International Journal of Mathematical Sciences
June 2002, Volume 1, No. 1, pp. 77-84

APPROXIMATE CONTROLLABILITY OF
SEMILINEAR CONTROL SYSTEMSWITH
BOUNDED DELAY

N. Sukavanam and Nutan Kumar Tomar

Abstract
Inthis paper approximate controllability of an abstract semilinear delay control
system of the form d);—(;) = Ax(r) +u(t) + f (t,x(t + 0),u(1)), where o< <7 and

-h<6<0, isproved under simple sufficient conditions on the system operators
A, Bandf'. First we consider a system without delay, and then we extend the
result for delay system. In last section result is illustrated with semilinear
controlled heat equation.

1.INTRODUCTION
Let V" be a Hilbert spaces. Let C be the Banach space of all continuous functions

fromaninterval [—-/,0] to I/ with supremum norm. Inthis paper we areinterested
in the study of the approximate controllability of the semilinear control system

d)iT(tt):Ax(t)”(t)*f(f’xt,U(t)); 0<t<T

x,(0) =9(0); —h<0<0 (L.1)

Where the state x(-) takes values in " and control u e L,[0,T;V] =Y also
takesvaluesin V. If x :[-h,T] — V' isacontinuous functionthen x, isanelement
in C defined by x (0)=x(+6); 0<€[-h0, and ¢geC.

f [0, T]xCxV — V isanonlinear operator. The mild solution [9] of the above
system is given by
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x, (0)=x()=S®)¢(0)+ jS(t —s)u(s)ds + jS(t —8)f (s,x,,u(s))ds

x,(0)=g(0) -h<0<0,0<t<T. (L2)

Where S (¢) a C,semigroup generated by operator 4and A: D(A) <V —V

is a closed operator whose domain D(A4) is densein V.

Let x(7;¢(0),u) beastate valueof thesystem (1.1) at time7 corresponding
to the control 4 < Y and the initial value ¢(0). The system (1.1) is said to be
approximate controllablein thetimeinterval [0, 7] , if for every desired final state
x, and & > 0 thereexistsa control functionu e Y, suchthat thesolutionx (7'; ¢(0), u)

of (1.1) satisfies || x(T;¢(0),u) —x,|| < & . Now we introduced the reachable
set K, (f) asfollows

K, (f)={x(T;¢(0),u) :uecY} (1.3)
Definition 1.1. A control system is said to be approximate controllable on
[0,T]if K, (f) =V ,where K _(f) denotesthe closure of the set K (/).

When 1= 0, then system (1.1) is called corresponding linear system denoted by

(1.1)" and this system is called approximate controllableif K. (0) =¥ . Kalman

(2963) [5] introduced the concept of controllability. The controllability results for
abstract linear control systems have been proved by many authors (see [1], [3],
[10], [15]). Several authors have extended these concepts to infinite-dimensional

dx ()
dt
x(0) = x, (see[4], [6], [8], [11], [12], [13], [14]). Dauer and Mahmudov [2] studied

the approximate controllability for system (1.1), for any general operator B, by
assuming

nonlinear systems = Ax(¢)+ Bu(t)+ f(1,x(#)) :0<:<T; where

(& S(7) is compact for eachz > 0,
(b) fis continuous and uniformly bounded and
(c) Corresponding linear system (1.1)" is approximate controllable on [0, T].

Remark 1. SincewetakeB=I, Condition (c) isautomatically satisfied for system
(1.2) (see[13)).
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Mahmudov [7] studied the approximate controllability for system (1.1) with
out delay by assuming same conditions as above. In this paper we replace the
stronger conditions (a) and (b) with the Lipschitz condition of f and prove the
controllability of (1.1).

The next section contains the main results of this paper. In Section 2.1, the
approximate controllability of the system (1.1), with out delay, has been proved
under the Lipschitz condition on the nonlinear operator f. In Section 2.2 the delay
system (1.1) is considered.

2. Controllability Results. First we introduce some notations. For a given
operator 4, D(4) and R(4) denote the domain and range space of 4 respectively,
denotesthe closure of aset E. Let M > 0 be a constant such that || S(¢) || <M, for
al te[0,T].

2.1. CONTROLLABILITY OF
SEMILINEAR SYSTEMSWITH OUT DELAY

Consider the linear system given by

SO _ o) +ul)
dt
x(0)=0 (2.1)
and the following semilinear system
DO 450490+ 1(0.0).000)

y»(0)=0 (2.2)
Assumption [2A]: f(z, x, u) satisfies the Lipschitz condition
||f(t,x,u) —f(t,y,v)”V < l(||x—y||V +||u —v||V) for some constant 7 >0,

foral x,y,u,veV and t€[0,T].

Theorem 1. Under assumption [2A] the semilinear control system (2.2) is
approximate controllable if the constant / satisfies the condition / < 1.

Proof. The system (2.2) has a unique mild solution for a given control v as 1
satisfies the Lipschitz condition [9].
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Let x(¢) bea mild solution of (2.1) corresponding to a control  and consider
the following semilinear system

d{T(;) = Ay(t) + £ (6, () V(@) + u(t) - £(6,2(0),v(0))
y(O) =0 (2.3)

Hence the control function is v(¢) = u(t) — £ (¢, x(£),v(¢))

The mild solutions of (2.1) and (2.3), respectively, can be written as

x(6) = [ St = s)u(s)ds (2.4)

() = [S(=9)1(s, (), v(s)ds + [ S(¢ = s)us)ds = [ S(¢ = 5) £ (s,x(5),v(s))ds (2.5)

Subtracting (2.5) from (2.4), we get

x()—y() = '[S(t — )11 (5,x(5),v(5)) = £ (s, v(5),v(s5) )}ds (2.6)

and  [x@ = YO, <M [/ (s, x(),v()) = (s, 9(5),v(5))], ds

Applying Lipschitz condition (2A), we get
() - »(2)|, < M1 j x(s) = ¥(s), ds
0

Using Gronwall’sinequality, we get, x(¢) = y(¢) for all £ €[0,T]. Therefore,
every solution of the linear system with control « is also a solution of the semilinear

systemwith control v. Therefore K. (1) © K, (0) , thisisdensein V' (dueto remark
1). Hencethe result.

Now it remains to show that there exits a v(¢) €V such that
v(t) = u(t) - £(t,x,v(t)).
LevpeV adv, , =u—f(tx,v,) (n=012,..). Sowe have
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v.u—v, =f(txv, )—-f(txv,). Therefore by condition (2A)

<l

Vv

\4 \%

n¥l =~ Vn

vV, — Vn—l

n

B
<"

V1 _v0||V

SinceR.H.S. of aboveinequality tendsto zero asy; — Q (because/ < 1). Hence

thesequence {v,} isaCauchy sequenceandsince}’ iscompleteso{v,} converges
to an dement v of /. Now

=y, - £Ex), =7 Exr,) - )]

<l

v, =V

g

Since R.H.S. of above inequality tends to zero as n — oo . Hence
ft,x,v) :Li_)rg(u—vn) SUSYV S v=u— f(t,x,v)
It can be proved easily that v is unique.

2.2.CONTROLLABILITY OF
SEMILINEAR SYSTEMSWITH DELAY

In this section we proved the controllability result for the system (1.1).

Assumption [2B]: f'(¢,x,u) satisfies the Lipschitz condition

||f(t,x,u)—f(t,y,v)||V Sl(”x—y”c +||u—v||V) for some constant / > Q, for
al x,yeC,u,veV and t[0,T].

Theorem 2. Under assumption [2B] the semilinear control system (1.1) is
approximate controllable if the constant / satisfies the condition / < 1.

Let x(#) be a mild solution of (1.1)" corresponding to a control « and consider
the following semilinear system

d);]_(tt):Ay(t)+f(t,yt,v(t))+u(l)—f(faxtlv(t)); 0<t<T

yo(0)=¢(6);, —h<6<0 2.7)

The mild solutions of (1.1)" and (2.7)", respectively, can be written as
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x,(0)=S(¢)¢(0) + jS(t —s)u(s)ds
x,(6) = $(6) ; and 2.8

y,(0) = S(t) (0) + jS(t —5)f(s,3,,v(s))ds + jS(t —s)u(s)ds — jS(t —5)f (s,x,,v(s))ds

¥0(6) =$(6) | (2.9)
Now from (2.9) and (2.8), for all0< ¢ < T we get

x,(0) -y, (0) = .[S(t—s){f(s,xs,v(s))—f(s,ys,v(s))} ds

ad |5 ©=y,0], <M[[/(s.x,,v)=f(5.9,9))], ds

Applying Lipschitz condition (2B), we get

|%,©-y,0], <Mif|x,-y,|. ds. (2.10)
0

Thus, from (2.8), (2.9) and (2.10) we get

CdS; VH (S [—h,O] , hmce

[x, () -y, <M f|x, -,
0

ds

C

t
v =2 e < Mif]x -,
0

Using Gronwall’s inequality, as in theorem 1, we get, x,(0) =y, (0) for al
t €[0,T] . Further, as in theorem 1, we can complete the proof.

2

d
3.Example.LetV = L,(0,7) and 4 =z with D(A4) condggtingofal y e v
X

d?y

with —;
dx

{¢,:n=12..} is an orthonormal basis for }y andg, is an eigenfunction
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corresponding to the eigenvalue A, = —n® of the operator 4, n =1,2,..., . Then the

C,-semigroup S(¢) generated by 4 has*' as the eigenvalues and¢, as their
corresponding eigenfunctions.

Consider the control system governed by semilinear heat equation

ay(t,x) _ 0°y(t,x)

Py e +u(t,x)+ f(t,y({t—h,x),u(t,x)):0<t<T,0<x<rx
b

y(t,0)=y(t,7)=0; t >0

y(t,x)=¢(t,x) - —h<t<0 (3.1

Where ¢ (¢,x) is continuous. Dauer and Mahmudov [2] proved that a similar

system to (3.1) is approximately controllable on [0,7] under the uniform
boundedness on the non-linear function f. In [4, 8, and 13] the heat equation of the
form (3.1) without delay was considered and the approximate controllability was
proved under restrictions such as the uniform boundedness on f or some inequality
constraints. Here the approximate controllability follows from result in section 2.2
for non-uniform bounded function ftoo, satisfying the conditions (2B). For example,
consider the function £ given by

f(t,x,u)= a[||x||¢3 (x)+ ||u||¢54 (x)], whereq is a positive constant such that
a<l.

Here 1 is not uniformly bounded. For this function f the approximate
controllability of (3.1) follows from the result in section 2.2.
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