
219 International Journal of Control Theory and Applications

Prateek Verma, Dushyant Singh Chauhan, Rohan Ramaswamy and C. Likith Kumar

Multi-Touch Testing Robot

Prateek Vermaa Dushyant Singh Chauhana Rohan Ramaswamya and C. Likith Kumarb

aB.Tech/ Electronics and Instrumentation Engineering, SRM University, Kattankulathur, Chennai, Tamil Nadu, India
E-mail: prateekverma_manish@srmuniv.edu.in, dushyant95chauhan@gmail.com, rohan.1995@gmail.com
bAssistant Professor/ Electronics and Instrumentation Engineering, SRM University Kattankulathur, Tamil Nadu
E-mail: likithkumar.c@ktr.srmuniv.ac.in

Abstract: Every smart device today consists of touch-based interface for control. Testing of such touch based
interfaces has hence become very important to ensure the quality of manufactured devices, as well as to debug
hardware and software during their development. The Cartesian robot will help automate physical testing of touch-
screen devices. The robot is designed to operate on devices such as touchscreen devices such as mobile phones and
tablet devices commonly available in the market running android OS and will operate a touchscreen device using an
end effector and will be able to simulate actions such as single taps, multiple taps, swiping, pinching, etc. The system
utilizes the android debugging bridge (ADB) to capture touches as well as detect various touch parameters such as
touch pressure and duration. Also, it captures various actions such as the element touched on (e.g. App icon, button,
etc.). The device hence will be able to execute various touch screen test routines and able to test an app with various
combinations and permutations of confi gurations and order of actions. Hence it will be able to save time for testing
R&D prototypes and ensure quality control of manufactured devices. It will also allow app development companies
to test their software on various devices at once, ensuring compatibility and enabling companies to quickly fi nd and
diagnose bugs, if any. It would be a breakthrough for Robotic technology in Test Automation, as the proposed design
is highly economical and reliable.
Keywords: Gantry robot, test automation, touchscreen device

1. INTRODUCTION
With the increase in touch-screen demand across various devices, it has become essential for touchscreen
gadget manufacturers to test touch screen functionality for each and every unit. Automated touchscreen testing
helps Original Equipment Manufacturers (OEMs) to test the overall product performance for tablets, mobile
phones, etc. and on top of it, product manufacturers can use it for new product development of hardware such as
graphics card, processor, etc. In this paper we describe our solution, a gantry robot system which allows small to
medium sized manufacturers and software development companies to access to easy to use and scale automated
testing, which typically is only affordable for very large companies, which would result shortening the “time
to market”; remote testing, diagnosis and capture all test results and diagnostics; create benchmark and gain
competitive edge over superior product as well as test new kind of control and activation methods.

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 10 • Number 31 • 2017

220International Journal of Control Theory and Applications

Prateek Verma, Dushyant Singh Chauhan, Rohan Ramaswamy and C. Likith Kumar

2. T-BOT CONCEPT

Moves

vertically

only
Moves

horizontally

only S

E

N

W

Timing
belt fixed

at one end

Stepper
Motor

connected by
a single

timing belt

MM

Towards N

Towards S Towards W

Towards E

MM

M M M M

M M

Figure 1: Gantry Motion
The T-bot, so-named because it resembles the letter T is a 2-D robot, a planar mechanism for positioning an
object in XY space, such as a plane, fi nds use in many industrial applications, such as pick-and-place, sorting,
gluing, and inspection systems. It is easy to manufacture because it comprises two motors, a timing belt, and
two perpendicularly mounted rails.

As in any coordinated-motion system, the computation of the position command to each motor of the
T-Bot is just as important as the control scheme you employ to control the robot. The successful combination
of these two aspects will lead to accurate positioning, but that concept means different things depending on the
application.

Table 1
Stepper Motor Direction

Motor Rotation Motion

M1

M1

M1

M1

M2

M2

M2

M2

3. PROCESS CONTROL SYSTEM
Motion applications typically use a cascade control system, as shown in the fi gure, that comprises position,
velocity, and current loops, all typically proportional integral. The gantry controller has a predefi ned instruction
set for positioning the Touch actuator to the particular coordinate defi ned by the PC as G-Code over UART. This
G-Code is modifi ed according to the feedback from the Touchscreen device through ADB interface.

221 International Journal of Control Theory and Applications

Multi-Touch Testing Robot

MICROCONTROLLER
Motion

Parameters
GANTRY
ROBOT

Touch actuation
TOUCH SCREEN

DEVICE

G-Code cover UART

User Input

Android Debugging Bridge
(ADB)

PC GUI
SOFTWARE

Figure 2 Process Control

4. TOOLS OF ROBOT
1. Body: The chassis of the robot is made of Smooth as well as threaded metal rods, Belt drive, bearings,

and 3D printed parts.
a) Metal Rods: Two pairs of 8mm smooth stainless steel rods are used for the rails of dimensions

320x400mm and a pair of 10mm threaded rods are used for support in the base of length
320mm.

b) Belt Drive: GT2 belt drive setup is used.
c) Bearings: LM8UU 8mm standard linear bearings are used for the linear motion and F623ZZ

fl ange type for belt drive motion.
d) 3D printed parts: The parts are being made of PLA material and are used for holding together

the body of the robot.
2. Stepper Motor: Two NEMA 17 motors are used for driving the GT2 belt drive system and positioning

of the gantry robot in XY space.
3. Motor Driver: Two Pololu A4988 stepper motor drivers are used for each motor.
4. Microcontroller: Arduino Mega 2560 is used as gantry controller.
5. Touch Actuator: A servo motor coupled with a stylus is used as touch interface between the robot

and touchscreen device.

5. ANDROID TOUCHSCREEN FEEDBACK
For detecting the touches, multiple methods were considered. The fi rst option was to create an app which would
output the touch coordinates to Android’s log cat. This information would then be read by the software running
on the computer to determine if the required action was performed successfully- or not. This was ruled out as a
viable option as, while testing, it was found that touch response callbacks are not reliably called while the app
is not in the foreground - as the touch response callbacks are processed at a high level - allowing the operating
system to give foreground applications higher priority - this caused signifi cant latencies between touches and
the logical output and on lower end devices the OS terminated the application to free RAM space. Other options
were considered such as using screen capture programs to track the touch pointers - this option was quickly
ruled out due to performance considerations. The solution which was fi nally used was to access the touchscreen
device as a HID device. This is made possible by the shell of the Android debugging bridge - which allows
utilization of the get event utility - which allows access to all the various hardware components in a mobile
device - including the touchscreen.

222International Journal of Control Theory and Applications

Prateek Verma, Dushyant Singh Chauhan, Rohan Ramaswamy and C. Likith Kumar

Device
ADB

Touch event
capture

Process event:
Extract touch id,

pressure and
coordinates

Perform action Retry action
Gesture recognition

Fail

Success

End of actions

Load next action

START

STOP

Retry limit

Log event
Validate with

intended action

Figure 3: Flow Chart

The get event tool runs on the device and provides information about input devices and a live dump of
kernel input events. This tool is typically used for ensuring device drivers are reporting the expected set of
capabilities for each input device and are generating the desired stream of input events[3].

The command ADB shell su -- get even -lt /dev/input/event1 corresponds to the touch events generated by
the touchscreen device on most android devices.

The values for ABS_MT_TRACKING_ID, ABS_MT_POSITION_X, A ABS_MT_POSITION_Y and
the time are read by the PC based controller software, where the position_x and position_y are the absolute
coordinates of where the touchscreen is touched, and in the case of multiple touches simultaneously, different
tracking IDs are given to each touch point. All values are in hexadecimal and are converted into a decimal by
the PC Software. The time printed is in the format <seconds>.<microseconds>.

6. PC BASED CONTROLLER SOFTWARE
The PC based controller software is a GUI application built using Python using QtPy as the GUI framework.
It communicates with the android debugging bridge using a piped input from the ADB shell. It commands the
gantry robot via the serial communication port at 19200 baud rate, using a subset of the g-code, also known as
RS-274 programming language [5].

The process starts by defi ning an action in G-code and the response that should be expected in terms of
gesture or a log cat output. The action is performed on the start button is pressed in the GUI, as the program
transmits the G-code to the robot controller. The python program interprets the touch coordinates from the
device using the ADB as described earlier. It then detects the gesture based on the state fl ow diagram given
below(fi g. 4)[4]:

223 International Journal of Control Theory and Applications

Multi-Touch Testing Robot

Down | Move Trace Buffer full

Idel

Up Time

Touch Tap Queue Process
Gesture

Figure 4: State Space Diagram

7. CONCLUSION
To conclude, we proposed, designed and constructed a working prototype of a system capable of allowing users
to easily defi ne complex testing processes for testing either their hardware or software and perform the same in
a highly scalable manner. Our system will allow the user to quickly debug, diagnose and fi nd solutions to the
hardware/software issues due to the provision of the extensive logs and screenshot system. The implementation
of this system is designed from the ground up to be low cost, allowing access to automated testing tools to
small software development companies and hardware manufacturers and distributors. The system can also be
upgraded to allow multiple end effectors allowing for an even higher range of motions such as pinches, multi-
fi nger swipes, etc.

1. Single tap: When a touchdown event and a touch-up event occurs within 300 milliseconds of each
other, it is recognized as a single tap.

2. Double tap: When two single tap events occur within 300 milliseconds of each other, it is detected
as a double tap.

3. Swipe: When a touch point is traced across the screen, it is detected as a swipe. The starting and
ending points are detected and the velocity vector is calculated to provide the swipe “strength” and
direction. The strength is typically used for applications such as kinetic scrolling.

Once the gesture is detected, it is then validated against the conditions provided by the user. If the action
is successfully validated, the program proceeds to the next action. If the action fails, it retries the action until
the specifi ed retry limit is reached.

All the above actions, its responses as well as the android’s log cat output are captured and saved.
Additionally, the system will also take the device screenshot as required by the user program.

REFERENCES
[1] Aidan F. Browne, Wesley B. Williams, Keith Loftus and Cameron Nye, “Implementation of a Cartesian Robot for Remote

Mission Critical Operator Training”- ©2016 IEEE.

[2] Mahir Abdelwahid Ibrahim Ismail, Mohammed Khalafalla Mohammed, “Gantry Robot Kinematic Analysis User Interface
Based on Visual Basic and MATLAB” - Volume 4 Issue 2, February 2015 www.ijsr.net

[3] https://source.android.com/devices/input/getevent.html

[4] http://www.edn.com/electronics-blogs/mechatronics-in-design/4368079/So-you-want-to-build-an-H-bot-

[5] The NIST RS274NGC Interpreter - Version 3, Thomas R. Kramer Frederick M. Proctor Elena Messina - NISTIR 6556
August 17, 2000

[6] Multi-Touch Gesture Recognition using Feature Extraction - Francisco R. Ortega, Naphtali Rishe, Armando Barreto,
Fatemeh Abyarjoo, Malek Adjouadi

