Communications on Stochastic Analysis Vol. 14, No. 1-2 (2020)

OPERATOR FUNCTIONS GENERATED BY FUNCTIONALS AND THEIR APPLICATION TO PROBABILITY THEORY

V. G. ZADOROZHNIY

ABSTRACT. We consider special operator functions generated by analytic functionals. For these functions, the variational derivatives and ordinary derivatives are calculated. A formula is obtained for solving the initial problem for a linear inhomogeneous system of differential equations with ordinary and variational derivatives. A general explicit formula is obtained for the mathematical expectation of the solution of a linear inhomogeneous system of ordinary differential equations, the coefficients of which are random processes. As an example, a calculation is made for a system with Gaussian and uniformly distributed random processes.

1. Operator functions

Let \mathbb{R} be a set of real numbers, $t \in \mathbb{R}, X$ be a finite-dimensional linear space with the norm $\|\cdot\|$ and L(X, X) space of linear operators acting in the space Xwith the norm $\|A\|_{L}$.

In mathematics, operator functions generated by analytical functions play an important role [1]. For example, if $A \in L(X, X), E$ is the identical operator, $\exp A = E + A + \frac{A^2}{2!} + \dots$ Operator function $\exp(At)$ is a solution of the Cauchy operator problem

$$\frac{dY}{dt} = AY, Y(0) = E,$$

where $Y : \mathbb{R} \to L(X, X)$ the required operator function [1].

Let $L_1(T)$ be the space of summable functions on the segment $T = [t_0, t_1]$ with the norm $||u||_1 = \int_T |u(t)| dt$ and $f: L_1(T) \to \mathbb{C}$ have the form

$$f(u) = \int_T \dots \int_T b(s_1, s_2, \dots, s_k) u_1(s_1) u(s_2) \dots u(s_k) ds_1 ds_2 \dots ds_k,$$

where b is a function that is symmetric for each pair of variables.

Let $\chi(s) = \chi(t_0, t, s)$ be a function of the variable $s \in \mathbb{R}$ defined as follows: $\chi(t_0, t, s) = sign(s - t_0)$ if s belongs to a segment $[min\{t_0, t\}, max\{t_0, t\}]$ and $\chi(t_0, t, s) = 0$, if s no belongs to a segment. Note that equality is true

$$\chi(t_0, t + \Delta t, s) = \chi(t_0, t, s) + \chi(t, t + \Delta t, s).$$

$$\tag{1}$$

19

Date: Date of Submission June 02, 2020 ; Date of Acceptance July 20, 2020 , Communicated by Yuri E. Gliklikh .

²⁰¹⁰ Mathematics Subject Classification. Primary 60G42; Secondary 60H30.

Key words and phrases. variational derivative, stochastic differential equation, operator function, mathematical expectation.

We will use the concept of variational derivative. Recall its definition [2, p. 14]. Let $Y : L_1(T) \to L(X, X), u \in L_1(T), h \in L_1(T)$. If

$$Y(u+h) - Y(u) = \int_T \varphi(t, u)h(t)dt + o(h).$$

where integral (Lebesgue) is a linear bounded on $L_1(T)$ operator and o(h) is infinitesimal of higher order relative to h, then $\varphi: T \times L_1(T) \to L(X, X)$ is called the variational (functional) derivative of mapping Y at the point u and is denoted by $\frac{\delta Y(u)}{\delta u(t)}$.

Consider the special operator function

$$\begin{split} Y(t,u) &= f(uE + a\chi(t_0,t)A) = \\ &= \int_T \dots \int_T b(s_1,s_2,\dots s_k)(u(s_1)E \\ &+ a(s_1)\chi(t_0,t,s_1)A)(u(s_2)E + a(s_2)\chi(t_0,t,s_2)A)\dots(u(s_k)E \\ &+ a(s_k)\chi(t_0,t,s_k)A)ds_1ds_2\dots ds_k. \end{split}$$

We have not seen such functions in the literature. Further $\frac{\delta_p Y(t,u)}{\delta u(t)}$ denotes the partial variational derivative with respect to the variable u.

Theorem 1.1. If a is a continuous function on T and b is a continuous function that is symmetric for each pair of variables, then there exists the derivative $\frac{\delta_p Y(t,u)}{\delta u(t)}$ and

$$\frac{\delta_p Y(t, u)}{\delta u(t)} = k \int_T \dots \int_T b(s_1, s_2, \dots s_{k-1}, t) (u(s_1)E + a(s_1)\chi(t_0, t, s_1)A) (u(s_2)E + a(s_2)\chi(t_0, t, s_2)A) \dots (u(s_{k-1})E + a(s_{k-1})\chi(t_0, t, s_{k-1})A) ds_1 ds_2 \dots ds_{k-1}.$$
 (2)

Proof. Let $h \in L_1(T)$ be an increment of the variable u. Since b is a function that is symmetric for each pair of variables, then

$$\begin{split} Y(t,u+h) - Y(t,u) = \\ = \int_T \dots \int_T b(s_1,s_2,\dots,s_k) [(u(s_1)E + a(s_1)\chi(t_0,t,s_1)A \\ + h(s_1)E))(u(s_2)E + a(s_2)\chi(t_0,t,s_2)A \\ + h(s_2)E)\dots(u(s_k)E + a(s_k)\chi(t_0,t,s_k)A + h(s_k)E)ds_1ds_2\dots ds_k - \\ (u(s_1)E + a(s_1)\chi(t_0,t,s_1)A)(u(s_2)E + a(s_2)\chi(t_0,t,s_2)A)\dots(u(s_k)E \\ + a(s_k)\chi(t_0,t,s_k)A)]ds_1ds_2\dots ds_k = \\ = k \int_T \dots \int_T b(s_1,s_2,\dots,s_{(k-1)},t)[(u(s_1)E + a(s_1)\chi(t_0,t,s_1)A)\dots(u(s_{k-1})E \\ + a(s_{k-1})\chi(t_0,t,s_{k-1})A)h(s_k)Eds_1ds_2\dots ds_{k-1} + \\ + \int_T \dots \int_T \sum_{m=2}^k C_k^m(u(s_1)E + a(s_1)\chi(t_0,t,s_1)A)\dots(u(s_{k-m})E \\ + a(s_{k-m})\chi(t_0,t,s_{k-m})A)h(s_{k-m+1})\dots h(s_k)Eds_1ds_2\dots ds_k. \end{split}$$

20

Here C^m_k is the number of combinations of k by m. Let's estimate the norm of the last term

$$\frac{1}{\|h\|_{1}} \| \int_{T} \dots \int_{T} \sum_{m=2}^{k} C_{k}^{m}(u(s_{1})E + a(s_{1})\chi(t_{0}, t, s_{1})A) \dots (u(s_{k-m})E + a(s_{k-m})\chi(t_{0}, t, s_{k-m})A)h(s_{k-m+1}) \dots h(s_{k})Eds_{1}ds_{2} \dots ds_{k} \|_{L} \leq \\ \leq \frac{1}{\|h\|_{1}} C_{k}^{m}B(\||u(s_{1})| + \max_{s_{1}\in T}|a(s_{1})|\|A\|_{L}\|_{L_{1}})^{k-m} \|h\|_{1}^{m} \to 0$$

 $\sum_{k=1}^{\infty} \|h\|_{1} \to 0, m \ge 2. \text{ Here } B = \max_{s_{i} \in T} |b(s_{1}, s_{2}, ..., s_{k})|. \text{ According to the definition of the variational derivative, } \frac{\delta_{p}Y(t, u)}{\delta u(t)} \text{ exists and the equality (2) is valid. The theorem is proved.}$

Theorem 1.2. Under the conditions of theorem 1, there exists the partial derivative $\frac{\partial Y(t,u)}{\partial t}$, while

$$\frac{\partial Y(t,u)}{\partial t} = ka(t)A\int_T \dots \int_T b(s_1, s_2, \dots s_{k-1}, t)(u(s_1)E + a(s_1)\chi(t_0, t, s_1)A)(u(s_2)E + a(s_2)\chi(t_0, t, s_2)A)\dots(u(s_{k-1})E + a(s_{k-1})\chi(t_0, t, s_{k-1})A)ds_1ds_2\dots ds_{k-1}.$$
 (3)

Proof. Let Δt be the increment of the variable t. Then

$$\begin{aligned} \frac{1}{\Delta t} (Y(t + \Delta t, u)) - Y(t, u)) &= \\ &= \frac{1}{\Delta t} \int_{T} \dots \int_{T} b(s_1, s_2, \dots, s_k) [(u(s_1)E) \\ &+ a(s_1)\chi(t_0, t, s_1)A + a(s_1)\chi(t, t + \Delta t, s_1)A))(u(s_2)E \\ &+ a(s_2)\chi(t_0, t, s_2)A + a(s_2)\chi(t, t + \Delta t, s_2)A)\dots(u(s_k)E \\ &+ a(s_k)\chi(t_0, t, s_k)A + a(s_k)\chi(t, t + \Delta t, s_k)A)ds_1ds_2\dots ds_k - \\ (u(s_1)E + a(s_1)\chi(t_0, t, s_1)A)(u(s_2)E + a(s_2)\chi(t_0, t, s_2)A)\dots(u(s_k)E \\ &+ a(s_k)\chi(t_0, t, s_k)A]]ds_1ds_2\dots ds_k = \\ &= \frac{k}{\Delta t} \int_{T} \dots \int_{T} b(s_1, s_2, \dots, s_k)(u(s_1)E + a(s_1)\chi(t_0, t, s_1)A)\dots(u(s_{k-1})E \\ &+ a(s_{k-1})\chi(t_0, t, s_{k-1})A)Aa(s_k)\chi(t, t + \Delta t, s_k)ds_1ds_2\dots ds_k + \\ &+ \frac{1}{\Delta t} \int_{T} \dots \int_{T} \sum_{m=2}^{k} C_k^m(u(s_1)E + a(s_1)\chi(t_0, t, s_1)A)\dots(u(s_{k-m})E \\ &+ a(s_{k-m})\chi(t_0, t, s_{k-m})A)a(s_{k-m+1}\chi(t, t + \Delta t, s_{k-m+1})A\dots \\ &\cdot a(s_k)\chi(t, t + \Delta t, s_k)Ads_1ds_2\dots ds_k. \end{aligned}$$

Further

$$\frac{1}{|\Delta t|} \| \int_{T} \dots \int_{T} \sum_{m=2}^{k} C_{k}^{m}(u(s_{1})E + a(s_{1})\chi(t_{0}, t, s_{1})A) \dots (u(s_{k-m})E + a(s_{k-m})\chi(t_{0}, t, s_{k-m})A)a(s_{k-m+1}) \cdot \chi(t, t + \Delta t, s_{k-m+1})A \dots a(s_{k})\chi(t, t + \Delta t, s_{k})Ads_{1}ds_{2}\dots ds_{k} \|_{L} \leq \frac{1}{|\Delta t|} C_{k}^{m}(max_{s\in T}|a(s)|)^{m} \|A\|_{L}^{m} B[\int_{T} (|u(s_{1})|)^{m} \|A\|_{L}^{m} B[\int_{T}$$

V. G. ZADOROZHNIY

$$+max_{s_1\in T}|a(s_1)|||A||_L)ds_1]^{k-m}|\Delta t|^m =$$

 $= C_k^m(max_{s\in T}|a(s)|)^m \|A\|_L^m B\||u(s_1)| + max_{s_1\in T}||a(s_1)|\|A\|_L\|_1^{k-m}|\Delta t|^{m-1} \to 0$ for $\Delta t \to 0, m \ge 2$. Using the definition of function χ and the mean value theorem, we go to the limit in (4) for $\Delta t \to 0$, and get (3). The theorem is proved.

Corollary. If the conditions of theorem 1 are satisfied, Y(t, u) is a solution of the operator equation

$$\frac{\partial Y}{\partial t} = a(t) \frac{\delta Y}{\delta u(t)} \tag{5}$$

with the initial condition

$$Y(t_0, u) = f(u)E.$$
(6)

Indeed, substituting equality (3), (4) into equation (5), we get the equality. Next

$$Y(t_0, u) = \int_T \dots \int_T b(s_1, s_2, \dots, s_k) u(s_1) u(s_2) \dots u(s_k) E^k ds_1 ds_2 \dots ds_k = f(u) E.$$

2. More general initial conditions

Let $f:L_1(T)\to \mathbb{C}$ be decomposed into a power series that converges for all $u\in L_1(T)$

$$f(u) = \sum_{k=0}^{\infty} \int_{T} \int_{T} \dots \int_{T} b_k(s_1, s_2, \dots, s_k) u(s_1) u(s_2) \dots u(s_k) ds_1 ds_2 \dots ds_k,$$
(7)

where b_k is symmetric for each pair of variables of the function.

Theorem 2.1. If $a: T \to \mathbb{C}$ be a continuous function, b_k be continuous symmetric functions for each pair of variables, then the operator function

$$Y(t,u) = f(uE + a\chi(t_0,t)A) =$$

$$= \sum_{k=0}^{\infty} \int_{T} \int_{T} \dots \int_{T} b_k(s_1, s_2, \dots, s_k)(u(s_1)E + a(s_1)\chi(t_0, t, s_1)A)(u(s_2)E + a(s_2)\chi(t_0, t, s_2)A)\dots(u(s_k)E + a(s_k)\chi(t_0, t, s_k)A)ds_1ds_2\dots ds_k$$
(8)

is a solution of operator equation (5) with the initial condition $Y(t_0, u) = f(u)E$.

Proof. According to the previous corollary, each term of series (7) satisfies equation (5), then (formally)

$$\frac{\partial Y}{\partial t} = a(t)A\frac{\delta_p Y}{\delta u(t)}.$$

In this equation, power series are on the left and on the right, so Y(t, u) satisfies equation (5). In this case,

$$Y(t_0, u) = \sum_{k=0}^{\infty} \int_T \int_T \dots \int_T b_k(s_1, s_2, \dots, s_k) u(s_1) u(s_2) \dots u(s_k) E ds_1 ds_2 \dots ds_k$$

= $f(u)E$,

in other words, the initial condition is also satisfied. The theorem is proved.

Comment. In the particular case $f(u) = \sum_{k=0}^{\infty} (\int_T b_k(s)u(s)ds)^k$ we get

$$Y(t,u) = f(uE + a\chi(t_0,t)A)) = \sum_{k=0}^{\infty} (\int_T b_k(s)(u(s)E + a(s)\chi(t_0,t,s)A)ds)^k.$$

3. Vector problem

Consider the vector problem

$$\frac{\partial y}{\partial t} = a(t)A\frac{\delta_p y}{\delta u(t)}.$$
(9)

$$y(t_0) = f(u)\xi. \tag{10}$$

Here $y: T \times L_1(T) \to X, \xi \in X$.

Theorem 3.1. If $a: T \to \mathbb{C}$ is a continuous function and f expands into power series (7), $\xi \in X$, then

$$y(t,u) = f(uE + a\chi(t_0,t)A)\xi$$

is a solution of problem (9), (10).

Proof. We have $\frac{\partial y(t,u)}{\partial t} = a(t) \frac{\delta f(uE + a\chi(t_0,t)A)}{\delta u(t)} = a(t) \frac{\delta y(t,u)}{\delta u(t)}$. Therefore y is a solution to equation (9). Further $y(t_0, u) = f(uE)\xi = f(u)E\xi = f(u)\xi$. The theorem is proved.

Let the initial condition have more general form

$$y(t_0, u) = F(u) = \sum_{k=1}^{n} f_K(u)\xi_k.$$
(11)

Here $\xi_1, \xi_2, ..., \xi_n$ is a basis in X. Then

$$y(t,u) = \sum_{k=1}^{n} f_K(uE + a\chi(t_0,t)A)\xi_k$$

is a solution of problem (9), (11). This formula can be formally written in mind $y(t, u) = F(uE + a\chi(t_0, t)A))$

4. Linear inhomogeneous problem

Consider the linear inhomogeneous problem

$$\frac{\partial y}{\partial t} = a(t)A\frac{\delta_p y}{\delta u(t)} + b(t, u).$$
(12)

$$y(t_0) = F(u).$$
 (13)

Here $y: T \times L_1(T) \to X, F: L_1(T) \to X, b: T \times L_1(T) \to X.$

Theorem 4.1. If $a : T \to \mathbb{C}$ is a continuous function, $b = \sum_{j=1}^{n} b_j \xi_j$ and b_j expands into power series

$$b_j(t,u) = \sum_{k=0}^{\infty} \int_T \dots \int_T b_{jk}(t,s_1,s_2,\dots,s_k) u(s_1) u(s_2) \dots u(s_k) ds_1 ds_2 \dots ds_k,$$

$$F(u) = \sum_{k=1}^{n} f_k(u)\xi_k,$$

then

$$y(t,u) = F(uE + a\chi(t_0,t)A) + \int_{t_0}^t b(s, uE + a\chi(s,t)A)ds$$
(14)

is a solution of problem (12), (13).

Proof. Since

$$\frac{\partial F(uE + a\chi(t_0, t)A)}{\partial t} = a(t)A\frac{\delta F(uE + a\chi(t_0, t)A)}{\delta u(t)}$$

we have

$$\begin{split} \frac{\partial y}{\partial t} &= a(t)A\frac{\delta F(uE + a\chi(t_0, t)A)}{\delta u(t)} + b(t, uE) + \int_{t_0}^t aA\frac{\delta b(S, uE + a\chi(t_0, t)A)}{\delta u(t)}ds,\\ \frac{\delta_p y}{\delta u(t)} &= \frac{\delta F(uE + a\chi(t_0, t)A)}{\delta u(t)} + \int_{t_0}^t \frac{\delta b(s, uE + a\chi(t_0, t)A)}{\delta u(t)}ds \end{split}$$

Obviously y satisfies equation (12) and

$$y(t_0, u) = F(uE) = \sum_{k=1}^n f_k(uE)\xi_k = \sum_{k=1}^n f_k(u)\xi_k = F(u),$$

The theorem is proved.

5. Application to probability theory

Consider the system of differential equations with random coefficients

$$\frac{dx}{dt} = \varepsilon_1(t)Ax + \varepsilon_2(t)\xi \tag{15}$$

with the initial condition

$$x(t_0) = x_0. (16)$$

Here $x \in X, A \in L(X, X), g : T \to \mathbb{R}, \xi$ is a random vector, $\varepsilon_1(t), \varepsilon_2(t), g$ are random processes, x_0 is a random vector. Let

$$w = exp(i\int_T (\varepsilon_1(s)u(s) + \varepsilon_2(s)v(s))ds), u, v \in L_1(T)$$

and let the characteristic functional be known [1, p. 30] $\psi(u, v) = E[w], u, v \in L_1(T), E$ means the mathematical expectation of the distribution functions ε, g . We need to find the mathematical expectation of the solution of problem (15), (16).

We multiply (15), (16) by w and take the mathematical expectations of the obtained equalities

$$E[\frac{dx}{dt}w] = E[\varepsilon_1(t)Axw] + E[\varepsilon_2(t)\xi w]$$
$$E[x(t_0)w] = E[x_0w]$$

24

We introduce the mapping y(t, u, v) = E[x(t)w]. Note that y(t, 0) = E[x(t)]. The last equations can be written as

$$\frac{\partial y}{\partial t} = -iA \frac{\delta_p y}{\delta u(t)} - i \frac{\delta_p \psi}{\delta v(t)} \xi, \qquad (17)$$

$$y(t_0, u, v) = E[x_0]\psi(u, v).$$
(18)

Here we assume that x_0 does not depend on $\varepsilon_1, \varepsilon_2$.

Problem (17), (18) has the form of problem (12), (13). Using formula (14) we find

$$y(t, u, v) = \psi(u - i\chi(t_0, t)A, v)E[x_0] - i\int_{t_0}^t \frac{\delta_p \psi(u - ichi(s, t)A, v)}{\delta v(s)} \xi ds.$$

Assuming u = 0, v = 0, we easily find

$$E[x(t)] = \psi(-i\chi(t_0, t)A, 0)E[x_0] - i\int_{t_0}^t \frac{\delta_p \psi(-ichi(s, t)A, 0)}{\delta v(s)} \xi ds.$$

Let $\varepsilon_1, \varepsilon_2$ be given by the characteristic functional

$$\begin{split} \psi(u,v) &= exp(i\int_T E[\varepsilon_1(s)u(s)ds \\ &-\frac{1}{2}\int_T \int_T b(s_1,s_2)]u(s_1)u(s_2)ds_1ds_2)\frac{sin\int_T B(s)u(s)ds}{\int_T B(s)u(s)ds}exp(i\int_T E[\varepsilon_2(s)v(s)ds]) \end{split}$$

This means that ε_1 is a Gaussian random process, and ε_2 is a uniformly distributed random process, $b(s_1, s_2) = E[\varepsilon_1(s_1)\varepsilon(s_2)] - E[\varepsilon_1(s_1)]E[\varepsilon(s_2)], B(s) \ge 0, u \in L_1(T), v \in L_1(T)$. Using the formula, we find

$$\begin{split} E[x(t)] &= exp(i\int_{t_0}^t AE[\varepsilon_1(s)ds \\ &+ \frac{A^2}{2}\int_{t_0}^t \int_{t_0}^t b(s_1,s_2)]ds_1ds_2) \frac{sin\int_{t_0}^t B(s)ds}{\int_{t_0}^t B(s)ds} exp(i\int_{t_0}^t E[\varepsilon_2(s)ds]) \\ &\int_{t_0}^t exp(i\int_s^t AE[\varepsilon_1(\tau)d\tau \\ &+ \frac{A^2}{2}\int_s^t \int_s^t b(s_1,s_2)]ds_1ds_2) \frac{sin\int_{t_0}^t B(s)ds}{\int_{t_0}^t B(s)ds} exp(i\int_{t_0}^t E[\varepsilon_2(s)ds])E[\varepsilon_2(s)]ds\xi. \end{split}$$

Similarly we can find the other moment functions for the solution of problem (15),(16).

References

- Dunford N. and Schwartz J. Linear operators. Part 1, General theory. Interscience Publishers, 1958.
- [2] Zadorozhniy V.G. Metody variatsionnogo analiza, Rhd, Moscow-Izhevsk, 2006.

V. G. Zadorozhniy: Voronezh State University, Voronezh, Russian Federation $E\text{-}mail\ address:\ \texttt{zador@amm.vsu.ru}$