OPERATOR FUNCTIONS GENERATED BY FUNCTIONALS AND THEIR APPLICATION TO PROBABILITY THEORY

V. G. ZADOROZHNIY

Abstract

We consider special operator functions generated by analytic functionals. For these functions, the variational derivatives and ordinary derivatives are calculated. A formula is obtained for solving the initial problem for a linear inhomogeneous system of differential equations with ordinary and variational derivatives. A general explicit formula is obtained for the mathematical expectation of the solution of a linear inhomogeneous system of ordinary differential equations, the coefficients of which are random processes. As an example, a calculation is made for a system with Gaussian and uniformly distributed random processes.

1. Operator functions

Let \mathbb{R} be a set of real numbers, $t \in \mathbb{R}, X$ be a finite-dimensional linear space with the norm $\|\cdot\|$ and $L(X, X)$ space of linear operators acting in the space X with the norm $\|A\|_{L}$.

In mathematics, operator functions generated by analytical functions play an important role [1]. For example, if $A \in L(X, X), E$ is the identical operator, $\exp A=E+A+\frac{A^{2}}{2!}+\ldots$. Operator function $\exp (A t)$ is a solution of the Cauchy operator problem

$$
\frac{d Y}{d t}=A Y, Y(0)=E
$$

where $Y: \mathbb{R} \rightarrow L(X, X)$ the required operator function [1].
Let $L_{1}(T)$ be the space of summable functions on the segment $T=\left[t_{0}, t_{1}\right]$ with the norm $\|u\|_{1}=\int_{T}|u(t)| d t$ and $f: L_{1}(T) \rightarrow \mathbb{C}$ have the form

$$
f(u)=\int_{T} \ldots \int_{T} b\left(s_{1}, s_{2}, \ldots, s_{k}\right) u_{1}\left(s_{1}\right) u\left(s_{2}\right) \ldots u\left(s_{k}\right) d s_{1} d s_{2} \ldots d s_{k}
$$

where b is a function that is symmetric for each pair of variables.
Let $\chi(s)=\chi\left(t_{0}, t, s\right)$ be a function of the variable $s \in \mathbb{R}$ defined as follows: $\chi\left(t_{0}, t, s\right)=\operatorname{sign}\left(s-t_{0}\right)$ if s belongs to a segment $\left[\min \left\{t_{0},, t\right\}, \max \left\{t_{0}, t\right\}\right]$ and $\chi\left(t_{0}, t, s\right)=0$, if s no belongs to a segment. Note that equality is true

$$
\begin{equation*}
\chi\left(t_{0}, t+\Delta t, s\right)=\chi\left(t_{0}, t, s\right)+\chi(t, t+\Delta t, s) \tag{1}
\end{equation*}
$$

[^0]We will use the concept of variational derivative. Recall its definition [2, p. 14].
Let $Y: L_{1}(T) \rightarrow L(X, X), u \in L_{1}(T), h \in L_{1}(T)$. If

$$
Y(u+h)-Y(u)=\int_{T} \varphi(t, u) h(t) d t+o(h)
$$

where integral (Lebesgue) is a linear bounded on $L_{1}(T)$ operator and $o(h)$ is infinitesimal of higher order relative to h, then $\varphi: T \times L_{1}(T) \rightarrow L(X, X)$ is called the variational (functional) derivative of mapping Y at the point u and is denoted by $\frac{\delta Y(u)}{\delta u(t)}$.

Consider the special operator function

$$
\begin{gathered}
Y(t, u)=f\left(u E+a \chi\left(t_{0}, t\right) A\right)= \\
=\int_{T} \ldots \int_{T} b\left(s_{1}, s_{2}, \ldots s_{k}\right)\left(u\left(s_{1}\right) E\right. \\
\left.+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right)\left(u\left(s_{2}\right) E+a\left(s_{2}\right) \chi\left(t_{0}, t, s_{2}\right) A\right) \ldots\left(u\left(s_{k}\right) E\right. \\
\left.+a\left(s_{k}\right) \chi\left(t_{0}, t, s_{k}\right) A\right) d s_{1} d s_{2} \ldots d s_{k}
\end{gathered}
$$

We have not seen such functions in the literature.
Further $\frac{\delta_{p} Y(t, u)}{\delta u(t)}$ denotes the partial variational derivative with respect to the variable u.

Theorem 1.1. If a is a continuous function on T and b is a continuous function that is symmetric for each pair of variables, then there exists the derivative $\frac{\delta_{p} Y(t, u)}{\delta u(t)}$ and

$$
\begin{align*}
& \frac{\delta_{p} Y(t, u)}{\delta u(t)}=k \int_{T} \ldots \int_{T} b\left(s_{1}, s_{2}, \ldots s_{k-1}, t\right)\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right)\left(u\left(s_{2}\right) E\right. \\
& \left.+a\left(s_{2}\right) \chi\left(t_{0}, t, s_{2}\right) A\right) \ldots\left(u\left(s_{k-1}\right) E+a\left(s_{k-1}\right) \chi\left(t_{0}, t, s_{k-1}\right) A\right) d s_{1} d s_{2} \ldots d s_{k-1} \tag{2}
\end{align*}
$$

Proof. Let $h \in L_{1}(T)$ be an increment of the variable u. Since b is a function that is symmetric for each pair of variables, then

$$
\begin{gathered}
Y(t, u+h)-Y(t, u)= \\
=\int_{T} \ldots \int_{T} b\left(s_{1}, s_{2}, \ldots, s_{k}\right)\left[\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right.\right. \\
\left.\left.+h\left(s_{1}\right) E\right)\right)\left(u\left(s_{2}\right) E+a\left(s_{2}\right) \chi\left(t_{0}, t, s_{2}\right) A\right. \\
\left.+h\left(s_{2}\right) E\right) \ldots\left(u\left(s_{k}\right) E+a\left(s_{k}\right) \chi\left(t_{0}, t, s_{k}\right) A+h\left(s_{k}\right) E\right) d s_{1} d s_{2} \ldots d s_{k}- \\
\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right)\left(u\left(s_{2}\right) E+a\left(s_{2}\right) \chi\left(t_{0}, t, s_{2}\right) A\right) \ldots\left(u\left(s_{k}\right) E\right. \\
\left.\left.+a\left(s_{k}\right) \chi\left(t_{0}, t, s_{k}\right) A\right)\right] d s_{1} d s_{2} \ldots d s_{k}= \\
=k \int_{T} \ldots \int_{T} b\left(s_{1}, s_{2}, \ldots, s_{(k-1)}, t\right)\left[(u (s _ { 1 }) E + a (s _ { 1 }) \chi (t _ { 0 } , t , s _ { 1 }) A) \ldots \left(u\left(s_{k-1}\right) E\right.\right. \\
\left.+a\left(s_{k-1}\right) \chi\left(t_{0}, t, s_{k-1}\right) A\right) h\left(s_{k}\right) E d s_{1} d s_{2} \ldots d s_{k-1}+ \\
+\int_{T} \ldots \int_{T} \sum_{m=2}^{k} C_{k}^{m}\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right) \ldots\left(u\left(s_{k-m}\right) E\right. \\
\left.+a\left(s_{k-m}\right) \chi\left(t_{0}, t, s_{k-m}\right) A\right) h\left(s_{k-m+1}\right) \ldots h\left(s_{k}\right) E d s_{1} d s_{2} \ldots d s_{k} .
\end{gathered}
$$

Here C_{k}^{m} is the number of combinations of k by m. Let's estimate the norm of the last term

$$
\begin{aligned}
& \frac{1}{\|h\|_{1}} \| \int_{T} \ldots \int_{T} \sum_{m=2}^{k} C_{k}^{m}\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right) \ldots\left(u\left(s_{k-m}\right) E\right. \\
& \left.+a\left(s_{k-m}\right) \chi\left(t_{0}, t, s_{k-m}\right) A\right) h\left(s_{k-m+1}\right) \ldots h\left(s_{k}\right) E d s_{1} d s_{2} \ldots d s_{k} \|_{L} \leq \\
& \leq \frac{1}{\|h\|_{1}} C_{k}^{m} B\left(\left\|\left|u\left(s_{1}\right)\right|+\max _{s_{1} \in T} \mid a\left(s_{1}\right)\right\| A\left\|_{L}\right\|_{L_{1}}\right)^{k-m}\|h\|_{1}^{m} \rightarrow 0
\end{aligned}
$$

for $\|h\|_{1} \rightarrow 0, m \geq 2$. Here $B=\max _{s_{i} \in T}\left|b\left(s_{1}, s_{2}, \ldots, s_{k}\right)\right|$. According to the definition of the variational derivative, $\frac{\delta_{p} Y(t, u)}{\delta u(t)}$ exists and the equality (2) is valid. The theorem is proved.

Theorem 1.2. Under the conditions of theorem 1, there exists the partial derivative $\frac{\partial Y(t, u)}{\partial t}$, while

$$
\begin{align*}
& \frac{\partial Y(t, u)}{\partial t}=k a(t) A \int_{T} \ldots \int_{T} b\left(s_{1}, s_{2}, \ldots s_{k-1}, t\right)\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right)\left(u\left(s_{2}\right) E\right. \\
& \left.\quad+a\left(s_{2}\right) \chi\left(t_{0}, t, s_{2}\right) A\right) \ldots\left(u\left(s_{k-1}\right) E+a\left(s_{k-1}\right) \chi\left(t_{0}, t, s_{k-1}\right) A\right) d s_{1} d s_{2} \ldots d s_{k-1} \tag{3}
\end{align*}
$$

Proof. Let Δt be the increment of the variable t. Then

$$
\begin{gather*}
\left.\frac{1}{\Delta t}(Y(t+\Delta t, u))-Y(t, u)\right)= \\
=\frac{1}{\Delta t} \int_{T} \ldots \int_{T} b\left(s_{1}, s_{2}, \ldots, s_{k}\right)\left[\left(u\left(s_{1}\right) E\right.\right. \\
\left.\left.+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A+a\left(s_{1}\right) \chi\left(t, t+\Delta t, s_{1}\right) A\right)\right)\left(u\left(s_{2}\right) E\right. \\
\left.+a\left(s_{2}\right) \chi\left(t_{0}, t, s_{2}\right) A+a\left(s_{2}\right) \chi\left(t, t+\Delta t, s_{2}\right) A\right) \ldots\left(u\left(s_{k}\right) E\right. \\
\left.+a\left(s_{k}\right) \chi\left(t_{0}, t, s_{k}\right) A+a\left(s_{k}\right) \chi\left(t, t+\Delta t, s_{k}\right) A\right) d s_{1} d s_{2} \ldots d s_{k}- \\
\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right)\left(u\left(s_{2}\right) E+a\left(s_{2}\right) \chi\left(t_{0}, t, s_{2}\right) A\right) \ldots\left(u\left(s_{k}\right) E\right. \\
\left.\left.\quad+a\left(s_{k}\right) \chi\left(t_{0}, t, s_{k}\right) A\right)\right] d s_{1} d s_{2} \ldots d s_{k}= \\
=\frac{k}{\Delta t} \int_{T} \ldots \int_{T} b\left(s_{1}, s_{2}, \ldots, s_{k}\right)\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right) \ldots\left(u\left(s_{k-1}\right) E\right. \\
\left.+a\left(s_{k-1}\right) \chi\left(t_{0}, t, s_{k-1}\right) A\right) A a\left(s_{k}\right) \chi\left(t, t+\Delta t, s_{k}\right) d s_{1} d s_{2} \ldots d s_{k}+ \\
+\frac{1}{\Delta t} \int_{T} \ldots \int_{T} \sum_{m=2}^{k} C_{k}^{m}\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right) \ldots\left(u\left(s_{k-m}\right) E\right. \\
\left.+a\left(s_{k-m}\right) \chi\left(t_{0}, t, s_{k-m}\right) A\right) a\left(s_{k-m+1} \chi\left(t, t+\Delta t, s_{k-m+1}\right) A \ldots\right. \\
\cdot a\left(s_{k}\right) \chi\left(t, t+\Delta t, s_{k}\right) A d s_{1} d s_{2} \ldots d s_{k} \tag{4}
\end{gather*}
$$

Further

$$
\begin{aligned}
& \frac{1}{|\Delta t|} \| \int_{T} \ldots \int_{T} \sum_{m=2}^{k} C_{k}^{m}\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right) \ldots\left(u\left(s_{k-m}\right) E\right. \\
& \left.\quad+a\left(s_{k-m}\right) \chi\left(t_{0}, t, s_{k-m}\right) A\right) a\left(s_{k-m+1}\right) . \\
& \cdot \chi\left(t, t+\Delta t, s_{k-m+1}\right) A \ldots a\left(s_{k}\right) \chi\left(t, t+\Delta t, s_{k}\right) A d s_{1} d s_{2} \ldots d s_{k} \|_{L} \leq \\
& \leq \frac{1}{|\Delta t|} C_{k}^{m}\left(\max _{s \in T}|a(s)|\right)^{m}\|A\|_{L}^{m} B\left[\int _ { T } \left(\left|u\left(s_{1}\right)\right|\right.\right.
\end{aligned}
$$

$$
\left.\left.+\max _{s_{1} \in T}\left|a\left(s_{1}\right)\right|\|A\|_{L}\right) d s_{1}\right]^{k-m}|\Delta t|^{m}=
$$

$$
=C_{k}^{m}\left(\max _{s \in T}|a(s)|\right)^{m}\|A\|_{L}^{m} B\left\|\left|u\left(s_{1}\right)\right|+\max _{s_{1} \in T \mid}\left|a\left(s_{1}\right)\right|\right\| A\left\|_{L}\right\|_{1}^{k-m}|\Delta t|^{m-1} \rightarrow 0
$$

for $\Delta t \rightarrow 0, m \geq 2$. Using the definition of function χ and the mean value theorem, we go to the limit in (4) for $\Delta t \rightarrow 0$, and get (3). The theorem is proved.

Corollary. If the conditions of theorem 1 are satisfied, $Y(t, u)$ is a solution of the operator equation

$$
\begin{equation*}
\frac{\partial Y}{\partial t}=a(t) \frac{\delta Y}{\delta u(t)} \tag{5}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
Y\left(t_{0}, u\right)=f(u) E \tag{6}
\end{equation*}
$$

Indeed, substituting equality (3), (4) into equation (5), we get the equality. Next

$$
Y\left(t_{0}, u\right)=\int_{T} \ldots \int_{T} b\left(s_{1}, s_{2}, \ldots, s_{k}\right) u\left(s_{1}\right) u\left(s_{2}\right) \ldots u\left(s_{k}\right) E^{k} d s_{1} d s_{2} \ldots d s_{k}=f(u) E .
$$

2. More general initial conditions

Let $f: L_{1}(T) \rightarrow \mathbb{C}$ be decomposed into a power series that converges for all $u \in L_{1}(T)$

$$
\begin{equation*}
f(u)=\sum_{k=0}^{\infty} \int_{T} \int_{T} \ldots \int_{T} b_{k}\left(s_{1}, s_{2}, \ldots, s_{k}\right) u\left(s_{1}\right) u\left(s_{2}\right) \ldots u\left(s_{k}\right) d s_{1} d s_{2} \ldots d s_{k} \tag{7}
\end{equation*}
$$

where b_{k} is symmetric for each pair of variables of the function.
Theorem 2.1. If $a: T \rightarrow \mathbb{C}$ be a continuous function, b_{k} be continuous symmetric functions for each pair of variables, then the operator function

$$
\begin{gather*}
Y(t, u)=f\left(u E+a \chi\left(t_{0}, t\right) A\right)= \\
=\sum_{k=0}^{\infty} \int_{T} \int_{T} \ldots \int_{T} b_{k}\left(s_{1}, s_{2}, \ldots, s_{k}\right)\left(u\left(s_{1}\right) E+a\left(s_{1}\right) \chi\left(t_{0}, t, s_{1}\right) A\right)\left(u\left(s_{2}\right) E\right. \\
\left.+a\left(s_{2}\right) \chi\left(t_{0}, t, s_{2}\right) A\right) \ldots\left(u\left(s_{k}\right) E+a\left(s_{k}\right) \chi\left(t_{0}, t, s_{k}\right) A\right) d s_{1} d s_{2} \ldots d s_{k} \tag{8}
\end{gather*}
$$

is a solution of operator equation (5) with the initial condition $Y\left(t_{0}, u\right)=f(u) E$.
Proof. According to the previous corollary, each term of series (7) satisfies equation (5), then (formally)

$$
\frac{\partial Y}{\partial t}=a(t) A \frac{\delta_{p} Y}{\delta u(t)}
$$

In this equation, power series are on the left and on the right, so $Y(t, u)$ satisfies equation (5). In this case,

$$
\begin{gathered}
Y\left(t_{0}, u\right)=\sum_{k=0}^{\infty} \int_{T} \int_{T} \ldots \int_{T} b_{k}\left(s_{1}, s_{2}, \ldots, s_{k}\right) u\left(s_{1}\right) u\left(s_{2}\right) \ldots u\left(s_{k}\right) E d s_{1} d s_{2} \ldots d s_{k} \\
=f(u) E
\end{gathered}
$$

in other words, the initial condition is also satisfied. The theorem is proved.

Comment. In the particular case $f(u)=\sum_{k=0}^{\infty}\left(\int_{T} b_{k}(s) u(s) d s\right)^{k}$ we get

$$
\left.Y(t, u)=f\left(u E+a \chi\left(t_{0}, t\right) A\right)\right)=\sum_{k=0}^{\infty}\left(\int_{T} b_{k}(s)\left(u(s) E+a(s) \chi\left(t_{0}, t, s\right) A\right) d s\right)^{k}
$$

3. Vector problem

Consider the vector problem

$$
\begin{gather*}
\frac{\partial y}{\partial t}=a(t) A \frac{\delta_{p} y}{\delta u(t)} \tag{9}\\
y\left(t_{0}\right)=f(u) \xi \tag{10}
\end{gather*}
$$

Here $y: T \times L_{1}(T) \rightarrow X, \xi \in X$.
Theorem 3.1. If $a: T \rightarrow \mathbb{C}$ is a continuous function and f expands into power series (7), $\xi \in X$, then

$$
y(t, u)=f\left(u E+a \chi\left(t_{0}, t\right) A\right) \xi
$$

is a solution of problem (9), (10).
Proof. We have $\frac{\partial y(t, u)}{\partial t}=a(t) \frac{\delta f\left(u E+a \chi\left(t_{0}, t\right) A\right)}{\delta u(t)}=a(t) \frac{\delta y(t, u)}{\delta u(t)}$. Therefore y is a solution to equation (9). Further $y\left(t_{0}, u\right)=f(u E) \xi=f(u) E \xi=f(u) \xi$. The theorem is proved.

Let the initial condition have more general form

$$
\begin{equation*}
y\left(t_{0}, u\right)=F(u)=\sum_{k=1}^{n} f_{K}(u) \xi_{k} \tag{11}
\end{equation*}
$$

Here $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ is a basis in X. Then

$$
y(t, u)=\sum_{k=1}^{n} f_{K}\left(u E+a \chi\left(t_{0}, t\right) A\right) \xi_{k}
$$

is a solution of problem (9), (11). This formula can be formally written in mind $\left.y(t, u)=F\left(u E+a \chi\left(t_{0}, t\right) A\right)\right)$

4. Linear inhomogeneous problem

Consider the linear inhomogeneous problem

$$
\begin{gather*}
\frac{\partial y}{\partial t}=a(t) A \frac{\delta_{p} y}{\delta u(t)}+b(t, u) \tag{12}\\
y\left(t_{0}\right)=F(u) \tag{13}
\end{gather*}
$$

Here $y: T \times L_{1}(T) \rightarrow X, F: L_{1}(T) \rightarrow X, b: T \times L_{1}(T) \rightarrow X$.
Theorem 4.1. If $a: T \rightarrow \mathbb{C}$ is a continuous function, $b=\sum_{j=1}^{n} b_{j} \xi_{j}$ and b_{j} expands into power series

$$
b_{j}(t, u)=\sum_{k=0}^{\infty} \int_{T} \ldots \int_{T} b_{j k}\left(t, s_{1}, s_{2}, \ldots, s_{k}\right) u\left(s_{1}\right) u\left(s_{2}\right) \ldots u\left(s_{k}\right) d s_{1} d s_{2} \ldots d s_{k}
$$

$$
F(u)=\sum_{k=1}^{n} f_{k}(u) \xi_{k}
$$

then

$$
\begin{equation*}
y(t, u)=F\left(u E+a \chi\left(t_{0}, t\right) A\right)+\int_{t_{0}}^{t} b(s, u E+a \chi(s, t) A) d s \tag{14}
\end{equation*}
$$

is a solution of problem (12), (13).
Proof. Since

$$
\frac{\partial F\left(u E+a \chi\left(t_{0}, t\right) A\right)}{\partial t}=a(t) A \frac{\delta F\left(u E+a \chi\left(t_{0}, t\right) A\right)}{\delta u(t)}
$$

we have

$$
\begin{gathered}
\frac{\partial y}{\partial t}=a(t) A \frac{\delta F\left(u E+a \chi\left(t_{0}, t\right) A\right)}{\delta u(t)}+b(t, u E)+\int_{t_{0}}^{t} a A \frac{\delta b\left(S, u E+a \chi\left(t_{0}, t\right) A\right)}{\delta u(t)} d s, \\
\frac{\delta_{p} y}{\delta u(t)}=\frac{\delta F\left(u E+a \chi\left(t_{0}, t\right) A\right)}{\delta u(t)}+\int_{t_{0}}^{t} \frac{\delta b\left(s, u E+a \chi\left(t_{0}, t\right) A\right)}{\delta u(t)} d s
\end{gathered}
$$

Obviously y satisfies equation (12) and

$$
y\left(t_{0}, u\right)=F(u E)=\sum_{k=1}^{n} f_{k}(u E) \xi_{k}=\sum_{k=1}^{n} f_{k}(u) \xi_{k}=F(u)
$$

The theorem is proved.

5. Application to probability theory

Consider the system of differential equations with random coefficients

$$
\begin{equation*}
\frac{d x}{d t}=\varepsilon_{1}(t) A x+\varepsilon_{2}(t) \xi \tag{15}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0} . \tag{16}
\end{equation*}
$$

Here $x \in X, A \in L(X, X), g: T \rightarrow \mathbb{R}, \xi$ is a random vector, $\varepsilon_{1}(t), \varepsilon_{2}(t), g$ are random processes, x_{0} is a random vector. Let

$$
w=\exp \left(i \int_{T}\left(\varepsilon_{1}(s) u(s)+\varepsilon_{2}(s) v(s)\right) d s\right), u, v \in L_{1}(T)
$$

and let the characteristic functional be known $[1$, p. 30] $\psi(u, v)=E[w], u, v \in$ $L_{1}(T), E$ means the mathematical expectation of the distribution functions ε, g. We need to find the mathematical expectation of the solution of problem (15), (16).

We multiply (15), (16) by w and take the mathematical expectations of the obtained equalities

$$
\begin{gathered}
E\left[\frac{d x}{d t} w\right]=E\left[\varepsilon_{1}(t) A x w\right]+E\left[\varepsilon_{2}(t) \xi w\right] \\
E\left[x\left(t_{0}\right) w\right]=E\left[x_{0} w\right]
\end{gathered}
$$

We introduce the mapping $y(t, u, v)=E[x(t) w]$. Note that $y(t, 0)=E[x(t)]$. The last equations can be written as

$$
\begin{gather*}
\frac{\partial y}{\partial t}=-i A \frac{\delta_{p} y}{\delta u(t)}-i \frac{\delta_{p} \psi}{\delta v(t)} \xi \tag{17}\\
y\left(t_{0}, u, v\right)=E\left[x_{0}\right] \psi(u, v) \tag{18}
\end{gather*}
$$

Here we assume that x_{0} does not depend on $\varepsilon_{1}, \varepsilon_{2}$.
Problem (17), (18) has the form of problem (12), (13). Using formula (14) we find

$$
y(t, u, v)=\psi\left(u-i \chi\left(t_{0}, t\right) A, v\right) E\left[x_{0}\right]-i \int_{t_{0}}^{t} \frac{\delta_{p} \psi(u-i c h i(s, t) A, v)}{\delta v(s)} \xi d s .
$$

Assuming $u=0, v=0$, we easily find

$$
E[x(t)]=\psi\left(-i \chi\left(t_{0}, t\right) A, 0\right) E\left[x_{0}\right]-i \int_{t_{0}}^{t} \frac{\delta_{p} \psi(-i c h i(s, t) A, 0)}{\delta v(s)} \xi d s
$$

Let $\varepsilon_{1}, \varepsilon_{2}$ be given by the characteristic functional

$$
\begin{gathered}
\psi(u, v)=\exp \left(i \int _ { T } E \left[\varepsilon_{1}(s) u(s) d s\right.\right. \\
\left.\left.-\frac{1}{2} \int_{T} \int_{T} b\left(s_{1}, s_{2}\right)\right] u\left(s_{1}\right) u\left(s_{2}\right) d s_{1} d s_{2}\right) \frac{\sin \int_{T} B(s) u(s) d s}{\int_{T} B(s) u(s) d s} \exp \left(i \int_{T} E\left[\varepsilon_{2}(s) v(s) d s\right]\right)
\end{gathered}
$$

This means that ε_{1} is a Gaussian random process, and ε_{2} is a uniformly distributed random process, $b\left(s_{1}, s_{2}\right)=E\left[\varepsilon_{1}\left(s_{1}\right) \varepsilon\left(s_{2}\right)\right]-E\left[\varepsilon_{1}\left(s_{1}\right)\right] E\left[\varepsilon\left(s_{2}\right)\right], B(s) \geq$ $0, u \in L_{1}(T), v \in L_{1}(T)$. Using the formula, we find

$$
\begin{gathered}
E[x(t)]=\exp \left(i \int _ { t _ { 0 } } ^ { t } A E \left[\varepsilon_{1}(s) d s\right.\right. \\
\left.\left.+\frac{A^{2}}{2} \int_{t_{0}}^{t} \int_{t_{0}}^{t} b\left(s_{1}, s_{2}\right)\right] d s_{1} d s_{2}\right) \frac{\sin \int_{t_{0}}^{t} B(s) d s}{\int_{t_{0}}^{t} B(s) d s} \exp \left(i \int_{t_{0}}^{t} E\left[\varepsilon_{2}(s) d s\right]\right) \\
\int_{t_{0}}^{t} \exp \left(i \int _ { s } ^ { t } A E \left[\varepsilon_{1}(\tau) d \tau\right.\right. \\
\left.\left.+\frac{A^{2}}{2} \int_{s}^{t} \int_{s}^{t} b\left(s_{1}, s_{2}\right)\right] d s_{1} d s_{2}\right) \frac{\sin \int_{t_{0}}^{t} B(s) d s}{\int_{t_{0}}^{t} B(s) d s} \exp \left(i \int_{t_{0}}^{t} E\left[\varepsilon_{2}(s) d s\right]\right) E\left[\varepsilon_{2}(s)\right] d s \xi
\end{gathered}
$$

Similarly we can find the other moment functions for the solution of problem (15),(16).

References

[1] Dunford N. and Schwartz J. Linear operators. Part 1, General theory. Interscience Publishers, 1958.
[2] Zadorozhniy V.G. Metody variatsionnogo analiza, Rhd, Moscow-Izhevsk, 2006.
V. G. Zadorozhniy: Voronezh State University, Voronezh, Russian Federation E-mail address: zador@amm.vsu.ru

[^0]: Date: Date of Submission June 02, 2020 ; Date of Acceptance July 20, 2020 , Communicated by Yuri E. Gliklikh .

 2010 Mathematics Subject Classification. Primary 60G42; Secondary 60H30.
 Key words and phrases. variational derivative, stochastic differential equation, operator function, mathematical expectation.

