Printing in control bioference annue for	ISSN : 0972-9380
International Jour	nal of
ECONOMIC RES	EARCH
Contra-Crug Banki Harmoni Dado of Carls to Entransmith Distor of Carls Do Statements of System Distorer of Lemma of and Damins Americano Partici Harmonic Carls Safetare S forces	Резименталия Алангас ог Суланос Регини об Такалагас инпозиция перек Со в-р-н-я-тур 0.12
ESTIMAL 65440 Messer Aly, Chin State University, USA Tarodas Bandyapadhyay, University of Caribonia, Riversity, USA	CMC ***********************************
Dy all Dansegue, stonasti Osvenske, vestora a Derrek Bjørbeck, Panlor Urisens y Herlt Gonkal, USV	
Ministra Carenda, Archese University, Carenda 1100 free: Synaxis a Carenda, U.S.A. Jilan Khadi Haranda Harianata, Januata	
Bhravan Lasking, Uniters (yi) McDinykan, UK Paul McDiods, Pushin Li Kwish) Calenai, USS	ш
Chang Water, New, To Institute for Economic Reasons, Carmony Armodyn Ben, Indian Institute of Nanagement, Schmidt, India	
Bahannad Nawin, The University of Jonan America, Jordan	
Serials Publications Pvt. Ltd	

International Journal of Economic Research

ISSN : 0972-9380

available at http://www.serialsjournal.com

© Serials Publications Pvt. Ltd.

Volume 14 • Number 13 • 2017

Consumer Decision In Purchasing Dried Mango

Yosini Deliana^{1*} and Sri Fatimah² and Endah Wulandari³

^{1&2}Departement of Agribusiness, Faculty of Agriculture, Universitas Padjadjaran, ³Departement Food Industrial Technology, Faculty of Agro Industrial Technology, Universitas Padjadjaran *E-mail: Y.deliana@gmail.com

Abstract: When fresh mango over supply, prices fall and many mango wasted. One solution is processed into dried mango. Died mango from production centers are widely distributed to Jakarta, Bandung and other areas. Dried mango producers distribute products based on equitable distribution of the number of products, not based on consumer need. Consumer decision in buying dried mango depend on age, income, family member, willingness to Pay, how far the supermarket location and how long consume dried mango. These variables influence each other. This study aims to analyze the factors that influence consumer decision in buying dried mango, how to link these factors, the reasons consumers buy dried mango, and consumer expectations the quality of dried mango. The study was conducted in Bandung early March to May 2017, sample of 100 people in a systematic random sampling, the data were analyzed with path analysis. Research location in specific local food vendor that scattered in Bandung

Keywords: Consumers, dried mango, systematic random sampling, and path analysis.

1. INTRODUCTION

Almost all agricultural products are easily damaged, as is Mango (*Mangifera indica* L). At harvest time between October and November, mango production is abundant. Indramayu District, the largest mango producer in West Java reached 34,999 tons or about 13% of the total production of West Java (Agriculture and Livestock Service Office of Indramayu District, 2014)^{[1].} The mango production from Indramayu is devoted to the processing of dried mangoes, while other production centers are focused on fresh mango and mango puree. Mango is great for diet because it contains Provitamin A Carotenoids, Vitamin C and phenolic ^{[2], [3], [4].}

To increase the added value of mangoes and extend mango storage, wider market reach and less risk of damage, mangoes are salted into dried mango ^{[5].} Dried fruit may be eaten as snacks or used in cookies or breakfast cereals, or used after rehydration in food processing for fresh, canned or frozen fruit. It has the

Yosini Deliana, Sri Fatimah and Endah Wulandari

advantage of being available in off season periods. Mango processing uses drying and adding sugar technology. For dried mango use mango with maturity level> 80%. Fresh mango processing into dried mango is expected to save the abundant harvest. In general, fruit and vegetables are dried to enhance their storage stability, minimize packaging requirement, and reduce transport weight and consequently transport cost.

Dried mango can be done with drying technology. Some research results on the technology of drying the fruit is done by drying 'mango leather ^[6]. Dry horticultural results are more advantageous, because they are mild, microbiologically stable, non-tidy and easy to use ^[7]. Drying can reduce the water content of a substance so as to inhibit microbial growth as well as other chemical reactions ^[8]. With the diversification of processed products of mango, then consumers can eat mango at the time not mango season. This study analyzes what factors determine consumer in buying dried mango.

2. LITERATURE REVIEW

A. Consumer Decision Making

Purchase decision making is a consumer decision about what to buy, how much to buy, where to do, when to do and how to buy will be done ^{[9],[10],[11].} The purchase decision process is the stages that the buyer passes in determining the choice of products and services to be purchased. Other experts claim that consumer decision making is a combined process of integration.

The decision as a selection of two or more alternative options, in other words the availability of more than one choice is a must in decision making. The buying decision process refers to the consistent and thoughtful action taken to meet the needs ^[12]. There are five stages:

- 1. recognition of needs,
- 2. information searching,
- 3. alternative evaluation,
- 4. purchasing decisions,
- 5. post-purchase behavior ^{[12], [13].}

B. Factors Influencing Consumer Purchasing Decisions

Many factors influence consumer decisions in the decision making process, there are internal and external factors ^[14]. In addition, there are three categories of factors that influence consumers in purchasing products, namely personal factors, psychological and social factors ^[15], in addition to cultural factors ^[16]. In this research, purchasing decisions analyzed from personal, psychological, and situations factors characterized by the large number of dried mango (Y), allegedly influenced by age (X_1), income (X_2), family member (X_3), willingness to pay (X_4) and distance location to supermarket (X_5). Also analyze how consumer decisions after post purchase, whether to repurchase or not

3. MATERIAL AND METHODS

The study was conducted in February-June 2017 at three location of Kartikasari Bandung backery which dried mango sell from central production Indramayu or Cirebon. The data in this research are primary and secondary data while sampling technique is systematic random sampling.

Consumer Decision in Purchasing Dried Mango

Systematic Sampling is another useful alternative for sampling with a large sample population. Systematic sampling is a method where only the first element of the sample is randomly chosen while the subsequent elements are systematically selected according to a particular pattern.

Technique of collecting data is done by observation, interview, questioner and literature study. The purpose of this study is to determine what factors determine consumer decisions in dried mango purchases. Data were analyzed by path analysis

1. Factors Determine Cconsumer Decisions in Dried Mango Purchases

Description:

 $X_{1} = Age (year)$ $X_{2} = Income (Rp /month)$ $X_{3} = Family member (person)$ $X_{4} = Willingness to Pay (Rp/month)$ $X_{5} = Distance location to supermarket (Km)$ $Y_{1} = Number of coffee purchases (ons /months)$ $Y_{2} = Repurchasing$

 Pyx_1 = Structural parameters showing the effect of variable X₁ to variable Y.

 $Pyx_2 =$ Structural parameters indicating the magnitude of the effect of variable X_2 to variable Y. $Pyx_3 =$ Structural parameters that show the magnitude of the effect of variable X_3 to variable Y. $Pyx_4 =$ Structural parameters that indicate the magnitude of effect of variable X_4 to variable Y. $Pyx_5 =$ Structural parameters that indicate the magnitude of effect of variable X_5 to variable Y.

Then we can construct the following structural equations as follow :

$$Y = Pyx_1 + Pyx_2 + Pyx_3 + Pyx_4 + Pyx_5 + \varepsilon$$

On the structural equations above, there is a residual error, which is denoted with the symbol ε . Residual error (ε) is the exogenous variables not directly measured and describe the reasons that are determined from the results of variations or differences that are not described, plus an error on the measurement. Path analysis as follow^[17]:

- 1. Formulate hypotheses and structural equations. Here is a flowchart model used, this model illustrates the path paradigm of three exogenous variables with one endogenous variable can be seen in the figure
- 2. Calculating the path coefficients based on the regression coefficients
- 3. Calculating the overall path coefficient (simultaneous) using the F test
- 4. Calculating the individual path coefficients (partial) using the t test
- 5. Summarize and conclude.

To assist the calculation of path analysis, this research will use of Statistical Product and Service Solution (SPSS) software.

2. Consumer Decision Post Purchase

To analyze post-purchase then conducted logistic regression analysis by using SPSS 15.0 obtained the result of estimation coefficient (β_1) logistic regression model as follows:

$$\ln \frac{p}{1-p} = \text{alpha} + \text{beta } X_1 \qquad \dots (1)$$

The Feasibility Test of the Logistic Regression Model

To assess the feasibility of the logistic regression model that has been established using Hosmer and Lemeshow testing with the hypothesis:

H0: Models hypothesized fit with the data

H₁: Model hypothesized is not fit with the data

Testing will be done with a significant level of 5% ($\alpha = 5\%$). Testing will reject Ho if p-value (probability value) is < 5% significant level. Results of Hosmer and Lemeshow test calculations with SPSS 15.0.

4. RESULTS AND DISCUSSION

1. Respondents' Characteristics

The respondents who bought dried mango were generally 41-50year old, female, the job was entrepreneur, graduate education and income between 5-10 million rupiahs/month. High revenues have something to do with willingness to pay. For the middle to upper class the price of expensive dried mango is not a problem, because this group is more concerned with quality and taste. Thus with the increase in income then the quality of purchased goods increases, rather than buying the same goods with more quantities. Consumer characteristics can be seen in Table 1.

Table 1 Consumer Characteristics			
Variable	Description	%	
Year	< 30	12	
	30-40	27	
	41-50	46	
	> 51	15	
Gender	Male	39	
	Female	61	
Occupation	Civil servant	23	
	Entrepreneur	47	
	Private	30	
Education	High School	25	
	Diploma	21	
	Graduate	41	
	Post Graduate	13	
Income(Rp/month)	< 5 million	27	
	5 -10 million	38	
	> 15 million	35	

2. Factors Affecting Consumer Decisions in Buying Dried Mango

Table 2 Path Analysis Coeffisient

Variablel	Coeffisient
$\overline{X_1 - Y}$	-0,469
$X_2 - Y$	0,393
$\overline{X_3} - Y$	0,159
X ₄ - Y	-0,437
$X_5 - Y$	0,189

Yosini Deliana. Sri Fatimah and Endah Wulandari

$$Y = -0,469 X_1 + 0,393 X_2 + 0,159 X_3 - 0,437 X_4 + 0,189 X_5$$

From the equation it is seen that the path coefficient parameters X_1 and X_4 are negative, whereas the coefficient parameters of path X_2 , X_3 and X_5 are positive. In the above path equation, X_1 has a path coefficient of -0.469 to Y, X₂ has a path coefficient of 0.393 to Y, X₃ has a path coefficient of 0.159 to Y, X_4 has a path coefficient of -0.437 to Y, whereas X_5 has a coefficient path of 0.189 against Y, then F-test as follow :

	Test Anova Test					
Moa	lel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	21,128	5	4,226	10,420	,000 ^b
	Residual	38,119	94	,405		
	Total	59,248	99			

Table 3

a. Dependent variable: Y

b. Predictors: (Constant), X_5 , X_4 , X_3 , X_1 , X_2

Age factor (X_i) , income per month, and factor of willingness to pay (X_i) have direct effect to the amount of purchased dried mango (Y). Age factor negatively affect the amount of purchase dried means the higher the actor age then the less buy dried mango. Similarly, the factor willingness to pay (X_i) negatively affect the level of purchasing dried manga (Y). The fact is as if means the higher the willingness to pay then the less buy dried mango. This is understandable because dried mango tastes sour sweet, so it is preferable to young people. Similar to willingness to pay (WTP), the greater the WTP the smaller in the purchase of dried mango, because it is associated with consumer income. Factors of income have a positive effect on the level of purchasing dried manga (Y), the higher the income level the higher the purchase rate of dried mango.

F-test 10,420 with *p*-0,000, All path coefficient rejected Ho hypothesis when *p*-value < alpha, this research show that p-value (0,000) < alpha (0,05), the conclusion show that this model good for prediction X_1, X_2, X_3, X_4 dan X_5 to Y. Meanwhile, the results of the analysis showing the low coefficient of determination in the estimation result of this model ($R^2 = 65\%$) implies that there are many other factors that determine the variation of the rise and fall of dried mango drift level outside the analysed factors (35%). These factors include sex, motivation, perception, skill, product knowledge, personality, style of life, physical environment of the purpose, purchase place, time influences, and peer group ^[16]. Test of each variable as follow:

From the above test results obtained the value of *t*-count and *p*-value for each path coefficient. In testing each path coefficient, reject the null hypothesis if p-value < alpha, in any case accept the null hypothesis. From the above analysis it is found that path coefficients X_1, X_2 and X_4 have p-value < alpha (0,05), while path coefficient X_3 and X_5 have *p*-value> alpha (0,05). Level of Path Coefficient as follow :

$$Y = -0,469 X_1 + 0,393 X_2 + 0,159 X_3 - 0,437 X_4 + 0,189 X_5 + \varepsilon$$

From the equation, it is seen that the path coefficient parameters X_1 and X_4 is negative, whereas the coefficient parameters of path X_2 , X_3 and X_5 are positive. In the path equation above, X_1 has a path

			Test for each Variel	ble		
			Coefficients ^a			
			U	nstandardised Coefficie	nts	
Mod	el	В	Std. Error	Beta	t	Sig.
1	(Constant)	4,416	,428		10,328	,000
	X_{1}	-,038	,008	-,469	-4,883	,000
	X_2	8,756E-008	,000	,393	3,747	,000
	X_{3}	,160	,093	,159	1,723	,088
	$X_{_{4}}$	-,095	,022	-,437	-4,315	,000
	X_5	,184	,098	,189	1,875	,064

Table 4 Test for each Varieble

a. Dependent Vaiable: Y

Table 5Level of Path Coefficient

Variable	Path Coefficient
$\overline{X_1}$ to Y	-0,469
X_2 to Y	0,393
X_3 to Y	0,159
X_4 to Y	-0,437
X_5 to Y	0,189

coefficient of -0.469 to Y, X_2 has a path coefficient of 0.393 to Y, X_3 has a path coefficient of 0.159 to Y, X_4 has a path coefficient of -0.437 to Y, whereas X_5 has a coefficient path of 0.189 against Y. F-test as follow

	Table 6 Result of F test Model					
			Anova			
Mod	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	21,128	5	4,226	10,420	,000 ^b
	Ressidual	38,119	94	,405		
	Total	59,248	99			

a. Dependent Variable: Y

b. Predictors: (Constant), X_5, X_4, X_3, X_1, X_2

From the above test results obtained F arithmetic in 10.420 with p-value of 0.000. In testing the overall path coefficient, reject the null hypothesis if p-value < alpha, in any case accept the null hypothesis. Since the p-value (0,000) < alpha (0,05) then the null hypothesis is rejected. It can be concluded that the best model is used to show the effect model of X_1, X_2, X_3, X_4 and X_5 .

			Coefficients ^a			
		Unstand	lardised Coefficients	Standardized	l Coefficients	
Mod	el	В	Std. Error	Beta	t	Sig.
1	(Constant)	4,416	,428		10,328	,000
	<i>X</i> 1	-,038	,008	-,469	-4,883	,000
	X2	8,756E-008	,000	,393	3,747	,000
	X3	,160	,093	,159	1,723	,088
	<i>X</i> 4	-,095	,022	-,437	-4,315	,000
	X5	,184	,098	,189	1,875	,064

Table 7	
<i>T</i> -Test - Effect of Each variable <i>X</i> to	Y

a. Dependent Variable: Y

Here is a test of significance for the magnitude of the effect:

The effect of X_1 on Y(a)

Based on the calculation of path analysis obtained by the amount as follows:

	The Effect of X_1 on Y			
Variable	The Effect	r ²	%	
$\overline{X_1}$	Direct effect to Y	0,220	22,02%	
	Indirect effect through X_2 to Y	0,002	0,23%	
	Indirect effect through X_3 to Y	-0,006	-0,64%	
	Indirect effect through X_4 to Y	0,004	0,44%	
	Indirect effect through X_5 to Y	-0,040	-4,00%	
	Total	0,181	18,06%	

Table 8

The effect directly between X_1 to Y is 22.02%. The indirect effect between X_1 to Y through X_2 is 0.23%. The indirect effect between X_1 to Y through X_3 is -0.64%. The indirect effect between X_1 to Y through X_4 is 0.44%. The indirect effect between X_1 to Y through X_5 is -4.00%. The total effect of X_1 either directly or indirectly to Y = 22.02% + 0.23% - 0.64% + 0.44% - 4.00% = 18.06%.

From the test results of significance in the above table Obtained P-value value of $0.000 < \alpha$ (0.05). Thus H_0 is rejected and H_1 accepted, or it can be concluded that the X_1 has a significant influence on you.

The effect of X, on Y**(b)**

Based on the calculation of path analysis obtained by the amount as follows:

Variable	The Effect	r ²	0/0
$\overline{X_2}$	Direct effect to Y	0,154	15,43%
-	Indirect effect through X_1 to Y	0,002	0,23%
	Indirect effect through X_3 to Y	0,016	1,60%
	Indirect effect through X_4 to Y	-0,096	-9,56%
	Indirect effect through X_5 to Y	-0,016	-1,58%
	Total	0,061	6,11%

Table 9 The Effect of X_2 on Y

The effect directly between X_2 on Y is 15.43%. The indirect effect between X_2 to Y through X_1 is 0.23%. The indirect effect between X_2 to Y through X_3 is 1.60%. The indirect effect between X_2 to Y through X_4 is -9.56%. The indirect effect between X_2 to Y through X_5 is -1.58%. The total effect of X_2 either directly or indirectly to Y = 15.43% + 0.23% + 1.60% - 9.56% - 1.58% = 6.11%.

From the test results of significance in the above table Obtained *P*-value value of $0.000 \le \alpha$ (0.05). Thus Ho is rejected and H₁ accepted, or it can be concluded that X_2 has a significant effect on Y.

The effect of X, on Y(c)

Based on the calculation of path analysis obtained by the amount as follows:

	The Influence of X_3 on Y				
Variable	The Effect	r ²	%		
$\overline{X_3}$	Direct effect to Y	0,025	2,53%		
	Indirect effect through X_1 to Y	-0,006	-0,64%		
	Indirect effect through X_2 to Y	0,016	1,60%		
	Indirect effect through X_4 to Y	-0,001	-0,11%		
	Indirect effect through X_5 to Y	-0,009	-0,87%		
	Total	0,025	2,52%		

Table 10

The effect directly between X_3 on Y is 2.53%. The indirect effect between X_3 to Y through X_1 is -0.64%. The indirect effect between X_3 to Y through X_2 is 1.60%. The indirect effect between X_3 to Y through X_4 is -0.11%. The indirect effect between X_3 to Y through X_5 is -0.87%. The total effect of X_3 either directly or indirectly on Y = 2.53% - 0.64% + 1.60% - 0.11% - 0.87% = 2.52%.

From the test results of significance in the above table Obtained *P*-value value of $0.088 \le \alpha$ (0.05). Thus Ho is rejected and H_1 accepted, or it can be concluded that X_3 has a significant influence on Y.

The effect of X_{A} on Y(d)

Based on the calculation of path analysis obtained by the amount as follows:

Variabel	Pengaruh	1 ²	%				
$\overline{X_4}$	Direct effect to Y	0,191	19,10%				
4	Indirect effect through X_1 to Y	0,004	0,44%				
	Indirect effect through X_2 to Y	-0,096	-9,56%				
	Indirect effect through X_3 to Y	-0,001	-0,11%				
	Indirect effect through X_5 to Y	0,010	0,98%				
	Total	0,109	10,86%				

Table 11 The Influence of X_4 on Y

The effect directly between X_4 to Y is 19.10%. The indirect effect between X_4 to Y through X_1 is 0.44%. The indirect effect between X_4 to Y through X_2 is -9.56%. The indirect effect between X_4 to Y through X_3 is -0.11%. The indirect effect between X_4 to Y through X_5 is 0.98%. Total influence of X_4 either directly or indirectly to Y = 19,10% + 0,44% - 9,56% - 0,11% + 0,98% = 10,86%.

From the test results of significance in the above table Obtained *P*-value value of $0.000 < \alpha$ (0.05). Thus Ho is rejected and H₁ accepted, or it can be concluded that X₄ has a significant influence on Y.

(e) The effect of X_5 on Y

Based on the calculation of path analysis obtained by the amount as follows:

	The effect of X_5 on Y					
Variabel	Pengaruh	r ²	%			
$\overline{X_5}$	Direct effect to Y	0,036	3,59%			
	Indirect effect through X_1 to Y	-0,040	-4,00%			
	Indirect effect through X_2 to Y	-0,016	-1,58%			
	Indirect effect through X_3 to Y	-0,009	-0,87%			
	Indirect effect through X_5 to Y	0,010	0,98%			
	Total	-0,019	-1,88%			

TT 1 1 10

The effect directly between X_5 to Y is 3.59%. The indirect effect between X_5 to Y through X_1 is -4.00%. The indirect effect between X_5 to Y through X_2 is -1.58%. The indirect effect between X_5 to Y through X_3 is -0.87%. The indirect effect between X_5 to Y through X_4 is 0.98%. The total effect of X_5 either directly or indirectly to Y = 3.59% - 4.00% - 1.58% - 0.87% + 0.98% = -1.88%. From the test results of significance in the above table Obtained *P*-value value of 0.064 < α (0.05). Thus Ho is rejected and H₁ accepted, or it can be concluded that X_5 has a significant effect on Y.

The Effect of Variable X to Y

To calculate the magnitude of the effect of service quality on satisfaction is done calculation coefficient of determination. The following calculation results coefficient of determination, as follows:

	International	Journal	l of Ecor	nomic l	Researcl	h
--	---------------	---------	-----------	---------	----------	---

Dimension	In Direct Influence								
	Direct Influence	X_{i}	X_2	X_{j}	X_4	X_{5}	Sub Total	Total	
$\overline{X_1} *$	22,02%	_	0,23%	-0,64%	0,44%	-4,00%	-3,97%	18,06%	
$X_{2}^{'}*$	15,43%	0,23%	_	1,60%	-9,56%	-1,58%	-9,32%	6,11%	
X_{3}^{*} *	2,53%	-0,64%	1,60%	_	-0,11%	-0,87%	-0,02%	2,52%	
$X_{4}^{'}*$	19,10%	0,44%	-9,56%	-0,11%	_	0,98%	-8,25%	10,86%	
$X_{5}^{'}*$	3,59%	-4,00%	-1,58%	-0,87%	0,98%	_	-5,47%	-1,88%	
	Variable influence X_1, X_2, X_3, X_4, X_5								
	Variable influe	nce outside	e e					64,34%	
	Total							100,00%	

 Table 13

 Results Calculation Coefficient of Determination

The coefficient of determination test is done to measure how far the path model ability in explaining variation of dependent variable. R Square quantities are used to measure the goodness of fits of path equations. Table is the result of testing the coefficient of determination. From the table can be seen that the value of R Square is 0.3566, it can be concluded that 35.66% dimension Y can be explained by dimensions X_1, X_2, X_3, X_4 and X_5 . While the rest equal to 64,34% explained by other variable not examined in this research. R square values which small because many other variables are not analyzed such as target markets, market segments, product quality, packaging, promotion, tastes, buying habits, culture, consumption patterns, peer groups, and words of mouth. Other research results reveal that the diversity of economic, sociodemographic and cultural environment determines the differences in attitudes to different categories, purchasing, and consumer behavior ^[18]

Based on the calculation results obtained that the total influence (total sum of direct and indirect effect) for X_1 is 18.06%, for X_2 is 6.11%, for X_3 is 2.52%, for X_4 is equal to 10, 86%, for X_5 is –1.88%. Of the five dimensions, X_1 dimension has the greatest influence on patient satisfaction, while X_5 has the least effect.

Path diagram of the analysis results are as follows:

Figure 2: Path Coefficient for Each Variable

Description:

$$\begin{split} X_1 &= \text{Age (year)} \\ X_2 &= \text{Income (Rp/month)} \\ X_3 &= \text{Family member (person)} \\ X_4 &= \text{Willingness to Pay (Rp/month)} \\ X_5 &= \text{Distance location to supermarket (Km)} \\ Y_1 &= \text{Number of coffee purchases (ons /months)} \\ Y_2 &= \text{Repurchase of dried mango} \end{split}$$

3. Consumer Decision Post Purchase

Nagelkerke Coefficient (R²)

Nagelkerte Coefficient (R^2) to see the contribution how much dried mango on repurchase. This coefficient was be analysed with software SPSS, the table as follow :.

	Nage	Table 14 lkerke Coeffisient			
Model Summary					
Step	-2 log likelihood	Cox and Snell	Nagelkerke R Square		
1	116.639a	.000	.000		

a. Estimation terminated at iteration number 3 because parameter estimates changed by less than .001.

Based on the above table, the Nagelkerke coefficient (R^2) between how much dried mango on repurchase is at 0.0004. This indicates that the independent variable has a contribution of 0.04% in repurchase, while the rest of 99.96% is explained by other factors not found in this logistic regression model. While consumer purchasing decisions are tested with Wals Test.

Table 16 Wald Test Results								
,		В	<i>S.E</i> .	Wald	df	Sig.	Exp(B)	
Step	Y_1	0.33	.292	.013	1	.910	1.033	
1 ^a	Costant	.871	1.118	.607	1	.436	2.390	

Testing will reject Ho if *p*-value (Sig.) Is smaller than the significant level ($\alpha = 5\%$). From the table above, we can see the test results showing *P*-value (sig.) For how much dried mango on repurchase of 0.429. When compared with $\alpha = 5\%$ then the value is valued greater than 0.05. Thus it is concluded that there is no significant effect of how much dried mango on repurchase. Although the results show that there is no significant effect on the quantity of dried mango purchase with repurchase, but whoever will repurchase dried mango, it is analyzed descriptively as follows:

Variable	Category	Purchase (%)		Repurchase (%)		Total (%)
Age (year)	< 25	15	27	_	73	100
	25-40	12		41		
	> 40	_		32		
Income (million/month)	< 5	5	27	8	73	100
	5-10	21		56		
	> 10	1		9		
Family Member (people)	1	_	27	_	73	100
	2–3	20		57		
	4	7		16		
WTP (% from actual price)	5%	18	27	36	73	100
	10%	7		26		
	15%	2		11		
How Far(km)	<2	_	27	60	73	100
	2–3	21		11		
	4	6		7		
How much(ons)	< 2,5	4	27	7	73	100
	2.5-4	19		55		
	> 4	4		11		

 Table 17

 Consumer's Cluster who Repurchased Dried Mango

From the research results revealed that from 100 respondents, 73 per centwill repurchase dried mango. Cluster of consumers who will repurchase of dried mango consumers whose age is between 25-40 years, earning between 5-10 million per month, family members of 2-3 people, willingness to pay 5 per cent of the actual price, and distance to the market or supermarket less from 2 kilometers. Thus, the dried mango producer targets its market in accordance with the market segment.

The price dried mango 11,500 rupiahs/ounce or 28,500 rupiahs per quarter kilograms. Willingness to pay consumers only want to pay more than 5 per centof the actual price, so the price that consumers want to pay about 120,750 rupiahs per kilogram. In general, consumers buy dried mango in the center of souvenirs between 2.5-4 ounces. The results revealed that consumers bought a little dried mango because they wanted to try the taste (42%), less promotion as typical souvenirs (23), less attractive product appearance (15), and the packaging was easily damaged (20%). Thus to increase the sales of mango producers should pay attention to consumer desires such as dried mango can be made souvenirs typical of the region with attention to appearance and packaging. From the results of the study also revealed that dried mango flavor was nearing dried mango import, it just tastes a little sour, the color is less attractive, and smell less fragrant.

5. CONCLUSION AND SUGGESTION

Factors affecting consumer purchases in buying dried mango are age, income and willingness to pay (WTP), while family members and the distance from home to the sales place do not affect. The small value of *R* square because a lot of variables that are not included in the study as factor target market, segment market, product quality, packaging, promotions, tastes, buying habits, culture, consumption patterns, peer group, and words of mouth. Cluster of consumers who will repurchase of dried mango consumers whose age is between 25-40 years, earning between 5- 10 million per month, family members of 2-3 people, willingness to pay 5 per centof the actual price, and distance to the market or supermarket less from 2 kilometers. Thus, the dried mango producer targets its market in accordance with the market segment.

Suggestions for other researchers interested in the study of dried mango are expected to include other variables besides age, income, family member, willingness to pay (WTP) and distance from location to the market), while for producers in increasing dried mango sales should pay attention to market segment by positioning dried mango as a typical product of the region, appearance, and packaging is improved. In addition, it should also pay attention to taste, color and highlight the distinctive aroma of fresh mango.

REFERENCES

Agriculture and Livestock Service Office of Indramayu District, 2014.

- Lemmens, L., Tchuenche, E.S., Loey, A.M.V and Hendrickx, M.E. (2013), Beta-carotene isocomerization in mango puree as influenced by thermal processing and high-pressure homogenization. European Food Research Technology, 236. Pp. 6816-6824.
- Rincon, A., and Kerr, W.L. (2010), Influence of osmotic dehydration, ripeness and frozen storage on physicochemical prosperities of mango. *Journal of Food processing and preservation*, 34,887-903.
- Sogi, D.S., Siddiq, M.,Roidoung, S. and Dolan, K.D. (2012), Total phenolics, carotenoids, ascorbic acid and antioxidant prosperities of fresh–cut mango (*mangifera indica.*, L) as affected by infrared heat treatment. Journal of Food Science, 77(11), C1197-C1202.
- Histifarina, D, Deliana P. Agriawati. (2009), Pengkajian penerapan teknologi pengolahan manisan mangga kering di Kabupaten Indramayu. *Journal Pengkahian dan pengembangan Teknologi Pertanian*, Vol. 12 No. 2 Juli 2009. pp 91-98.
- Setyadjit and M. Soedibyo T.S. (1993), Pengolahan buah-buahan dan sayur-sayuran dalam skala industri. Info Hortikultura 1(1), pp 1-10, 1993.
- Azeredo, H.M.C, E.S. Brito, G.E.G. Moreira, V.L. Farias and L.M. Bruno. (2006), Effect of drying and storage time on the physic-chemical prosperties of mango leathers. *International Journal of Food Sciences and Technology*. 41(6): 635-638.
- Chung, D.S. and D.I. Chang. (1982), Principles of food dehydration, Journal. Food. Protec. 45(5), pp 475-478
- Shiffman, L.G., and Kanuk, L.L. (2010), Consumer Behavior (9th Ed), New jersey: Printice Hall
- Loudon and Bitta (1993). Consumer Behavior. Concepts and applications. Mc. Graw Hill. ISBN 00711 25116, 9780071125116
- Berkowitz, E.N., Kerin, R.A., and Hartley S.W. (2010), Marketing (6 th Ed) New York. Mc Graw-Hill
- Engel. J.F., Roger D.Blackwell and Paul W.Miniard. (1995), Consumer Behavior. Dryden Press Series in Marketing. ISBN :0030984645, 9780030984648
- Lamb. Charles W., Joseph F.Hair jr., and Carl Mc Daniel. (2009), Essensial of Marketing. South Western-Cengage Learning.
- Koudelka. J., (1997), Spotrebni Chovani a marketing (Consumer behavior and marketing), Grada, Praha. ISBN 80-7169-372-3.

International Journal of Economic Research

Consumer Decision in Purchasing Dried Mango

Kotler. P (2001), Marketing Management. Grada, Praha. ISBN 80-247-0016-3.

Brown A. Chapter Class Note. Available at http://www.edul.edu/alex/chap 6.html [quoted 2006-07-05].

Moses E. Olobatuy, (2006), A User's Guide to Path Analysis. University Press of America, Social Science.

Horska E., Sparke K. (2007), Marketing attitudes towards the functional food and implications for market segmentation. Agricultural Economics–Czech 53(7), 349-353.