faults.

In timing-fault intolerant scheduling, with hard time constraints, the deadlines must be guaranteed and
timing faults are not tolerated.

Centralized scheduling is implemented on a centralized architecture or on a privileged site that records
the parameters of all the tasks of a distributed architecture. Scheduling is distributed when each site defines
a local scheduling after possibly some cooperation between sites leading to a global scheduling strategy.
In this context some tasks may be assigned to a site and migrate later.So, if periodic (static), hard, and
preemptive real-time tasks are considered to be scheduled on a uniprocessor platform, the scheduling type
is off-line, timing-fault intolerant, preemptive, and centralized scheduling according to the criteria mentioned
earlier.

Real-time scheduling theory has traditionally focused upon the development of scheduling algorithms
for feasibility analysis and run-time scheduling of a real-time system [5].

The feasibility (sometimes referred as schedulability [4, 6]) analysis determines whether all jobs can
complete execution by their deadlines or not. The run-time scheduling generates schedules at run-time for
systems that are deemed to be feasible (schedulable).

In other words, a real-time scheduling problem is a feasibility analysis problem (determining whether
the given tasks are schedulable or not) or a run-time scheduling problem (determining the suitable scheduling
algorithm and the resulting schedule).

Basic scheduling algorithms are classified according to the way of assigning priorities to tasks. If the
priority is assigned to a task according to a fixed parameter, like period relative deadline, or the computation
time, the algorithm is static because the priority is fixed. The priorities are assigned to tasks before execution
and do not change over time. The basic algorithms with fixed-priority assignment are rate monotonic (RM)
[7] and inverse deadline or deadline monotonic (DM) [8]. On the other hand, if the priority assigned to the
scheduling algorithm is based on variable parameters, like absolute deadlines, it is said to be dynamic
because the priority is variable. The most important algorithms in this category are earliest deadline first
(EDF) [7] and least laxity first (LLF) [4].

Figure 1 shows the two categories of basic scheduling algorithms and the most important algorithms in
each category.

3. POWER CONSUMPTION

The power/energy consumption is a critical issue in the design of modern microprocessors, in particular for
battery-powered embedded systems where prolonging the battery life is an extremely desired goal.The
power consumption in CMOS circuits can be broadly classified into two main components [9,10],dynamic
power consumption which arises due to switching activity in a circuit and static power consumption which
is present due to leakage currents even when no logic operations are performed.
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The power consumption has two essential components: dynamic and static power. The dynamic power
consumption, which is the main component, has a quadratic dependency on supply voltage [3] and can be
represented as:

2
dynamic ef ddP C V F (1)

Where C
ef
 is the switched capacitance, V

dd
 is the supply voltage, and F is the processor clock frequency

(sometimes referred as speed S) which can be expressed in terms of supply voltage V
dd 

and threshold
voltage V

t
 as following:

2( ) /dd t ddF K V V V (2)

The static power consumption is primarily occurred due to leakage current (I
leak

) [3], and the static
(leakage) power (P

leak
) can be expressed as:

leak lead ddP I V (3)

When the processor is idle, a major portion of the power consumption comes from the leakage. Currently
leakage power is rapidly becoming the dominant source of power consumption in circuits and persists
whether a computer is active or idle [2], and much work has been done to address this problem [3,4].So,
lowering supply voltage is one of the most effective ways to reduce both dynamic and leakage power
consumption. As a result, it reduces energy consumption where the energy consumption is the power
dissipated over time:

Energy = � Power dt (4)

P(s) = P
leak

 + P
dynamic

(5)

The total power function P(s) is convex and strictly increasing function with respect to speed [11, 12].
The energy is defined as the power dissipated during a certain interval of time, and the power is defined as
the energy transferred per unit of time. This distinction between power and energy is important because
techniques that reduce power do not necessarily reduce energy. Forexample, if the power consumed by a
device to do some job can be reduced to the half, but the device then takes twice as long to do the same job,
the total energy consumed will be similar. This means that the time parameter has to be taken into account
in such calculations. Something else has to be mentioned here that although the total power consumption
function P(s) is a convex and increasing function, the energy consumption function P(s)/s to execute a

Figure 1: Basic scheduling algorithms
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cycle at frequency (speed) s is merely a convex function [11]. Hence, there exists a critical speed, inwhich
executing any task at any speed less than the critical speed would consume more energy than that at the
critical speed.

For micrometer chips, the dynamic power dominates the power consumption, while the leakage power
becomes comparable for nanometer scales [11]. According to equation (1), there are four ways to reduce
dynamic power consumption, though each has different tradeoffs and not all of them reduce the total
energy consumed [9].The first way is to reduce the physical load capacitance or stored electrical charge of
a circuit. The second way is to reduce the switching activity. The third way is to reduce the clock frequency
and the fourth way is to reduce the supply voltage. According to leakage power reduction, there are four
ways to reduce leakage power [9]. The first way is to reduce the supply voltage.The second way is to reduce
the size of the circuit. The third way is to cool the circuit and the fourth way is to increase thethreshold
voltage. As a conclusion, reducing the supply voltage which in turn requiresreducing the clock frequency
(processor speed), results in reducing bothdynamic and static power consumption efficiently. This is the
main goalbehind energy efficient real-time scheduling algorithms using dynamicvoltage/frequency scaling
and dynamic power management techniques foruniprocessor and multiprocessor systems. Multiprocessor
(multicore)systems can deliver higher performance at lower power consumption thanuniprocessor systems.

4. SYSTEM MODELS, TERMINOLOGY, AND NOTATION

This section provides a primer on the terminology and notation used even in both uniprocessor and
multiprocessor scheduling research. It is aimed both at helping new researchers entering the field and
providing a consistent nomenclature that has yet to fully emerge from the research community.

4.1. Uniprocessor Systems

Weiser et al. [13] are considered the pioneers in the field of energy efficient real-time scheduling, where
they ignited the idea of the DVFS technique. Then, Yao et al. [14] have proposed an optimal static (offline)
scheduling algorithm by considering a set of aperiodic jobs on an ideal DVFS processor. A good survey has
been introduced by Chen and Kuo [11] about types and trends of energy efficient real-time scheduling
techniques on dynamic voltage scaling (DVS) platforms including uniprocessor and multiprocessor systems.
They categorized the related research results into eight categories in different dimensions: The first one is
for aperiodic real-time jobs as in [14], while the second one is for periodic real-time tasks with dynamic
priority [14] or fixed priority [15]. The third one considers energy-efficient scheduling of tasks with critical
sections due to exclusive shared resources as in [16]. In [17] the optimality of EDF+SRP was shown. A
dual speed energy-efficient algorithm for scheduling dependent tasks was proposed in [18]. Then extensions
and developments for this algorithm were done in [19, 20, 21]. The fourth one explores systems exploiting
shutdown or sleep operations when the leakage power consumption is non-negligible [22]. The fifth one
reduces energy consumption by exploiting and reclaiming the slacks resulting from the early completion of
jobs/tasks in an on-line fashion as in [14]. The sixth one minimizes the expected energy consumption for
tasks with probability density functions of their workload information [23]. The seventh one explores the
energy/power effect from I/O subsystems and other peripherals to minimize the whole system energy
consumption [24]. The last one considers energy-constrained real-time scheduling which pursues
performance maximization under a given energy constraint [25]. It is clearly noted that these eight categories
interfere with each other and some paper can fall into many categories.

Now we will explore multiprocessor energy-efficient scheduling techniques.

4.2. Multiprocessor Systems

Classification of Multiprocessor Systems from the perspective of scheduling, multiprocessor systems can
be classified into three categories. (1) Heterogeneous. The processors are different; hence the rate of execution
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of a task depends on both the processor and the task. Indeed, not all tasks may be able to execute on all
processors. (2) Homogeneous. The processors are identical; hence the rate of execution of all tasks is the
same on all processors. (3) Uniform. The rate of execution of a task depends only on the speed of the
processor. Thus a processor of speed 2 will execute all tasks at exactly twice the rate of a processor of speed
1. In this survey, we are concerned with homogeneous multiprocessor systems, comprising m processors.

4.2.1. Symmetric Multiprocessors (SMPs)

In symmetric multiprocessor (SMP) platforms, the cores (processors) arecompletely identical such as widely
existed multicore processors providedby most processor vendors. The ARM MPCore™ [26]
multicoreprocessor is an example of this type.A symmetric (homogeneous) multiprocessor platform with
m preemptiveprocessors can be defined as � ={p1,p2,…,pm} where pi represent the ithprocessor (core).For
SMP systems, Chen et al.[12, 27] have worked on energy efficient multiprocessor scheduling algorithms
and their theoretical analysis and approximation factors. For frame-based real-time tasks with different
power consumption functions, Chen and Kuo [27] proposed a 1.412-approximation algorithm. When all
the cores (processors) in the system must be operated at the same speed at any time instant (full-chip
DVFS), Yang, Chen, and Kuo [27] proposed a 2.371-approximation algorithm. For periodic real-time
tasks, Chen et al. [28] proved that Algorithm Largest-Task-First (LTF) is a 1.13-approximation algorithm
for periodic real-time tasks with the same power consumption characteristics. For periodic real-time tasks
with different power consumption characteristics, a 1.412-approximation algorithm was proposed [29].
Chen et al. [28] proposed a polynomial-time 1.283-approximation algorithm for the minimization of energy
consumption including leakage and the satisfaction of task timing constraints, when the overheads in turning
on/off a processor are negligible, and there is no upper bound on the processor speeds. When the overheads
are non-negligible, optimal solutions might require more than one processor for energy minimization, and
the minimum available speed is 0, a polynomial-time 1.667- approximation algorithm is proposed to partition
tasks on processors in an off-line manner and to determine the activation/dormant time in an onlinefashion.
When the minimum available speed is more than 0, the proposed algorithm has a 2 approximation bound
[28]. Then, by allowing tasks to run at lower speeds than the critical speed, in [12], a new approximation
algorithm is developed for homogeneous multiprocessor systems with a 1.21-approximation factor, which
significantly improves approximation algorithm with a 1.667- approximation factor proposed in [28]. Seo
et al. [30] suggested dynamic repartitioning algorithm based on existing partitioning approaches for
multiprocessor systems. Their algorithm dynamically balances the task loads of multiple cores to optimize
power consumption during execution. They also proposed dynamic core scaling algorithm, which adjusts
the number of active cores to reduce leakage power consumption under low load conditions. Wu et al. [31]
proposed an energy-efficient approach to scheduling periodic real-time tasks in the multicore context.
Within a voltage/frequency domain (VFD), a simple static voltage/frequency scaling schedule (Simple VS)
is first introduced to select the utilization of the heaviest-loaded core as the shared operating frequency of
this VFD. Next, the slack reallocation policy is proposed to further reclaim slack times while satisfying
timeliness requirements. The slack reallocation strives to redistribute the slack times uniformly to the cores
on the same VFD by appropriate job migrations. Lee [32] introduced two energy-saving techniques for
lightly loaded multi-core processors that contain more processing cores than running tasks by exploiting
overabundant cores for parallel processing of real time tasks with a lower frequency and turning off power
of rarely used cores. Lee [32] also showed that the problem of minimizing total energy consumption of
periodic real time tasks while meeting their deadlines is NP-hard on a lightly loaded multi-core processor.
Finally, a polynomial time scheduling scheme that provides a near minimum-energy feasible schedule have
been proposed. Heuristic algorithms for periodic tasks in multiprocessor environments were proposed in
[33, 34] by exploiting the well-known bin-packing algorithms for task partitioning and scheduling tasks in
a processor individually. Aydin and Yang [33] showed that energy aware real-time task partitioning upon
identical multiprocessors problem, called power partition, is also an NP-hard problem that aims to partition
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a list of tasks into a given number of sets that are optimally load balanced, with theguarantee that each task
set can be scheduled on the system. They introduced some useful definitions and theorems. They also
showed that among well-known bin-packing (BP) techniques, worst fit decreasing (WFD) generates the
most balanced sets and it is the most energy efficient BP technique. Then, Alenawy and Aydin [34] addressed
the energy minimization problem for fixed priority, rate monotonic (RM), scheduling and also showed its
NP-hardness. In off-line settings, they showed that WFD dominates other well-known heuristics. For on-
line settings, they proposed an algorithm that is based on reserving a subset of processors for light tasks to
guarantee a consistent performance. Zhu et al. [35] proposed an algorithm in which a global queue of ready
tasks is used for the selection of a candidate such that the slack time, due to the early completion of another
task, is used to slow down the execution speed of the selected task. The algorithm is for a set of independent/
dependent frame-based tasks in multiprocessor environments. For dependent tasks that share resources,
Lakshmanan et al. [36] proposed a synchronization-aware task allocation algorithm which bundles tasks
that access a common shared resource and co-locate them, thereby transforming global resource sharing
into local sharing and reducing the overall blocking time. Then, Nemati et al. [37] developed a two-round
blocking-aware partitioning algorithm (BPA) which allocates tasks onto processors in a way that reduces
the overall amount of blocking times of tasks. The both algorithms works under MPCP with fixed priority
scheduling algorithm. They did not take energy-awareness into account and considered SMP systems.
Alewi et al. [38] studied both static and dynamic synchronization aware energy management schemes.
They devised a synchronization aware task mapping heuristic (SA-WFD) that allocates tasks accessing the
same resources to the same core to effectively reduce synchronization overhead and thus improve
schedulability. The SA-WFD works under an enhanced version of MSRP and partitioned EDF on SMP
platforms taking energy-efficiency into account. This paper extends SA-WFD algorithm to consider AMP
platforms and proposes other BP variants according to DVFS model supported by the platform.

4.2.2. Heterogeneous Multiprocessors (HMPs)

When the cores are fully different kinds of processing units such as CPUand DSP, where each kind of
processing unit has a different architecture,different instruction set architecture (ISA), specialized to perform
adifferent function most efficiently. Such platforms are commonly referredto as heterogeneous multiprocessor
(HMP) platforms [50]. The firstgenerations of Texas Instruments (TI)’s OMAP™ [39, 40]
applicationprocessors that contain DSP and ARM processors are good examples ofthis type of HMP
platforms.In this paper, a heterogeneous multiprocessor platform with m preemptiveprocessors can be defined
as � ={p1, p2,…,pm}. An independent task �

i
 is represented as 3-tuple �

i
= (Ci,j, Di, Ti) where Ci,j is the

worst-caseexecution time (WCET) of task �
i
 on processor pj, D is the relativedeadline, and T is the period.

Implicitdeadlines are considered in this paper, i.e., the relative deadline isassumed to be the same as the
period. Each task �

i 
has a utilization uij = Ci,j/Ti on processor pj.An n ×m utilization matrix as in [50] can

be defined where each rowrepresents a task and each column represents a processor.

Among the work for HMP systems, Yu and Prasanna [41] considered the minimization of energy
consumption for systems. The proposed algorithm is based on integer linear programming without guarantees
on the schedulability of a derived solution [41]. Luo and Jha [42] proposed list scheduling- based heuristics
for the scheduling of real-time tasks with precedence constraints in heterogeneous distributed systems.
Genetic mapping and scheduling algorithms were developed in [43]. Hung et al. [44] explored energy-
efficient scheduling of periodic real-time tasks in a heterogeneous system with two processing elements, in
which one is a processor with the DVS capability and another is a processing element (PE) without the
DVS capability. A series of approximation algorithms was proposed to minimize the energy consumption
or maximize the energy saving, compared to the executions of tasks on the DVS processor. Regarding the
problem of task partitioning among heterogeneous multiprocessors, Baruah [45] proved that it is intractable
(strongly NP-hard), represented the problem as an equivalent Integer Linear Programming (ILP) problem,
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and designed a 2-step approximation algorithm for solving it. The idea of LP relaxations to ILP problems is
used in the first step to map most tasks, while in the second step the algorithm maps the remaining tasks
using exhaustive enumeration. This two-step algorithm takes time polynomial in the number of tasks, and
exponential in the number of processors. The same author [46] then used tree-partitioning in the second
step instead of exhaustive enumeration to make the algorithm takes time polynomial in the number of
tasks, and polynomial in the number of processors. In [47], Braun et al. compared 11 heuristics for mapping
a set of independent tasks onto heterogeneous distributed computing systems. The best one that has minimum
makespan, that is defined as the maximum completion time for the whole processors, was the Genetic
Algorithm (GA) followed by Min-min algorithm. Chen and Cheng [48] applied the Ant Colony Optimization
(ACO) algorithm. They proved that ACO outperforms both GA and LP-based approaches in terms of
obtaining feasible solutions as well as processing time. In [49], Abdelhalim presented a modified algorithm
based on the Particle Swarm Optimization (PSO) for solving this problem and showed that his approach
outperforms the major existing methods such as GA and ACO methods. Then, his PSO approach is developed
to can further optimize the solution to reduce the energy consumption by minimizing average utilization of
processors (without using any energy or power model). Finally, a tradeoff between minimizing the design
makespan as well as energy consumption is obtained. Visalakshi and Sivanandam [50] presented a hybrid
PSO method for solving the task assignment problem. Their algorithm has been developed to dynamically
schedule heterogeneous tasks onto heterogeneous processors in a distributed setup. It considers load balancing
and handles independent non-preemptive tasks. The hybrid PSO yields a better result than the normal PSO
when applied to the task assignment problem. The results are also compared with GA. The results infer that
the PSO performs better than the GA. In [51], Omidi and Rahmani used PSO for task scheduling in
multiprocessor systems as an important step for efficient utilization of resources. They considered independent
tasks on homogeneous multiprocessor systems. This paper considers the energy awareness of the problem
of task partitioning among HMPs and proposes a PSO variant to solve it. Recently, Andersson et al.[52]
considered the problem of scheduling a set of implicit deadline sporadic tasks on a heterogeneous
multiprocessor platform to meet all deadlines. Tasks cannot migrate and each processor is either of type-1
or type-2 (with each task having different execution speed on each processor type). They proposed new FF
variants with low time-complexity and provably good performance. Goraczko et al.[53] presented a resource
model that considers the time and energy costs of run-time mode switching, which considerably improves
the accuracy of existing models. Given an application, the software partitioning problem then becomes an
optimization over energy cost given deadline constraints, which can be formulate as an integer linear
programming (ILP) problem. They apply the resource modeling and software partitioning techniques to a
multi module embedded sensing device, the Platform, and present a case study of configuring the platform
for a real-time sound source localization application on a stack of MSP430 and ARM7 processor based
sensing and processing boards.

4.2.3. Asymmetric Multiprocessors (AMPs)

Finally, if the cores are different in performance, power and size, but theyhave the same ISA, they are
generally referred to as asymmetricmultiprocessor (AMP) platforms [39, 40]. Some authors [54],especially
in the real-time community, call them uniform multiprocessors or even uniform heterogeneous
multiprocessors [55]. Some authors [56]call them single-ISA heterogeneous multicore architectures while
others[57] call them shared-ISA asymmetric multicore architectures but foroverlapped ISA. Furthermore,
the asymmetric and heterogeneous termsmay interfere so much. In [58], heterogeneous architectures can
beclassified into two types: Performance asymmetry if they have the sameISA and functional asymmetry if
they have different or overlapped ISAs.Apart from all these terms and conflicts, asymmetric multiprocessors
(AMP) considered in this paper have the same ISA but they are differentin performance, power and size.
TI’s OMAP™ application processors[39] are good example of this type. The 4th generation OMAP, OMAP4
contains dual-core ARM™ Cortex-A9 in addition to two ARM Cortex-M3s and the 5th generation OMAP,
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OMAP5 SoC uses a dual-core ARM Cortex-A15 CPU with two additional ARM™ Cortex-M4 cores to
offloadthe A15s in less computationally intensive tasks to increase powerefficiency.In this paper, an
asymmetric multiprocessor platform with m preemptiveprocessors (cores) is defined as ��= {p1, p2,…,pm}
with maximum speeds {S1, S2,…, Sm} where each processor pjis characterized by its relativemaximum
speed Sjthat represents the ratio between the maximum speed(frequency) of processor pjand the maximum
speed of the slowestprocessor in the platform. The processors are ordered in non-decreasingorder of their
relative maximum speeds, i.e., 1= S

1
 � S

2
 �…� S

m
. An asymmetric multiprocessor platform considered here

containsprocessors that have the same ISA but they are different in performance, power and size where for
some frequency f � S

j
 then the processor powerfunction P

j
(f) � P

j+1
(f) for any 1 � j < m.

An independent task �
i
 is represented as 3-tuple �

i 
(C

i
, D

i
, T

i
) = where C

i
 is the worst-case execution time

of task �
i
 with respect to the maximumfrequency (speed) of the slowest processor, D

i
 is the relative deadline,

and T
i
 is the period. Each task �

i
 has a utilization Ui= Ci/Ti on the slowest processor and a utilization U

ij
 on

processor pj, i.e., U
ij
= U

i
/S

j 
where S

j
 represents the relativemaximum speed of processor P

j
 to the slowest

processor as will be shownlater. Total utilization of all tasks (with respect to the slowest processor) is U
tot

 =

1 .i n
i iu

The hyperperiod T of all tasks is the least common multiple of periods. The hyper periodT of all tasks is
the least common multipleof periods, i.e., T=lcm(T

1
, T

2
, . . . , T

n
).

For AMP systems, Funk et al. [59] considered the on-line scheduling of hard real-time systems on
uniform (asymmetric) multiprocessor machines. Resource augmentation techniques are presented here
that permit online algorithms to perform better than may be expected given the inherent limitations. They
explored the design of suitable on-line scheduling algorithms for use in uniform multiprocessor platforms.
Then, they showed that despite its non-optimality, earliest deadline first (EDF) is an appropriate algorithm
to use for on-line scheduling on uniform multiprocessors. In their work, they also presented many concepts,
definitions and assumptions and developed exact and sufficient feasibility conditions for scheduling periodic
real time tasks on uniform multiprocessor platforms. Baruah and Goossens [60] considered the preemptive
global static-priority scheduling of systems of periodic tasks on a uniform multiprocessor platform. They
obtained simple sufficient conditions for determining whether any given periodic task system will be
successfully scheduled by rate monotonic (RM) upon a given uniform multiprocessor platform. Also, Funk
and Baruah [55] explored partitioned scheduling on uniform multiprocessors and presented methods for
finding an approximate utilization bound for partitioned scheduling on uniform multiprocessors. Then,
Awadalla [61] also considered partitioned scheduling on uniform multiprocessors and proposed an algorithm
that can schedule all task sets that any other possible algorithm can schedule assuming that their algorithm
is given processors that are three times faster. Calandrino et al. [62] discussed an approach for supporting
soft real time periodic tasks in Linux on performance asymmetric multicore platforms. They discussed
deficiencies of Linux in supporting periodic real-time tasks, particularly when cores are asymmetric, and
how such deficiencies were overcome. They also investigated how to provide good performance for non-
real-time tasks in the presence of a real- time workload. For non-real-time applications, Kumar et al. [63]
proposed and evaluated single-ISA heterogeneous (asymmetric) multi-core architectures as a mechanism
to reduce processor power dissipation. Their design incorporates heterogeneous cores representing different
points in the power/performance design space; during an application’s execution, system software
dynamically chooses the most appropriate core to meet specific performance and power requirements.
Their architecture shows significant energy benefits. Li et al. [64] presented an asymmetric multiprocessor
scheduler, AMPS, that efficiently supports both SMP and NUMA-style performance asymmetric
architectures. AMPS contains three components: asymmetric aware load balancing, faster core first
scheduling, and NUMA-aware migration. They have implemented AMPS in Linux kernel and used CPU
clock modulation to emulate performance asymmetry on an SMP and NUMA system. For various workloads,
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they showed that AMPS improves performance. Then, Li et al. [57] explored the design space for asymmetric
multi-core architectures and presented a case study of one design, instruction-based asymmetry, in which
cores have overlapping, but non-identical instruction sets. To enable transparent execution of applications,
they proposed an operating system mechanism, fault-and migrate, which traps the fault when a core executes
an unsupported instruction and migrates the faulting thread to one that supports the instruction.
Lakshminarayana et al. [65] evaluated the performance of multithreaded applications in asymmetric
multiprocessors. They proposed and evaluated a task size aware scheduling algorithm and a critical section
length aware scheduling algorithm in asymmetric multiprocessors. The proposed scheduling algorithms
simply send long task threads or long critical section threads to fast cores. They showed that when workload
is asymmetric, these simple scheduling algorithms can improve performance compared to a scheduler
which does not consider asymmetric characteristics. Also, Lakshminarayana and Kim [66] measured
performance and power consumption in asymmetric and symmetric multiprocessors using real 8 and 16
processor systems to understand the relationships between thread interactions and performance/power
behavior. They found that when the workload is asymmetric, using an asymmetric multiprocessor can save
energy, but for most of the symmetric workloads, using a symmetric multiprocessor consumes less energy.
Koufaty et al. [58] proposed bias scheduling for asymmetric multicore systems. They identified key metrics
that characterize an application bias, namely the core type that best suits its resource needs. By dynamically
monitoring application bias, the operating system is able to match threads to the core type that can maximize
system throughput. They implemented bias scheduling over the Linux scheduler on a real system that
models micro architectural differences accurately and found that it can improve system performance
significantly, and in proportion to the application bias diversity present in the workload. Recently, Zhuravlev
et al. [54] surveyed asymmetry-aware scheduling approaches in their survey of energy-cognizant scheduling
techniques. They were oriented for non-real time single/multi-threaded applications. Apart from all these
efforts that dealt with asymmetric (uniform) multiprocessor platforms, this paper considers energy efficiency
as a main goal while partitioning real-time independent and dependent tasks upon asymmetric cores in
MPSoCs taking into account the DFVS model supported by these systems.

4.3. Heuristically-based Multiprocessors scheduling

Several approaches have been adopted to solve the multiprocessor task scheduling such as heuristic
approaches, evolutionary approaches and hybrid methods [70]. Authors in [71] presented a comprehensive
review and classification of deterministic scheduling algorithms. Among the most common methods is a
class of methods called list scheduling techniques. List scheduling techniques are widely used in task
scheduling problems [72]. Insertion Scheduling Heuristic (ISH) and Duplication Scheduling Heuristic (DSH)
are well-known list scheduling heuristic methods [73]. ISH is a list scheduling heuristic that was developed
to optimize scheduling DAGs with communication delays. ISH extends a basic list scheduling heuristic
from Hu [74] by attempting to insert ready tasks into existing communication delay slots.

The genetic-based methods have attracted a lot of researcher attention in solving the MTSP [75]. One
of the main differences in these genetic approaches is their genetic operators, such as crossover and mutation.
Using different crossover and mutation methods for reproducing the offspring is strongly dependent upon
the chromosome representation which may lead to the production of legal or illegal solutions. Another
important point in designing a GA is the simplicity of the algorithm and complexity of the evolutionary
optimization process. Authors in [76] reported that the results of GA were within 10% of the optimal
schedules. Their results are based on task graphs with dependencies but without communication delays.
Even though the method proposed in [77] was very efficient, it does not search the entire solution space.
Due to the strict ordering that only the highest priority ready task can be selected for scheduling, there can
be many valid schedules omitted from the search. In [78], it is proposed some modifications to the approach
in [78] to broaden the search space to include all the valid solutions. This modified approach was tested on
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task graphs that represent well-known parallel programs. Authors in [79] proposed a novel GA which
allows both valid and invalid individuals in the population. This GA uses an incremental fitness function
and gradually increases the difficulty of fitness values until a satisfactory solution is found. This approach
is not scalable to large problems since much time is spent evaluating invalid individuals that may never
become valid ones. In [80], the author applies parallel GA to the scheduling problem and compares its
accuracy with mathematically predicted expected value. More GA approaches are found in [81]. Another
new genetic-based multiprocessor scheduling method has been presented [82]. In that paper the author
claimed that the task duplication is a useful technique for shortening the length of schedules. In addition,
they added new genetic operators to the GA to control the degree of replication of tasks. Some works have
been performed to change the conventional approach of GA. They combined other problem solving
techniques, such as divide and conquer mechanism with GA. A modified genetic approach called partitioned
genetic algorithm (PGA) was proposed in [83]. In PGA, the input DAG is divided into partial graphs using
a b-level partitioning algorithm and each of these separate parts is solved individually using GA. After that,
a conquer algorithm cascades the subgroups and forms the final solution. In [84], a new GA called task
execution order list (TEOL) was presented to solve the scheduling problem in parallel multiprocessor
systems. The TEOL guarantees that all feasible search space is reachable with the same probability. Some
researchers proposed a combination of GAs and list heuristics [85]. Also it proposed a modified GA by
using list heuristics in the crossover and mutation in a pure genetic algorithm. This method is said to
dramatically improve the quality of the solutions that can be obtained with both a pure genetic algorithm
and list approach. Unfortunately, the disadvantage is that the running time is larger than running the pure
genetic algorithm. Therefore the aim of this paper is to reduce that time however the modification of pure
GA is done by the chromosomes’ representations. Also, we grasped many ideas for designing algorithms
which reduces run time and memory requirement for their implementation [86].

Baruah [87] proved that task partitioning among heterogeneous multiprocessors is intractable (strongly
NP hard), represented the problem as an equivalent Integer Linear Programming (ILP) problem, and designed
a 2-step approximation algorithm for solving this problem. The idea of LP relaxations to ILP problems is
used in the first step to map most tasks, while in the second step the algorithm maps the remaining tasks
using exhaustive enumeration. This two-step algorithm takes time polynomial in the number of tasks, and
exponential in the number of processors. Baruah[87] used tree partitioning in the second step instead of
exhaustive enumeration to make the algorithm takes time polynomial in the number of tasks, and polynomial
in the number of processors. Braun et al. [88] compared 11 heuristics for mapping a set of independent
tasks onto heterogeneous distributed computing systems. The best one that has minimum makespan, that is
defined as the maximum completion time for the whole processors, was the Genetic Algorithm (GA)
followed by Min-min algorithm. Chen and Cheng [89] applied the Ant Colony Optimization (ACO)
algorithm. They proved that ACO out performs both GA and LP-based approaches in terms of obtaining
feasible solutions as well as processing time. Awadalla [90] presented a modified algorithm based on the
Particle Swarm Optimization (PSO) for solving this problem and showed that his approach outperforms
the major existing methods such as GA and ACO methods. Then, his PSO approach is developed to can
further optimize the solution to reduce the energy consumption by minimizing average utilization of
processors (without using any energy or power model). Finally, a tradeoff between minimizing the design
makespan as well as energy consumption is obtained. Visalakshi and Sivanandam[91] presented a hybrid
PSO method for solving the task assignment problem. Their algorithm has been developed to dynamically
schedule heterogeneous tasks onto heterogeneous processors in a distributed setup. It considers load balancing
and handles independent non-preemptive tasks. The hybrid PSO yields a better result than the normal PSO
when applied to the task assignment problem. The results are also compared with GA. The results infer that
the PSO performs better than the GA. Omidi and Rahmani[92] used PSO for task scheduling in
multiprocessor systems as an important step for efficient utilization of resources. They considered independent
tasks on homogeneous multiprocessor systems. Apart from all these efforts, this paper integrates the PSO
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approach with a polynomial-time partitioning techniques; Min-min and priority assignment. The proposed
approach takes into account energy efficiency during task partitioning among heterogeneous cores in
MPSoCs.

Many Researchers have tried to implement fuzzy logic to schedule the processes. There are four main
approaches reported in the literature for the fuzzy scheduling problems; fuzzifying directly the classical
dispatching rules, fuzzy ranking, fuzzy dominance relation methods, and solving mathematical models to
determine the optimal schedules by heuristic approximation methods [94]. Round robin scheduling using
neuro fuzzy approach and Soft real-time fuzzy task scheduling for multiprocessor systems have been
developed[95]. Fuzzy Better Job First (FBJF) scheduling algorithm logically integrates parameters and
uses fuzzy ranking approach to determine the next most worthy job to be executed has been proposed [96].
A fuzzy scheduling approach to arrange real-time periodic and non-periodic tasks with reference to optimal
utilization of distributed processors has been proposed [97]. In their paper, an attempt is made to apply
fuzzy logic in the design and implementation of a modified scheduling algorithm to overcome the shortcoming
of well-known scheduling algorithms. Furthermore, many dynamic and static scheduling algorithms based
on fuzzy logic approach have been proposed and applied on uniprocessor systems. Also multiprocessor
and distributed systems have been considered [98, 99].

5. DYNAMIC VOLTAGE AND FREQUENCY SCALING

DVFS-enabled processors have the ability to dynamically change their supply voltage and operational
frequency settings during run-time of theapplication [67]. A typical DVFSenabled processor is developed,
the microprocessor core carries out the required computations. This processing unit is connected through a
system bus to the static memory (cache unit) and the I/O bus interface. The heart of this system, which
enables a dynamic voltage selection, consists of a DC/DC voltage converter, a specialized frequency register,
and a voltage controlled oscillator (VCO). Supply voltage and operational frequency are changed by writing
the desired frequency fd into the frequency register, i.e., these changes are carried out under software
control. Upon writing the desired frequency into the register, the DC/DC converter compares this frequency
with the current frequency fc (which clocks the microprocessor core, cache, and I/O interface) and either
increases or decreases the supply voltage Vdd. According to the changed voltage, the VCO adapts the
system clock to a higher or lower frequency fc. Certainly, the whole voltage scaling process requires a finite
time. Thus, with dynamic voltage and frequency scaling (DVFS) processors which supports many operating
voltage/speed levels, energy consumption can be reduced efficiently by making appropriate decisions on
the processor speed/voltage during the scheduling of real time tasks as thereis no benefit of finishing a real
time job earlier than its deadline. This highlights the main idea of energy-efficient real-time scheduling
ondynamic voltage/frequency scaling (DVFS) platforms.

DVFS processors have two types [11]: ideal and non-ideal. An ideal processor can operate at any speed
in the range between its minimum available speed and maximum available speed. A non-ideal processor
has only discrete speeds with negligible or non-negligible speed transition over heads. Another classification
defines four different types of DVFS systems: ideal, feasible, practical, and multiple [68]. In this paper, it
is assumed that the speed/voltage change overhead, similar to the context switch over head, is incorporated
in the taskcomputation time. Also, it is assumed that the processor’s maximum speed is 1 and all other
speeds are normalized with respect to themaximum speed. A well-known example of DVFS processors is
Intel Strong ARM SA1100 processor which runs at speeds (frequencies) ranging from 133 MHz to200
MHz. Theses frequencies are derived from two crystal oscillators, a3.6864-MHz (or 3.5795-MHz) oscillator
and a 32.768-kHz oscillator [69]. The core clock frequency (speed) is configured by software throughthe
core clock configuration field (CCF<4:0>) in the power-manager phase-locked-loop configuration register
(PPCR). This field should be programmed during the boot sequence for the desired full-speedoperation.
Table 3.1 shows oscillator frequencies as a function of the CCFsetting [69].
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There are three classes of DVFS, Per-Core DVFS, Full-Chip DVFS and Per-island DVFS. In the per-
core DVFS, each core operates at individual frequency/voltagelevel independently of other cores, and has
no operating frequency constraint. This type of multicore is so effective as the cores operate a synchronously
(independently) but at the favor of the cost.

The practical widely adopted full-chip DVFS designs restrict that all thecores in one chip to operate at
the same clock frequency/voltage level oroperating performance point (OPP)[40]. In other words, the active
coreson the chip have to be totally synchronous at the same OPP. Some authors [69] refer to this type as
DVS-CMP. Table 3.4 shows the predefined OPPs for the TI’s OMAP35x [40] application processor that
contains DSP and ARM cores. Table 3.4 Operating performance points (OPPs) for the OMAP35x [40].

Recently, voltage/frequency island (VFI) [31] technique is alsoproposed. This technique allows Globally
Asynchronous, LocallySynchronous (GALS) [31] design to be investigated as an alternativesolution to the
totally synchronous voltage/frequency design (full-chip DVFS). Multicore (many-core) systems are
partitioned into several is lands, clusters or voltage/frequency domains (VFD) [31]. In such systems, each
core belongs to a specific VFI, where the active cores within the same VFI must share the same supply
voltage and operating frequency. The operating frequency/voltage of each island can be adjusted
independently of other domains. In other words, all cores in one island (domain) share a common voltage/
frequency while those cores between islands may operate at different frequencies. Per-island DVFS results
in per-core DVFS when each VFI contains one core,while if the whole chip is just one VFI, then the full-
chip DVFS is obtained. Assuming Ni represents the number of islands and Ncis thenumber of cores in each
island, the total number of cores (processors) ism = Ni * Nc.

CONCLUSIONS

Currently, progress in developing multiprocessor systems is a long way ahead of research efforts to determine
the best mechanisms, policies, and analysis to use in these systems. At best, this can result in systems that
are heavily over specified and expensive; at worst, it can lead to intermittent and unexpected timing faults
that compromise system reliability. Functionality, unit cost, time-to-market, and a reputation based on
product reliability are key factors for companies developing real-time embedded systems. All of these
factors can be compromised by building systems using approaches that lack the necessary theoretical
underpinnings. Ultimately, multiprocessors will be used in high-integrity real-time systems, and consequently,
timing failures could affect safety. Future advances along the research directions indicated in this survey
should help resolve the key open issues identified. These advances hold the promise of providing the
effective and efficient mechanisms, policies, and analyses required for a sound engineering-based approach
to the development of complex commercial multiprocessor real-time systems.
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