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Abstract. We consider special operator functions generated by analytic
functionals. For these functions, the variational derivatives and ordinary

derivatives are calculated. A formula is obtained for solving the initial prob-
lem for a linear inhomogeneous system of differential equations with ordinary
and variational derivatives. A general explicit formula is obtained for the

mathematical expectation of the solution of a linear inhomogeneous system
of ordinary differential equations, the coefficients of which are random pro-
cesses. As an example, a calculation is made for a system with Gaussian and
uniformly distributed random processes.

1. Operator functions

Let R be a set of real numbers, t ∈ R, X be a finite-dimensional linear space
with the norm ∥ · ∥ and L(X,X) space of linear operators acting in the space X
with the norm ∥A∥L.

In mathematics, operator functions generated by analytical functions play an
important role [1]. For example, if A ∈ L(X,X), E is the identical operator,

expA = E +A+ A2

2! + .... Operator function exp(At) is a solution of the Cauchy
operator problem

dY

dt
= AY, Y (0) = E,

where Y : R → L(X,X) the required operator function [1].
Let L1(T ) be the space of summable functions on the segment T = [t0, t1] with

the norm ∥u∥1 =
∫
T
|u(t)|dt and f : L1(T ) → C have the form

f(u) =

∫
T

...

∫
T

b(s1, s2, ..., sk)u1(s1)u(s2)...u(sk)ds1ds2...dsk,

where b is a function that is symmetric for each pair of variables.
Let χ(s) = χ(t0, t, s) be a function of the variable s ∈ R defined as follows:

χ(t0, t, s) = sign(s − t0) if s belongs to a segment [min{t0, , t},max{t0, t}] and
χ(t0, t, s) = 0, if s no belongs to a segment. Note that equality is true

χ(t0, t+∆t, s) = χ(t0, t, s) + χ(t, t+∆t, s). (1)
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We will use the concept of variational derivative. Recall its definition [2, p. 14].
Let Y : L1(T ) → L(X,X), u ∈ L1(T ), h ∈ L1(T ). If

Y (u+ h)− Y (u) =

∫
T

φ(t, u)h(t)dt+ o(h),

where integral (Lebesgue) is a linear bounded on L1(T ) operator and o(h) is in-
finitesimal of higher order relative to h, then φ : T × L1(T ) → L(X,X) is called
the variational (functional) derivative of mapping Y at the point u and is denoted

by δY (u)
δu(t) .

Consider the special operator function

Y (t, u) = f(uE + aχ(t0, t)A) =

=

∫
T

...

∫
T

b(s1, s2, ...sk)(u(s1)E

+a(s1)χ(t0, t, s1)A)(u(s2)E + a(s2)χ(t0, t, s2)A)...(u(sk)E

+a(sk)χ(t0, t, sk)A)ds1ds2...dsk.

We have not seen such functions in the literature.
Further

δpY (t,u)
δu(t) denotes the partial variational derivative with respect to the

variable u.

Theorem 1.1. If a is a continuous function on T and b is a continuous function

that is symmetric for each pair of variables, then there exists the derivative
δpY (t,u)
δu(t)

and

δpY (t, u)

δu(t)
= k

∫
T

...

∫
T

b(s1, s2, ...sk−1, t)(u(s1)E + a(s1)χ(t0, t, s1)A)(u(s2)E

+a(s2)χ(t0, t, s2)A)...(u(sk−1)E + a(sk−1)χ(t0, t, sk−1)A)ds1ds2...dsk−1. (2)

Proof. Let h ∈ L1(T ) be an increment of the variable u. Since b is a function
that is symmetric for each pair of variables, then

Y (t, u+ h)− Y (t, u) =

=

∫
T

...

∫
T

b(s1, s2, ..., sk)[(u(s1)E + a(s1)χ(t0, t, s1)A

+h(s1)E))(u(s2)E + a(s2)χ(t0, t, s2)A

+h(s2)E)...(u(sk)E + a(sk)χ(t0, t, sk)A+ h(sk)E)ds1ds2...dsk−
(u(s1)E + a(s1)χ(t0, t, s1)A)(u(s2)E + a(s2)χ(t0, t, s2)A)...(u(sk)E

+a(sk)χ(t0, t, sk)A)]ds1ds2...dsk =

= k

∫
T

...

∫
T

b(s1, s2, ..., s(k−1), t)[(u(s1)E + a(s1)χ(t0, t, s1)A)...(u(sk−1)E

+a(sk−1)χ(t0, t, sk−1)A)h(sk)Eds1ds2...dsk−1+

+

∫
T

...

∫
T

k∑
m=2

Cm
k (u(s1)E + a(s1)χ(t0, t, s1)A)...(u(sk−m)E

+a(sk−m)χ(t0, t, sk−m)A)h(sk−m+1)...h(sk)Eds1ds2...dsk.
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Here Cm
k is the number of combinations of k by m. Let’s estimate the norm of the

last term

1

∥h∥1
∥
∫
T

...

∫
T

k∑
m=2

Cm
k (u(s1)E + a(s1)χ(t0, t, s1)A)...(u(sk−m)E

+a(sk−m)χ(t0, t, sk−m)A)h(sk−m+1)...h(sk)Eds1ds2...dsk∥L ≤

≤ 1

∥h∥1
Cm

k B(∥|u(s1)|+maxs1∈T |a(s1)|∥A∥L∥L1
)k−m∥h∥m1 → 0

for ∥h∥1 → 0,m ≥ 2. Here B = maxsi∈T |b(s1, s2, ..., sk)|. According to the defini-

tion of the variational derivative,
δpY (t,u)
δu(t) exists and the equality (2) is valid. The

theorem is proved.

Theorem 1.2. Under the conditions of theorem 1, there exists the partial deriv-

ative ∂Y (t,u)
∂t , while

∂Y (t, u)

∂t
= ka(t)A

∫
T

...

∫
T

b(s1, s2, ...sk−1, t)(u(s1)E + a(s1)χ(t0, t, s1)A)(u(s2)E

+a(s2)χ(t0, t, s2)A)...(u(sk−1)E + a(sk−1)χ(t0, t, sk−1)A)ds1ds2...dsk−1. (3)

Proof. Let ∆t be the increment of the variable t. Then

1

∆t
(Y (t+∆t, u))− Y (t, u)) =

=
1

∆t

∫
T

...

∫
T

b(s1, s2, ..., sk)[(u(s1)E

+a(s1)χ(t0, t, s1)A+ a(s1)χ(t, t+∆t, s1)A))(u(s2)E

+a(s2)χ(t0, t, s2)A+ a(s2)χ(t, t+∆t, s2)A)...(u(sk)E

+a(sk)χ(t0, t, sk)A+ a(sk)χ(t, t+∆t, sk)A)ds1ds2...dsk−
(u(s1)E + a(s1)χ(t0, t, s1)A)(u(s2)E + a(s2)χ(t0, t, s2)A)...(u(sk)E

+a(sk)χ(t0, t, sk)A)]ds1ds2...dsk =

=
k

∆t

∫
T

...

∫
T

b(s1, s2, ..., sk)(u(s1)E + a(s1)χ(t0, t, s1)A)...(u(sk−1)E

+a(sk−1)χ(t0, t, sk−1)A)Aa(sk)χ(t, t+∆t, sk)ds1ds2...dsk+

+
1

∆t

∫
T

...

∫
T

k∑
m=2

Cm
k (u(s1)E + a(s1)χ(t0, t, s1)A)...(u(sk−m)E

+a(sk−m)χ(t0, t, sk−m)A)a(sk−m+1χ(t, t+∆t, sk−m+1)A...·
·a(sk)χ(t, t+∆t, sk)Ads1ds2...dsk. (4)

Further

1

|∆t|
∥
∫
T

...

∫
T

k∑
m=2

Cm
k (u(s1)E + a(s1)χ(t0, t, s1)A)...(u(sk−m)E

+a(sk−m)χ(t0, t, sk−m)A)a(sk−m+1)·
·χ(t, t+∆t, sk−m+1)A...a(sk)χ(t, t+∆t, sk)Ads1ds2...dsk∥L ≤

≤ 1

|∆t|
Cm

k (maxs∈T |a(s)|)m∥A∥mLB[

∫
T

(|u(s1)|

21



V. G. ZADOROZHNIY

+maxs1∈T |a(s1)|∥A∥L)ds1]k−m|∆t|m =

= Cm
k (maxs∈T |a(s)|)m∥A∥mLB∥|u(s1)|+maxs1∈T ||a(s1)|∥A∥L∥k−m

1 |∆t|m−1 → 0

for ∆t→ 0,m ≥ 2. Using the definition of function χ and the mean value theorem,
we go to the limit in (4) for ∆t→ 0, and get (3). The theorem is proved.

Corollary. If the conditions of theorem 1 are satisfied, Y (t, u) is a solution of
the operator equation

∂Y

∂t
= a(t)

δY

δu(t)
(5)

with the initial condition

Y (t0, u) = f(u)E. (6)

Indeed, substituting equality (3), (4) into equation (5), we get the equality. Next

Y (t0, u) =

∫
T

...

∫
T

b(s1, s2, ..., sk)u(s1)u(s2)...u(sk)E
kds1ds2...dsk = f(u)E.

2. More general initial conditions

Let f : L1(T ) → C be decomposed into a power series that converges for all
u ∈ L1(T )

f(u) =
∞∑
k=0

∫
T

∫
T

...

∫
T

bk(s1, s2, ..., sk)u(s1)u(s2)...u(sk)ds1ds2...dsk, (7)

where bk is symmetric for each pair of variables of the function.

Theorem 2.1. If a : T → C be a continuous function, bk be continuous symmetric
functions for each pair of variables, then the operator function

Y (t, u) = f(uE + aχ(t0, t)A) =

=

∞∑
k=0

∫
T

∫
T

...

∫
T

bk(s1, s2, ..., sk)(u(s1)E + a(s1)χ(t0, t, s1)A)(u(s2)E

+a(s2)χ(t0, t, s2)A)...(u(sk)E + a(sk)χ(t0, t, sk)A)ds1ds2...dsk (8)

is a solution of operator equation (5) with the initial condition Y (t0, u) = f(u)E.

Proof. According to the previous corollary, each term of series (7) satisfies
equation (5), then (formally)

∂Y

∂t
= a(t)A

δpY

δu(t)
.

In this equation, power series are on the left and on the right, so Y (t, u) satisfies
equation (5). In this case,

Y (t0, u) =
∞∑
k=0

∫
T

∫
T

...

∫
T

bk(s1, s2, ..., sk)u(s1)u(s2)...u(sk)Eds1ds2...dsk

= f(u)E,

in other words, the initial condition is also satisfied. The theorem is proved.
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Comment. In the particular case f(u) =
∑∞

k=0(
∫
T
bk(s)u(s)ds)

k we get

Y (t, u) = f(uE + aχ(t0, t)A)) =
∞∑
k=0

(

∫
T

bk(s)(u(s)E + a(s)χ(t0, t, s)A)ds)
k.

3. Vector problem

Consider the vector problem

∂y

∂t
= a(t)A

δpy

δu(t)
. (9)

y(t0) = f(u)ξ. (10)

Here y : T × L1(T ) → X, ξ ∈ X.

Theorem 3.1. If a : T → C is a continuous function and f expands into power
series (7), ξ ∈ X, then

y(t, u) = f(uE + aχ(t0, t)A)ξ

is a solution of problem (9), (10).

Proof. We have ∂y(t,u)
∂t = a(t) δf(uE+aχ(t0,t)A)

δu(t) = a(t) δy(t,u)δu(t) . Therefore y is a

solution to equation (9). Further y(t0, u) = f(uE)ξ = f(u)Eξ = f(u)ξ. The
theorem is proved.

Let the initial condition have more general form

y(t0, u) = F (u) =

n∑
k=1

fK(u)ξk. (11)

Here ξ1, ξ2, ..., ξn is a basis in X. Then

y(t, u) =
n∑

k=1

fK(uE + aχ(t0, t)A)ξk

is a solution of problem (9), (11). This formula can be formally written in mind
y(t, u) = F (uE + aχ(t0, t)A))

4. Linear inhomogeneous problem

Consider the linear inhomogeneous problem

∂y

∂t
= a(t)A

δpy

δu(t)
+ b(t, u). (12)

y(t0) = F (u). (13)

Here y : T × L1(T ) → X,F : L1(T ) → X, b : T × L1(T ) → X.

Theorem 4.1. If a : T → C is a continuous function, b =
∑n

j=1 bjξj and bj
expands into power series

bj(t, u) =
∞∑
k=0

∫
T

...

∫
T

bjk(t, s1, s2, ..., sk)u(s1)u(s2)...u(sk)ds1ds2...dsk,
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F (u) =
n∑

k=1

fk(u)ξk,

then

y(t, u) = F (uE + aχ(t0, t)A) +

∫ t

t0

b(s, uE + aχ(s, t)A)ds (14)

is a solution of problem (12), (13).

Proof. Since

∂F (uE + aχ(t0, t)A)

∂t
= a(t)A

δF (uE + aχ(t0, t)A)

δu(t)
,

we have

∂y

∂t
= a(t)A

δF (uE + aχ(t0, t)A)

δu(t)
+ b(t, uE) +

∫ t

t0

aA
δb(S, uE + aχ(t0, t)A)

δu(t)
ds,

δpy

δu(t)
=
δF (uE + aχ(t0, t)A)

δu(t)
+

∫ t

t0

δb(s, uE + aχ(t0, t)A)

δu(t)
ds

Obviously y satisfies equation (12) and

y(t0, u) = F (uE) =
n∑

k=1

fk(uE)ξk =
n∑

k=1

fk(u)ξk = F (u),

The theorem is proved.

5. Application to probability theory

Consider the system of differential equations with random coefficients

dx

dt
= ε1(t)Ax+ ε2(t)ξ (15)

with the initial condition

x(t0) = x0. (16)

Here x ∈ X,A ∈ L(X,X), g : T → R, ξ is a random vector, ε1(t), ε2(t), g are
random processes, x0 is a random vector. Let

w = exp(i

∫
T

(ε1(s)u(s) + ε2(s)v(s))ds), u, v ∈ L1(T )

and let the characteristic functional be known [1, p. 30] ψ(u, v) = E[w], u, v ∈
L1(T ), E means the mathematical expectation of the distribution functions ε, g.
We need to find the mathematical expectation of the solution of problem (15),
(16).

We multiply (15), (16) by w and take the mathematical expectations of the
obtained equalities

E[
dx

dt
w] = E[ε1(t)Axw] + E[ε2(t)ξw]

E[x(t0)w] = E[x0w]
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We introduce the mapping y(t, u, v) = E[x(t)w]. Note that y(t, 0) = E[x(t)]. The
last equations can be written as

∂y

∂t
= −iA δpy

δu(t)
− i

δpψ

δv(t)
ξ, (17)

y(t0, u, v) = E[x0]ψ(u, v). (18)

Here we assume that x0 does not depend on ε1, ε2.
Problem (17), (18) has the form of problem (12), (13). Using formula (14) we

find

y(t, u, v) = ψ(u− iχ(t0, t)A, v)E[x0]− i

∫ t

t0

δpψ(u− ichi(s, t)A, v)

δv(s)
ξds.

Assuming u = 0, v = 0, we easily find

E[x(t)] = ψ(−iχ(t0, t)A, 0)E[x0]− i

∫ t

t0

δpψ(−ichi(s, t)A, 0)
δv(s)

ξds.

Let ε1, ε2 be given by the characteristic functional

ψ(u, v) = exp(i

∫
T

E[ε1(s)u(s)ds

−1

2

∫
T

∫
T

b(s1, s2)]u(s1)u(s2)ds1ds2)
sin

∫
T
B(s)u(s)ds∫

T
B(s)u(s)ds

exp(i

∫
T

E[ε2(s)v(s)ds])

This means that ε1 is a Gaussian random process, and ε2 is a uniformly dis-
tributed random process, b(s1, s2) = E[ε1(s1)ε(s2)] − E[ε1(s1)]E[ε(s2)], B(s) ≥
0, u ∈ L1(T ), v ∈ L1(T ). Using the formula, we find

E[x(t)] = exp(i

∫ t

t0

AE[ε1(s)ds

+
A2

2

∫ t

t0

∫ t

t0

b(s1, s2)]ds1ds2)
sin

∫ t

t0
B(s)ds∫ t

t0
B(s)ds

exp(i

∫ t

t0

E[ε2(s)ds])∫ t

t0

exp(i

∫ t

s

AE[ε1(τ)dτ

+
A2

2

∫ t

s

∫ t

s

b(s1, s2)]ds1ds2)
sin

∫ t

t0
B(s)ds∫ t

t0
B(s)ds

exp(i

∫ t

t0

E[ε2(s)ds])E[ε2(s)]dsξ.

Similarly we can find the other moment functions for the solution of problem
(15),(16).
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