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Optimal Control of the Temperature Field 
of a Complex Control System
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Abstract :  The article is dedicated to the improvement of the stabilization system of temperature fi elds of 
complex control systems. During the synthesis of the control system, the function of the initial heating was 
obtained, some experiments were performed to analyze the distribution of the temperature fi elds, and the 
analysis of the results was carried out. To provide the maximal accuracy and adequacy of the simulation 
model, all calculations were made in the enlarged three-dimensional mathematic formulation. By means of 
the obtained regulator, the hardware and software system was created in the programming language Pascal 
allowing to simulate the behavior of the temperature fi elds. The practical results of the research data allow 
to draw a conclusion on the possibility to change the structures of heating elements of complex controlled 
objects, that is, to replace solid heating elements by sampling elements.
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1. INTRODUCTION

An electric tunnel kiln of conveyor type has some advantages and disadvantages. One of the main 
disadvantages of electric kilns of this type is their high energy consumption. This is connected to the 
necessity of the continuous supply of the electric power to the heating elements. In the tunnel kiln, heating 
elements are located along the whole length of the chamber. 

 Such big number of heating elements leads to a bigger consumption of electric power. And this, in 
its turn, infl uences signifi cantly the fi nal cost of the item. We shall consider the possibility to decrease the 
cost due to the use of sampling heating elements. The short-term switching off will help to save electric 
power, and as a result, it will decrease the cost of the item.

Setting of the problem

There are some methods of mathematical simulation to describe the behavior of dynamic control systems. 
One of the main methods of simulation is to study the system according to the set characteristics “input-
output”. The data of characteristics were obtained at zero boundary conditions. This method can not 
take into account some states of the system; thus, the matrix of the system states is not a comprehensive 
characteristic. Differential equations of the system state describe the dynamic and statistic properties and 
determine the transmission matrix of the system, although this connection is not one-one. This is explained 
by the fact that the transmission matrix can correspond to various differential equations. 
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Let us consider this statement on the equation system described by the scheme shown in Figure 1. 

Figure 1: Control system

Where f(t) is input action, (t) is control action, and y(t) is output action. 
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Then the transmission function of the control system will be the following:
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It is easy to observe that when considering this system at the initial conditions, the inertial part 
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will not be observed at any input actions. During the study of such systems, the notions of 

observability and controllability are usually introduced. For such cases, it is usual to represent the system 
in the terms of the state of spaces.
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Where A, B, H are the matrices of the state of the system. During such consideration of the system, 
it can turn out that a part of input signals is absent. That means a part of differential equations or phase 
coordinates does not participate in the formation of the output signal. 

According to the observability criterion, the system is observable if it is equivalent to the system of 
the type
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Where dimension x1 = u1
1, and x2 – u2

1 = N – u1
1.  

In other words, the criterion of observability is the absence of the basis when the phase coordinates 
would be divided into two groups, and the coordinates of the group x2 would not be included into the 
equation for the coordinates of the fi rst group or into the algebraic relations for the output variables.

According to the controllability criterion, the system is controlled if it is equivalent to the system of 
the type

1 11 1 12 2 1

1 22 2

1 1 2 2

A A B
A
H H

x x x f
x x
y x x

   
 
  




Where dimension x1 = u1
1, and x2 – u2

1 = N – u1
1.

In other words, the criterion of controllability is the absence of the basis when the system would be 
divided into two groups of equations, so the equations of the second group of equations would not be 
included into the phase coordinates of the fi rst group or into the input signals.
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The solving of these problems gives the possibility to search for the differential equations if the 
transmission functions (identifi cation of the system) are known. However, the transmission function 
determines only one controlled and observed system. Thus, after restoration of the system according to 
the transmission function, one controlled and observed system will be obtained. 

If we consider the possibility of formation of the observer for the space distributed non-linear objects, 
for such problems it is necessary to consider the equations of the type:

 x = Alx + A2y + A3z + Bu(t)  + Df(t, x)
Where the phase vectors of the space coordinates x, y, z; u are control action at the disturbance f(t,x); 

A1, A2, A3, B, D are matrices of the system state.
However, when considering such systems, there are some complexities, for example, the creation 

of the simulation of considered system. The impossibility to describe the adequate system is stipulated 
by the absence of the mechanisms of consideration of the observer from the point of view of the space 
distributed object. The second problem is the correspondence of the matrices of the system state to the 
infi nite polynomials and that makes the matrices of the system state infi nitely dimensional. And this makes 
the possibility of the mathematical analysis of such systems more complicated. If we consider the problem 
of controlling the temperature fi eld of the tunnel kiln of conveyor type, we can do the following: it is 
necessary to consider a particular object as several points located at minimally possible distance from each 
other. At such sampling, the reaction of the observer can be determined as a sum of values of the system 
state at the fi xed points of the space. Such approach to the solution of this problem does not erase the 
problem of the infi nite matrices but it will bring the loss to the minimum at the synthesis of the observer. 
The problem of the infi nitely dimensional matrices can be decreased by specifying the fi nite number of the 
space modes refl ected in the matrices but this object will be approximated to the physical process. 

The observation of the system behavior can be made not only by means of specialized observers 
but also by creating the matrices of the system state. In the generalized variant, the value returned by 
the observer is a numerical solution of some function in this point of the space. However, there are some 
methods of measuring the system in the points different from the system of the observer. Thus, for example, 
the Green function also returns the numerical value of the function in this object. Of course, the creation 
of the observer gives a more accurate solution taking into account all disturbing actions; however, the 
Green function creates the same numerical values when it is expanded into a Fourier series. Therefore, the 
use of the Green function is reasonable for the research of the processes in the distributed systems of data 
processing.

2. METHOD

Let us consider the mathematical simulation of the object with distributed parameters. The problem shall 
be set to determine the sample spacing in the space three-dimensional controlled object represented by the 
following:

 
2 2 2

2
2 2 2

Q( , , , ) Q( , , , ) Q( , , , ) Q( , , , )x y z t x y z t x y z t x y z ta
t x y z

    
       

 = f(x, y, z, t) ;

 Q(x, y, z, 0) = Q0(x, y, z) ;

 Q(0, y, z, t) = q1(y, z, t)  ; Q(l1, y, z, t) = q2(y, z, t) ; Q(x, 0, z, t) q3 = (y, z, t) ;

 Q(x, l2, z, t) = q4(x, z, t)  ; Q(x, y, 0, t) = q5(x, y, t) ; Q(x, y, l3, t) q3 = q6(x, y, t) ;

 0   x  l1 ;  0   y  l2 ;  0   z  l3 ; t   0 ;    0 ;
We shall calculate the indicators of the sensors of the temperature fi eld by means of the Green function 

Let us consider this function in the form of the infi nite Fourier series:
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The transfer function will be the following:
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Considering the objects with distributed parameters, the user often faces the impossibility of 
mathematical analysis of the object due to its dimension. Let us consider the points of the temperature 
impact to determine the boundaries of its impact with the specifi ed error. For this, we shall consider the 
object with the geometric dimensions l1, l2, l3. We shall introduce the variable N and accept it as a number of 
sampling points located on every axis of coordinates. Considering this object, not only space distribution 
shall be taken into account but also the interconnection of sampling heating elements. However, for the 
consideration of the system to determine the impact of the heating points we shall consider the heating 
element.

Figure 2: Three-dimensional controlled object

In such a case, the sample spacing for the controlled object (see Figure 2) shall be determined by the 
following:

 
1.
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  

sample spacing on the axis x

 2. 2
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 sample spacing on the axis y

 
3.
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1 N 1
l

 
  

sample spacing on the axis z

Let us record the generalized algorithm to determine the sample spacing of the controlled object with 
distributed parameters. This algorithm allows to calculate the sample spacing for the distributed controlled 
objects for which there is a solution in the form of the Green function.
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 • At the fi rst stage, it is necessary to insert the initial and boundary values of the system: allowable 
value of error – , temperature range or a particular value of the temperature fi eld – Tset, space 
coordinates of the distributed non-linear controlled object – l1,l2,l3, the coeffi cient of thermal 
conductivity of the material – a2 ( the coeffi cient of thermal conductivity has a size in the second 
power m/sec2. Such a variable was introduced by Tikhonov and Samarsky to facilitate the work 
with control systems). The initial value of sampling points N shall be recorded.

 • For every N, we shall calculate: 1, v1, 1, 1,2, tm.

 1 = 31 2
1 1, , ,

N +1 N +1 N +1
ll lv   

 1 = A[l1, l2, l3, , 1, v1, 1, Tset],

 2 = B[l1, l2, l3, 1, v1, 1, Tset, 1],

 m = C[l1, l2, l3, a 1, v1, 1,  1].
 • Let us check:

 D[l1, l2, l3, 1, v1, 1] = E[l1, l2, l3, a, Tset, 1,  tm] ;

 F[l1, l2, l3, 1, v1, 1]  Tset.
 It is necessary to remember the values N of those moments when the above stated conditions are 

fulfi lled. Also, in such cases the calculation of the sample spacings shall be made: Sx1 = p1, Sy1 = v1, 
Sz1 = 1.

 • At: D[l1, l2, l3, 1, v1, 1] = H[l1, l2, l3, a, 1, 2] ; F[l1, l2, l3, 1, v1, 1]  Tset.

   The value N shall be fi xed and sample spacings shall be determined: Sx2 = p1, Sy2 = v1, Sz2 = 1.
 • On the base of the obtained pairs of values at the different conditions, it is necessary to chose the 

smallest value:
 Sx = min{Sx1 ; Sx2},  Sy = min{Sy1 ; Sy2}, Sz = min{Sz1 ; Sz2}.

Such algorithm allows to calculate the sample spacing of the multidimensional controlled object. 
Thus, it makes it possible to decrease the number of operations for the calculation of the thermal fi eld and, 
as a result, to decrease the mathematical operations during simulation. Let us consider the object from the 
point of view of a three-dimensional distributed controlled object. As in the case with the two-dimensional 
object, we shall consider the impact of the components of the Fourier series at the initial moment of time. 
At the initial conditions of the system of equals 

 n  t  = 0,   = 0, we obtain :
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The value of the temperature fi eld in the space distributed controlled object will be the following:
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The impulsive source creates the heating pulse in the point 31 2; ; ;
4 4 4

ll lx y z    then the value of the 
temperature fi eld will be the following:



28 Yury Valeryevich Ilyushin,  Dmitry Anatolyevich Pervukhin, Olga Vladimirovna Afanasyeva...

 G(x, y, z, r, v,  t) = 

31 2

, , 11 2 3 1 2 3

8 4 4 4sin sin sin
k m n

ll lk k k

l l l l l l





             
             

     



sin sin sin
4 4 4

k k v k               
    

For this function, the amplitude of the terms of the Fourier series is the following:
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Let us calculate the function when we take into account only fi rst fi ve terms. In such calculation, we 
shall establish the following conditions: 

 x = 31 2; ;
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The Green function G(x, y, z, ρ, v, , t)  0 at any x, y, z, p, v, , t. Then, it is evident that the range of 
positive values of the function in the range of values x will decrease. Narrowing will lead the system to the 

solution domain near the point 31 2; ;
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Such –function represented in the form of the Fourier series is considered to be the generalized 
function. These functions have a wide application in the system with distributed parameters, in particular 
for their simulation.

Arguments for such functions are usually coordinates of the controlled object. 

 (x – p, y – v, z – ) = 

,
0,

,
0,

,
0,

at y v
at y v
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When considering the function  f(x, y, z), which has a space distribution x [0, l1], y [0, l2], z [0, l3], the 

following equation is unequal: 
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Or in the integral approximation
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As a result,
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Figure 3: Graphic view of the initial heating function
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This function shows the behavior of the system at the initial moment of time when the system receives 
the fi rst impulse. Due to the fact that the system is in the state of rest, this impulse has the maximal 
amplitude. The distribution of the heat along the object is in different directions with the same speed, 
which is connected to the homogeneity of the material. In case of non-homogeneity of the material, the 
temperature process will be non-uniform, and this will lead to the various speed of heating of the material. 
Graphically, the function of initial heating will be the following (see Figure 3):

In some time, the action of the fi rst heating pulse will be over, and to maintain the temperature, the 
second heating pulse occurs. The value of the temperature fi eld will be a sum of two values. The function 
of the initial heating plus the function of the system behavior will be the following as time passes:
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On the base of the obtained function, we can calculate the value of the temperature in the point with 
the coordinates x1(x, y, z) at the moment of time  passed since the moment of the switching on of the 
system t. Let us study the behavior of the temperature fi eld in the framework Mathcad 14. The initial 
conditions of the system are the following: k = 10, d = 9, 1 = x1 = 1, Tset = 0.3, l1 = l2 = l3 = 10, a2 = 0.01, 
t = 3, x1 = y1 = z1 =  1 = p1 = v1 = 1 = 1, t = 1. 500, i, p1, 1 

When using the framework Mathcad 14, we obtain the values stated in Table 1.
Table 1

Results of the research of the thermal conductivity

Source No. d = 5 d = 6 d = 8 d = 9 d = 10

1. 0.08 0.004 6.32 7.44 6.05

2. 0.06 0.003 4.70 5.53 4.50

3. 0.045 0.002 3.49 4.11 3.34

4. 0.034 0.001 2.60 3.06 2.49

5. 0.025 0.001 1.93 2.27 1.85

6. 0.018 0.0009 1.43 1.69 1.37

7. 0.014 0.0007 1.06 1.26 1.02

8. 0.010 0.0005 7.95 9.37 7.61

9. 0.007 0.0004 5.91 6.97 5.66

10. 0.005 0.0002 4.40 5.18 6.05

As it is seen from the results obtained, the same dependence of the heating elements on the temperatures 
in the heating points is observed as in the result of other studies.
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3. PRACTICAL RESULTS

The tunnel kiln of conveyor type has some advantages and disadvantages. One of the main disadvantages 
of electric kilns of this type is the high cost of power supply because to heat one heating element the 
energy of 0.12% cost of one brick is used. The tunnel kiln for brick burning has a different curve of the 
temperature fi elds depending upon the type of brick.

 The optimal decision, in our opinion, is the decrease in the cost due to the use of sampling heating 
elements. Power is saved and the cost of a brick is decreased due to the short-term switching on.

As one can see in the fi gures, the whole process of brick burning can be divided into 43 positions. 
Every position corresponds to its temperature mode. In connection with the fact that in all cases the 
mathematical simulation of the thermal process corresponds to
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such location of the heating elements can be found that can allow to create the same temperature curve 
at the pulse heating. Let us try to do this on the base of the Green function. Now we will try to stabilize 
the temperature in the set of segments of the temperature curve. For this, we will write a program in the 
framework Delphi to calculate such situation. We calculate the values of the temperature fi eld in every one 
of the forty two sections.

For this, we will write the program in the framework Delphi, by means of which we can calculate the 
place and time of switching on of every heating element for every one of forty two positions. For this, the 
program shall input 129 variables that characterize the physical parameters of every section of the kiln (the 
length of a section, the necessary value of the temperature in the section, the number of heating elements).

By setting various parameters into the developed program, it is possible to obtain the calculation 
of the locations of the heating elements depending upon the set curve of the temperature process. The 
accuracy of the location of the place of installation of the heating element will depend upon the number 
of the located heating elements because the program will switch on only those heating elements that are 
necessary for the bringing of the controlled object to the required temperature mode. 

This program allows to calculate the number and position of the point heating elements to obtain the 
set curve of the temperature fi eld.

Let us estimate the effi ciency of the replacement of the method of heating of the close heating 
elements from the constant element to the sampling point elements. For this we will conduct the research 
of the consumption of power resources for the preheating of the silicon carbide rod which in its turn will 
transfer the heat to the whole chamber. The calculation of the power of the silicon carbide rod is carried 
out according to the formula:

 N = D. L. P. W
Where: N is power of the heater, W; D is a diameter of the working zone of the heater, cm; L is the 

length of the working zone of the heater, cm; P is pi character = 3.14; W is the average specifi c capacity 
(W/cm2). 

The specifi c capacity of the silicon carbide heating element is determined depending upon the 
atmosphere according to the following graphics. 

So, knowing that silicon carbide rod has a diameter 25 × 400 × 1200 mm, R = 0.87 ohm + 10% at the 
temperature 1,070 °C, it can be calculated that such rod can have the capacity:

 N = 2.5 • 40 • 3.16 •  6 = 1,884 W
It is also necessary to know the operating voltage supplied to the rods. It will be calculated from the 

Ohm’s law according to the formula
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 U = N × R
Where: U is voltage; N is the power of the heater; R is resistance. It is noteworthy that in calculating 

the capacity, the resistance corresponding to the temperature mode was selected. For other cases with a 
higher temperature, the resistance also changes. Thus, for example, for the temperature of 1,400 °C, the 
resistance is by 20% higher and is equal to 1.04 Ohm. The specifi c resistance corresponds to the graphics 
shown in the Figure 4. 

Figure 4: Dependence of the specifi c resistance on the temperature

Together with the internal resistance, the watt load on the element is also growing. The working load 
in the kiln is reached at 1,400 °C, but it can be decreased by using other types of atmospheres. The lower 
boundary of the heating of elements does not exist; however, the minimally set load for the total surface 
of the rod is reached at the temperature 900 °C. For other cases, the following formula can be used for the 
calculation:

 W = D • L • P
Let us take the silicon carbide heating element with the following characteristics to estimate the 

effi ciency:
Dimensions : 25 × 400 × 1,200 mm.
Capacity at the temperature of 1,070 °C (0.87 Ohm) : 1,884 W
Capacity at the temperature of 1,400 °C (1.1 Ohm) : 1,800 W
Operating mode: Continuous. 
Operating mode : Pulse (calculated). 
The result of the calculation of the heater capacity at the output to the set temperature mode is shown 

in the Table 2. 
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Table 2
Result of the power calculation of the heater

Current temperature, °C Rated power according to the 
technical documentation W/cm2

Power of heater when applying the 
sampling heating method W/cm2

0 1 8

100 1 8

200 1 8

300 2 8

400 2 8

500 3 8

600 3 8

700 4 8

800 5 8

900 6 8

1,000 6 8
1,100 6 8

1,200 6 7

1,300 5 7

1,400 5 7

1,400 5 7
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1 1 1
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We do not observe the advantage in the capacity; however, it should be mentioned that at pulse 
heating the working time of heating element is saved. Let us calculate the time of switching on of the 
heating elements. The switch-on time will be calculated according to the formula:

When stabilizing the temperature fi elds according to the above stated data, we obtained the results 
shown in Table 3.

Table 3
Time of switching on of heating elements depending upon their number

d = 8 d = 7 d = 6 d = 5

Switched on = 4.43 Switched on = 2.01 Switched on = 1.8 Switched on = 1.3

Switched on = 4.33 Switched on = 2.03 Switched on = 1.8 Switched on = 1.3

Switched on = 4.27 Switched on = 2.01 Switched on = 1.8 Switched on = 1.3

Switched on = 4.26 Switched on = 2.01 Switched on = 1.8 Switched on = 1.4

Switched on = 4.23 Switched on = 2.01 Switched on = 1.8 Switched on = 1.3

Switched on = 4.23 Switched on = 2.01 Switched on = 1.8

Switched on = 4.23 Switched on = 2.01

Switched on = 4.23
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On the base of the obtained results, the dependence of the number of heating elements and the time 
of switching on is observed. For example, in case of using 7 heating elements, the silicon carbide rod 
will heat up to the temperature of 1,400 °C when the heating elements are switched on every 10 seconds. 
Consequently, in comparison with the average working time of the heating element of 3,000 hours in a 
continuous mode, in case of using this method of heating the working time of the pulse heater will decrease 
to 1,500 hours. As a result, the energy will be saved. However, to heat the rod up to the temperature 1,400 
°C, the pulse heater shall spend more energy in the pulse mode then in the continuous mode.

Total average capacity at the continuous heating is 3,000   5 = 15,000 W. At the pulse heating, the 
capacity is 1,200   8 = 12,000 W. That is 80% of the spent resources.

 1, 200 100
15,000

  = 80%

Then the profi t from the use of this method is 20 percent for the ideal kiln.

4. DISCUSSION

The relevance of the conducted research is determined by the complexity of the realization of the control 
system of objects with distributed parameters. Controlled values of such systems depend not only upon the 
time but also upon the distribution along the space area taken by the object. In this regard, the class of the 
controlling impacts is extended, fi rst of all, due to the possibility to include them into the four-dimensional 
control described by the functions of several variables of time and space coordinates.

The peculiarities of the systems with distributed parameters require the creation of the apparatus for 
their analysis on the base of the mathematical means non-traditional for the classical control theory. There 
are different forms of the description of the simulation of systems with distributed parameters: in the form 
of the differential equations in the partial derivatives; structural representation of the systems with the 
distributed parameters that supports on the fundamental solution of the boundary problem; representation 
of the distributed objects in the form of complex transfer factors according to their own vector functions 
of the object operator.

Approximation methods are most often used to analyze the controlled objects described by the non-
linear equations in the partial derivatives. However, it should be mentioned that an approximation method 
of the distributed systems by the specially selected concentrated system has not been developed up to date; 
at the same time, in many problems the approximation process is not stable regarding the errors of the 
intermediate calculations. Recently, due to the indisputable relevance and high demand in the technical 
solutions in practice, many authors have developed the models of the considered systems and methods of 
synthesis. At the same time, many works were stopped at the stages of system simulations, supposing the 
further parametric synthesis, the application of which is connected to the solution of some problems. The 
offered method compares favorably by the fact that it is performed completely, the control algorithms are 
obtained.

The scientifi c value of this work is the development of the theoretical basis of the analysis and 
synthesis of non-linear distributed control systems.

The practical value of this work is that the developed method of the calculation of the installation of 
heating elements depending upon the value of the temperature fi eld allows to consider the possibility of 
the installation of sectional pulse heaters in the electric tunnel kilns of conveyor type. The analysis of the 
results of the developed program complex of stabilization of the temperature fi elds showed:
 1. The possibility to bring the kiln to the necessary temperature range due to the use of sampling 

heating elements.
 2. The possibility of stabilization of the temperature fi eld within tolerance. The dependence of the 

temperature mode from the length of the section was considered.
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5. CONCLUSION 

The represented method considers the possibility of the replacement of solid heating elements by the 
pulse ones. The novelty and technical peculiarity of this article is the following:
 1. The use of an innovative approach to the heating of hexagonal silicon carbide structures is a rele-

vant problem because the rods made of this alloy are used for the burning of ceramics, bricks and 
other items.

  2. This method is not intended for hexagonal silicon carbide structures exclusively and has a general 
form that can be easily adapted for other alloys.

 3. The offered method will allow to decrease the fi nal cost of the item by saving the energy resources 
of the enterprise.

 4. This method together with the hardware and software system for the stabilization of the tempera-
ture fi eld of tunnel kilns of conveyor type will allow to solve a wide range of problems necessary 
for the modern industry [1, 18, 20].

 Thus, the developed method can be generalized for the class of systems for which there is a fundamental 
solution (the Green’s function). At the same time, the complication of the expression of the Green function 
will defi nitely lead to the increase in the costs for the calculation process. However, if the costs that are 
now related to the low effi ciency factor of heating elements are compared, the use of the mathematic 
simulation for the calculation of the location of heating elements is reasonable [6-20].

It should be mentioned that it is useful to take into account the selection of the sampling parameters 
of the controlled impacts for the systems, boundary problem of which contains the non-zero boundary 
conditions. The fundamental solution (Green function) of the boundary problem of such systems has a 
form which is different from that considered in the work. Also the possibility to extend the working zone 
of the object should be studied, that is, the zone in the limits of which the required value of the object 
function can be reached to the specifi ed accuracy. But this is the subject of the further research. 
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