
65 International Journal of Control Theory and Applications

Detection of Mimicry Attacks in Automated Way

Detection of Mimicry Attacks in Automated Way

S. Bharath Reddy1, D. Malathi2 and A. Viswanadham1

1Research Scholar, Department of C.S.E, SRM University, Chennai, India
E-mail: bharath.bittu945@gmail.com; vishwanath_alladi@yahoo.com
2Professor, Department of C.S.E, SRM University, Chennai, India, E-mail: malathikamaraj67@gmail.com

Abstract: A security framework, depicted as Detection and Protection System, is connected to recognize insider
assaults which are copied at System Call (SC) level by using mining strategies. Examining framework calls shaped
by orders at the framework level can perceive these charges, with which assaults were distinguished consummately,
and assault examples are the quirks of assault. In this paper the proposed Intramural Intrusion Detection and Protection
System (IIDPS) fabricate client’s individual profiles to keep a record of clients’ operation rehearses as their
criminological elements. It chooses either a true blue login client is the record holder or not by reviewing client’s
available PC utilization nature with the models gathered in the announcement holder’s individual profile

Keywords: Data Mining; Insider Attack; IIDPS, SC (System Call)

I. INTRODUCTION

Security has been an excellent feature to be taken care of in the computer domain. The extremely difficult attack
to detect is insider attacks among pharming attack; eavesdropping attack, spear-phishing attack [1] and distributed
denial-of-service (DDoS) because intrusion detection systems (IDSs) and firewalls usually protect against outside
attacks. But the interior attacks are a numerous threat where security is concerned [2]). In the blink of an eye,
most frameworks are utilizing client Name and secret key as a login example to verify a client. At the point when
client fruitful, to get the clients secret key interlopers may start Trojans to control casualties’ login examples or
begin an extensive size of activities with the assistance of a database they may then login to the framework,
passage clients’ close to home documents, or change or end framework settings. Open interruptions are recognized
by most current host-based IDS and system based IDSs in an ongoing practice.

An obstruction in real time manner can be controlled by [3]. Recently, most network-based IDS [5] and
host-based security systems [4] apply the same. Intrusion detection systems perceive system and network motions
to counter malicious activities and attacks that can happen from within a network. Typically, intrusion detection
system will report the network administrator when suspect activity is initiated. In some cases, the intrusion
detection systems can take response when problems are detected such as denying a user or IP address from
accessing the system. Since a large number of OS-level system calls were designed, mining malevolent behaviors
from them and recognizing possible intruders remain a major engineering challenge. Computer forensics science,

International Journal of Control Theory and Applications 66

S. Bharath Reddy, D. Malathi and A. Viswanadham

based on a security event [6] view individual system as retrieve, analyzing, recognize, crime scenes and present
opinions the on an individual basis. Attackers elaborate computer viruses, malicious codes and also conduct
DDoS attacks [7]

Hence, the planned system, the Intramural Intrusion Detection and Protection System (IIDPS) discovers
probable intruder operations launched at the system level. An intrusion detection system (IDS) is a tool or
software application that observers network or system activities for mischievous activities or policy violations
and produces electronic reports to a management station. The forensic features of the user, defined by the system
call pattern they follow are recorded for references of the identity of the user were determined from the user’s
computing history. After identifying user’s usage habits, the corresponding SCs are analyzed to upgrade the
accuracy of attack detection. The IIDPS guarantees better average detection certainty. The following two sections
outline the system framework and algorithms required for implementation.

II. INTRAMURAL INTRUSION DETECTION AND PROTECTION SYSTEM

(A) System Framework

The framework structure comprises of SC channel and screen, as a loadable module in a framework piece which
group SCs submitted to the bit and store them in the arrangement of {u_id, p_id, SC}, where u_id is the client id,
p_id is the procedure id and SC is the framework call produced. Two calculations are executed to construct a
client propensity record and to recognize an inside interloper. The mining server inspects information mining
strategies with the client log information to group client’s framework routine propensities and further store in the
client profile. The Detection server as appeared in Fig. 1 connects SC designs with the client designs gathered in
interloper profile, and those in client profiles successively recognize irregular practices and distinguish the
gatecrasher progressively. Additionally, a neighborhood computational grid is required to store user profiles, log
files of the user, and intruder profiles.

Figure 1: IIDPS framework

The detection server and the mining server are executed on the local computational grid to enhance IIDPS’s
perception accuracy and removal capability.

(B) SC Monitor and Filter

A System Call is an edge amongst administrations and a client profile which was built up by the bit. A great deal
of SCs was shaped through the execution of an undertaking. It is troublesome for a framework to watch all

67 International Journal of Control Theory and Applications

Detection of Mimicry Attacks in Automated Way

framework calls at the comparing time, particularly when different clients are running their projects. Along these
lines, we ought to isolate out some consistently utilized safe SCs that don’t influence the profiles to handle this
issue, the measurable model of term recurrence opposite archive recurrence (TF-IDF) is utilized to sort the
required SCs gathered in the client log record. Term Frequency is represented by,

TFi,j = n(p, q) (1)

Where n(p,q) is the number of times the tf was reported during the performance of q, q is the no. of different SCs.
The Inverse Document Frequency (IDF), the measure of the importance of tf among all concerned shell commands,
is defined as,

IDFp = log |B| / | {q: t � dq}| (2)

In eqn (2), |B|, the cardinality of B, is the number of shell commands in the dedicated corpus and {q: tp �
dq} is the set of shell commands dq, in which each member employs ‘tp’ during its performance. The TF-IDF
weight of tp generated by q is defined as

(TF-IDF)p,q = TFp,q × IDFq (3)

A data mining tool named, iDataAnalyzer[8] is used to measure class predictability and class predictiveness.
These parameters are used to estimate intraclass and interclass weights.

Class predictability: Given a class CP and a categorical attribute A with m1, m2, m3 , . . . , and mn as its
candidate values, class CP’s predictability score on A=mi is defined as the percentage of which A’s value in CP
is mi.

Class predictiveness: Given a class CP and its categorical attribute with m1, m2, m3,…and mn as candidate
values, the attribute value vi’s predictiveness score P (A=mi) is the probability of which T with A=mi resides in CP.

Figure 2: Generation of the user profile

(C) Mining Server

Era of client profile is appeared in Fig 2. The mining server chooses SC-grouping delivered by the client’s log
record. The resultant SC design touches base in the document, and the outcomes were put away in the example
of {SC example, appearance counts} in client’s propensity record. The association weights of SC examples are
looked like to evacuate ordinarily utilized SC designs. Encourage, the outcome is coordinated with another
clients’ propensity wallet to recognize client’s correct conduct in the SC-designs.

International Journal of Control Theory and Applications 68

S. Bharath Reddy, D. Malathi and A. Viswanadham

1) Mining User and Attacker Habits

The SCs which were gathered in client’s log document were set up by the IIDPS with a sliding window, named
as Log –Sliding window (LS-window). The SCs were apportioned in the window of L-grams where L is the
quantity of ceaseless SCs. Alongside it, another window of a similar size is resolved called Compared-Sliding
window (CS-window) is utilized to perceive different examples in the client’s log document. This time, L’ back
to back SCs are separated from the CS-window to create the aggregate of L’=2, 3, 4… |sliding window|.

The mining server compares L-grams and L’-grams. All the L grams from the LS-window and all the L’
grams from CS-window were compared. The longest common subsequence algorithm was used for the comparing
them. The algorithm for generating user’s habit file is given in Fig. 3.

Input: u’s log file where u is a user of the underlying system

Output: u’s habit file.

1. G = |log file| - |sliding window|

/*|sliding windows|=|LS-window|=|CS-window|/*

2. for(i = 0; i <= G-1; i ++){

3. for(j=i+1; j <= G; j++){

4. for (each of � k=2
|sliding window|(|sliding window| - k+1) k-grams in current LS-window){

5. for (each of �k’=2
|sliding window|(|sliding window| - k’+1) k’-grams in CS-window){

6. Compare the k-grams and k’-grams with the longest Common Subsequence algorithm.

7. if (the identified SC-pattern already exists in the habit file)

8. Increase the count of the SC-pattern by one;

9. else

10. Insert the SC-pattern into habit file with count = 1;}}}}

Figure 3: Algorithm to generate user’s habit file

2) Creating User Profiles and Attacker Profiles

As shown in Fig. 2, a user’s user profile is a convention file with an SC-appearance count. It was replaced by its
identical similitude weight. Those SC patterns with fewer similitude weights were removed since they are not
useful to differentiate between the other users. Similarly, an attack pattern which may be special to attackers is
identified in the same way. Also, an attack pattern that has been tendered by the attacker but never submitted by
others will achieve a high similarity weight

A commonly used equation (4), is used to allocate weight to a term in knowledge retrieval domain, is used
to give each SC pattern a similitude weight.

log 0.5

0.5 1.5 log(1)
pq

pq

f N
Wpq

f nsq N

�
�

� � � � � (4)

p = 1, 2, 3………k and q = 1, 2, 3……n

Where, fpq is the appearance count of CSp in UHq , nsavg is the average number of System Call-patterns
that an element of D has, nsq is the total number of System Call-patterns collected in UHq , and log((N + 0.5)/
Mp)/ log(N + 1) is the Inverse Characteristic Profile Frequency (ICPF)[9]

69 International Journal of Control Theory and Applications

Detection of Mimicry Attacks in Automated Way

(D) Detection Server

The Detection Server catches the sent System Calls by the user to the kernel, when users are executing shell
commands and were stored in user’s log file. After this, by checking similarity scores between the user’s usage
habits and newly generated System Calls the server tries to check that the user is underlying account holder or
not. The Okapi model[10] is used to find out the Equality score between unknown user u’s current input System
Call-sequence and user’s profile, denoted by equ. 5

1

(,) ,
P

mn
m

u n Fmu W
�

� �� (5)

where p is the quantity of System Call-designs showing up in both NCSu and UHq , Fmu is the appearance include
of SC examples gathered NCSu, and Wmn delivered by conjuring is the comparability weight of m in UHq .The
higher the estimation of (5), the higher the likelihood, with which u is the individual n times submitted NCSu.

The idea of the Detection Server is like the Mining server, yet just contrast being that the connection
between’s LS-window and CS-window is from the back to front every time when a SC is contribution by the
client. That is, the point at which the LS-window contains the last |sliding window| SCs, the CS-window left
moves one SC from LS-window and matches l-grams and l’- grams. After this procedure, for every left move on
CS-window covers the main |sliding window| SCs of NCSu.

At the point when the Detection Server calculation as given in Fig. 4 was summoned, the sliding window
left moves to perceive the SC groupings on each new contribution of SC. On the off chance that the client’s info
are not exactly or like |sliding window|, no activity is performed.

Detection server algorithm:

Input: user u’s current input SCs, i.e NSCu (each time only one SC is input) and all users’ user profiles

Output: u’s is suspected as an internal intruder

1. NCSu = �;

2. while (receiving u’s input SC, denoted by h) {

3. NCSu = NCSu ä {h};

4. if (| NCSu| > |sliding window|) {

5. SL-window = Right (NCSu; |sliding window|; /*Right (x,y) retrieves the last L-window of y from x*/

6. for (j=|NCSu| - |sliding window|; j>0; j—) {

7. CS-window = Mid(NCSuj, |sliding window|); /*Mid(x, y, z) retrieves a sliding window of size z beginning at the
position of y from x */

8. Compare k-grams and k’grams by using comparison logic employed in Algorithm 1 to generate NHFu}

9. for (each user g, 1<=g<=N)

10. Calculate the similarity score Equ(u, n) between NCSu and g’s user profile by invoking equation (5).

11. if((|NCSu| mod paragraph size) == 0) { /*paragraph size = 30, meaning we judge whether u is an attacker or the
account holder for every 30 input SCs*/

12. Sort similarity scores for all users;

13. if (((the decisive rate of u’s user profile < threshold;) or (the decisive rate of attacker profile > threshold;)){

/* threshold; is the predefined lower bound of average decisive rate of user u’s profile, while threshold; is predefined
upper bound of average decisive rate of attacker profile */

14. Alert system manager that u is a suspected attacker, rather than u himself ;}}}}

Figure 4: Detection server algorithm to detect whether the user is a possible intruder

International Journal of Control Theory and Applications 70

S. Bharath Reddy, D. Malathi and A. Viswanadham

(E) Computational Grid

The computational framework is a mix of inside associated PCs cooperating as a solitary incorporated processing
asset. A Mining server and a Detection server have been accomplished to accelerate information preparing. The
upside of group figuring is that it partitions a substantial errand into littler subtasks, upheld by different PC
processors. As appeared in Fig. 5 the ace hub arranges the circulated handling and consolidates preparing
aftereffects of all processors to finish the whole calculation.

Figure 5: Symmetric multiprocessing cluster (SMP) with open message passing interface (MPI)

The functions of Mining server were fulfilled by grid processors with a hostfile that defines computation
resources for mining server. The Detection server is implemented on the master node of the computational grid
with hostfile describing computation resources for the detection server.

III. SUMMARY

The IIDPS is developed to detect and Protect insider attacks at SC level by using data mining and forensic
techniques, extending the features of[11]. A command input by a user will produce hundreds and thousands of
SCs. The IIDPS, on an average, takes 0.45s to identify a user. Implementing a local computational grid can
improve the processing speed of the mining and the detection server. Systems employing GUI interfaces can
also detect malicious behaviors despite user behavior profiles. Many third party shell commands [12],[13] have
been developed, including those which are present in Oracle Database, Oracle Web Logic, and IBM WebSphere
MQ. Detecting attacker signatures [14] has also being implemented for further accuracy.

IV. CONCLUSION

In this paper, IIDPS has been proposed an approach that Forensic Techniques utilizes Data Mining to recognize
the agent SC-designs for a client. The time that a continual SC design touches base in the client’s log document
is checked, the most regularly utilized SC-examples are sifted through, and after that a client’s profile is built up.
Encourage study will be finished by amplifying IIDPS’s execution and exploring outsider shell summons.

REFERENCES

[1] S. Gajek, A. Sadeghi, C. Stuble, and M. Winandy, Compartmented se-curity for browsers—Or how to thwart a phisher with
trusted computing in Proc. IEEE Int. Conf. Avail., Rel. Security, Vienna, Austria, Apr. 2007, 120-127.

[2] C. Yue and H. Wang, BogusBiter: A transparent protection against phishing attacks ACM Trans. Int. Technol., vol. 10, no.
2, pp. 1–31, May 2010.

71 International Journal of Control Theory and Applications

Detection of Mimicry Attacks in Automated Way

[3] H. Lu, B. Zhao, X. Wang, and J. Su, DiffSig: Resource differentiation based malware behavioral concise signature generation,
Inf. Commun. Technol., vol. 7804, pp. 271–284, 2013.

[4] Q. Chen, S. Abdelwahed, and A. Erradi, A model-based approach to self-protection in computing system, in Proc. ACM
Cloud Autonomic Comput. Conf., Miami, FL, USA, 2013, pp. 1–10.

[5] F. Y. Leu, M. C. Li, J. C. Lin, and C. T. Yang, Detection workload in a dynamic grid-based intrusion detection environment,
J. Parallel Distrib. Comput., vol. 68, no. 4, pp. 427–442, Apr. 2008.

[6] M. K. Rogers and K. Seigfried, The future of computer forensics: A needs analysis survey, Comput. Security, vol. 23, no.
1, pp.12–16, Feb. 2004.

[7] J. Choi, C. Choi, B. Ko, D. Choi, and P. Kim, Detecting web based DDoS attack using MapReduce operations in cloud
computing environment, J. Internet Serv. Inf. Security, vol. 3, no. 3/4, pp. 28–37, Nov. 2013.

[8] R. J. Roger and M. W. Geatz, Data Mining: A Tutorial-Based Primer. Reading, MA, USA: Addison-Wesley, 2002.

[9] D. Zhu and J. Xiao, R-tfidf, a Variety of tf-idf Term Weighting Strategy in Document Categorization, in Proc. Int. Conf.
Semantics, Knowledge Grids, Beijing, China, Oct. 2011, pp. 83–90.

[10] S. E. Robertson, S. Walker, M. M. Beaulieu, M. Gatford, and A. Payne, Okapi at TREC-4,in Proc. 4th text Retrieval Conf.,
1996, pp. 73–96.

[11] F. Y. Leu, K. W. Hu, and F. C. Jiang Intrusion detection and identification system using data mining and forensic
techniques,Adv. Inf. Comput. Security, vol. 4752, pp. 137–152, 2007.

[12] Symantec CSP, Executing operating system commands from PL/SQL,Oracle, Redwood City, CA, USA, White Paper, Jul.
2008.

[13] J. Böhm-Mäder, The WebSphere MQ for UNIX administration tool, Free Softw. Found., Boston, MA, USA, May 2013.

[14] S. O’Shaughnessy and G. Gray, Development and evaluation of a data set generator tool for generating synthetic log files
containing computer attack signatures, Int. J. Ambient Comput. Intell., vol. 3, no. 2, pp. 64–76,Apr. 2011.

